[1] Treibs, A.; Kreuzer, F.H. Difluorboryl‐komplexe von di‐und tripyrrylmethenen. Justus. Liebigs. Annalen. Der. Chemie. 1968, 718, 208-223.
[2] Bumagina, N.A.; Antina, E.V.; Ksenofontov, A.A.; Antina, L.A.; Kalyagin, A.A.; Berezin, M.B. Basic structural modifications for improving the practical properties of BODIPY. Coordin. Chem. Rev. 2022, 469, 214684.
[3] Kothavale, S.S.; Lee, J.Y. Three‐and four‐coordinate, boron‐based, thermally activated delayed fluorescent emitters. Adv. Opt. Mater. 2020, 8, 2000922.
[4] Li, J.; Li, X.; Wang, G.; Wang, X.; Wu, M.; Liu, J.; Zhang, K. A direct observation of up-converted room-temperature phosphorescence in an anti-Kasha dopant-matrix system. Nat. Commun. 2023, 14, 1987.
[5] Murali, A.C.; Nayak, P.; Nayak, S.; Das, S.; Senanayak, S.P.; Venkatasubbaiah, K. Boron‐Thioketonates: A New Class of S, O‐Chelated Boranes as Acceptors in Optoelectronic Devices. Angewandte Chemie 2023, 135, e202216871.
[6] Estergreen, L.; Mencke, A.R.; Cotton, D.E.; Korovina, N.V.; Michl, J.; Roberts, S.T.; Thompson, M.E., Bradforth, S.E. Controlling Symmetry Breaking Charge Transfer in BODIPY Pairs. Acc. Chem. Res. 2022, 55, 1561-1572.
[7] Gong, Q.; Zhang, X.; Li, W.; Guo, X.; Wu, Q.; Yu, C.; Jiao, L.; Xiao, Y.; Hao, E. Long-Wavelength Photoconvertible Dimeric BODIPYs for Super-Resolution Single-Molecule Localization Imaging in Near-Infrared Emission. J. Am. Chem. Soc. 2022, 144, 21992-21999.
[8] Schäfer, C.; Hultmark, S.; Yang, Y.; Müller, C., Börjesson, K. Room Temperature Dye Glasses: A Guideline Toward the Fabrication of Amorphous Dye Films with Monomeric Absorption and Emission. Chem. Mater. 2022, 34, 9294-9302.
[9] Shonde, T.B.; Mondal, A.; Liu, H.; Chaaban, M.; Ben-Akacha, A.; Lee, S.; Knorr, E.S., Ma, B. Dramatically Enhanced X-ray Scintillation of BODIPY via Sensitization by an Organic Metal Halide. ACS Mater. s Lett. 2022, 4, 271-276.
[10] Zheng, X.; Zhang, L.; Ju, M.; Liu, L.; Ma, C.; Huang, Y.; Wang, B.; Ding, W.; Luan, X., Shen, B. Rational Modulation of BODIPY Photosensitizers to Design Metal–Organic Framework-Based NIR Nanocomposites for High-Efficiency Photodynamic Therapy in a Hypoxic Environment. ACS Appl. Mater. Inter. 2022, 14, 46262-46272.
[11] Zhao, P.; Wang, Z.; Wang, Y.; Wu, Z.; Guo, Y.; Wang, C.; Fang, X.; Qu, Z.; Wang, H., Zhao, G. A novel heavy-atom-free lysosome-targeted BODIPY as triplet photosensitizer based on SOCT-ISC mechanism for photodynamic therapy. Dyes. Pigments 2023, 214, 111214.
[12] Agazzi, M.L.; Ballatore, M.B.; Durantini, A.M.; Durantini, E.N., Tomé, A.C. BODIPYs in antitumoral and antimicrobial photodynamic therapy: An integrating review. J. Photoch. Photobio. C. 2019, 40, 21-48.
[13] Franke, J.M.; Raliski, B.K.; Boggess, S.C.; Natesan, D.V.; Koretsky, E.T.; Zhang, P.; Kulkarni, R.U.; Deal, P.E., Miller, E.W. BODIPY fluorophores for membrane potential imaging. J. Am. Chem. Soc. 2019, 141, 12824-12831.
[14] Mellerup, S.K.; Wang, S. Boron-based stimuli responsive materials. Chem. Soc. Rev. 2019, 48, 3537-3549.
[15] Song, X.; Bai, S.; He, N.; Wang, R.; Xing, Y.; Lv, C., Yu, F. Real-time evaluation of hydrogen peroxide injuries in pulmonary fibrosis mice models with a mitochondria-targeted near-infrared fluorescent probe. ACS sensors 2021, 6, 1228-1239.
[16] Chen, P.Z.; Zhang, H.; Niu, L.Y.; Zhang, Y.; Chen, Y.Z.; Fu, H.B.; Yang, Q.Z. A solid‐state fluorescent material based on carbazole‐containing difluoroboron β‐diketonate: multiple chromisms, the self‐assembly behavior, and optical waveguides. Adv. Funct. Mater. 2017, 27, 1700332.
[17] Chen, Y.; Ouyang, Q.; Li, Y.; Zeng, Q.; Dai, B.; Liang, Y.; Chen, B.; Tan, H.; Cui, M. Evaluation of N, O-Benzamide difluoroboron derivatives as near-infrared fluorescent probes to detect β-amyloid and tau tangles. Eur. J. Med. Chem. 2022, 227, 113968.
[18] Chen, Y.; Yuan, C.; Xie, T.; Li, Y.; Dai, B.; Zhou, K.; Liang, Y.; Dai, J.; Tan, H.; Cui, M. N, O-Benzamide difluoroboron complexes as near-infrared probes for the detection of β-amyloid and tau fibrils. Chem. Commun. 2020, 56, 7269-7272.
[19] Kubota, Y.; Tanaka, S.; Funabiki, K.; Matsui, M. Synthesis and Fluorescence Properties of Thiazole–Boron Complexes Bearing a β-Ketoiminate Ligand. Org. Lett. 2012, 14, 4682-4685.
[20] Li, S.; Fu, L.; Xiao, X.; Geng, H.; Liao, Q.; Liao, Y.; Fu, H. Regulation of Thermally Activated Delayed Fluorescence to Room‐Temperature Phosphorescent Emission Channels by Controlling the Excited‐States Dynamics via J‐ and H‐Aggregation. Angew Chem. Int. Ed. Engl. 2021, 60, 18059-18064.
[21] Nosova, E.V.; Moshkina, T.N.; Lipunova, G.N.; Baklanova, I.V.; Slepukhin, P.A., Charushin, V.N. Synthesis, structure and photoluminescent properties of BF2 and BPh2 complexes with N,O-benzazine ligands. J. Fluorine Chem. 2015, 175, 145-151.
[22] Xia, M.; Wu, B.; Xiang, G. Synthesis, structure and spectral study of two types of novel fluorescent BF2 complexes with heterocyclic 1,3-enaminoketone ligands. J. Fluorine Chem. 2008, 129, 402-408.
[23] Cai, Y.-H.; Chih, H.-Y.; Lee, G.-H.; Lai, C.K. Aggregation-induced emissions in the mesogenic BF2 complexes of aroylhydrazines. New J Chem. 2021, 45, 12557-12568.
[24] Hu, Y.; Nan, J.; Gong, X.; Zhang, J.; Yin, J.; Ma, Y. Zinc-catalyzed C–H alkenylation of quinoline N-oxides with ynones: a new strategy towards quinoline-enol scaffolds. Chem. Commun. 2021, 57, 4930-4933.
[25] Yang, D.; Liu, P.; Bai, T.; Kong, J. N,N-Dimethyl-Substituted Boron Ketoiminates for Multicolor Fluorescent Initiators and Polymers. Macromolecules 2020, 53, 3339-3348.
[26] Yao, Q.-C.; Wu, D.-E.; Ma, R.-Z.; Xia, M. Study on the structure–property relationship in a series of novel BF2 chelates with multicolor fluorescence. J. Organometallic. Chem. 2013, 743, 1-9.
[27] Tan, G.; Maisuls, I.; Strieth‐Kalthoff, F.; Zhang, X.; Daniliuc, C.; Strassert, C.A.; Glorius, F. AIE‐Active Difluoroboron Complexes with N,O‐Bidentate Ligands: Rapid Construction by Copper‐Catalyzed C−H Activation. Adv. Sci. 2021, 8, 2101814.
[28] Tan, G.; Schrader, M.L.; Daniliuc, C.; Strieth‐Kalthoff, F.; Glorius, F. C−H Activation Based Copper‐Catalyzed One‐Shot Synthesis of N,O‐Bidentate Organic Difluoroboron Complexes. Angew. Chem. Int. Ed. Engl. 2020, 59, 21541-21545.
[29] Duan, C.; Zhou, Y.; Shan, G.-G.; Chen, Y.; Zhao, W.; Yuan, D.; Zeng, L.; Huang, X.; Niu, G. Bright solid-state red-emissive BODIPYs: facile synthesis and their high-contrast mechanochromic properties. J. Mater. Chem. 2019, 7, 3471-3478.
[30] Pérez-Venegas, M.; Villanueva-Hernández, M.N.; Peña-Cabrera, E.; Juaristi, E. Mechanochemically Activated Liebeskind–Srogl (LS) Cross-Coupling Reaction: Green Synthesis of meso-Substituted BODIPYs. Organometallics. 2020, 39, 2561-2564.
[31] He, G.; Lu, Q.; Xu, F.; Zhang, D.; Li, Y.; Xia, J. Facile synthesis of poly (BODIPY) s via solid state polymerization and application in temperature sensor. Polymer. 2022, 241, 124514.
Manuscript received: XXXX, 2023 Manuscript revised: XXXX, 2023 Manuscript accepted: XXXX, 2023 Accepted manuscript online: XXXX, 2023 Version of record online: XXXX, 2023