Reference
list
Alexander, L. M., Oh, J. H., Stapleton, D. S., Schueler, K. L., Keller,
M. P., Attie, A. D., & van Pijkeren, J. P. (2019). Exploiting
Prophage-Mediated Lysis for Biotherapeutic Release by Lactobacillus
reuteri. Appl Environ Microbiol , 85 (10).
https://doi.org/10.1128/AEM.02335-18
Andoh, A., Zhang, Z., Inatomi, O., Fujino, S., Deguchi, Y., Araki, Y.,
Tsujikawa, T., Kitoh, K., Kim-Mitsuyama, S., Takayanagi, A., Shimizu,
N., & Fujiyama, Y. (2005). Interleukin-22, a member of the IL-10
subfamily, induces inflammatory responses in colonic subepithelial
myofibroblasts. Gastroenterology , 129 (3), 969-984.
https://doi.org/10.1053/j.gastro.2005.06.071
Barker, N. (2014). Adult intestinal stem cells: critical drivers of
epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol ,15 (1), 19-33. https://doi.org/10.1038/nrm3721
Castanheira, F. V. S., & Kubes, P. (2019). Neutrophils and NETs in
modulating acute and chronic inflammation. Blood , 133 (20),
2178-2185. https://doi.org/10.1182/blood-2018-11-844530
Casteleyn, C., Rekecki, A., Van der Aa, A., Simoens, P., & Van den
Broeck, W. (2010). Surface area assessment of the murine intestinal
tract as a prerequisite for oral dose translation from mouse to man.Lab Anim , 44 (3), 176-183.
https://doi.org/10.1258/la.2009.009112
Czajkowsky, D. M., Hu, J., Shao, Z., & Pleass, R. J. (2012). Fc-fusion
proteins: new developments and future perspectives. EMBO Mol Med ,4 (10), 1015-1028. https://doi.org/10.1002/emmm.201201379
Dudakov, J. A., Hanash, A. M., & van den Brink, M. R. (2015).
Interleukin-22: immunobiology and pathology. Annu Rev Immunol ,33 , 747-785.
https://doi.org/10.1146/annurev-immunol-032414-112123
Eken, A., Singh, A. K., Treuting, P. M., & Oukka, M. (2014). IL-23R+
innate lymphoid cells induce colitis via interleukin-22-dependent
mechanism. Mucosal Immunol , 7 (1), 143-154.
https://doi.org/10.1038/mi.2013.33
Gasche, C., Bakos, S., Dejaco, C., Tillinger, W., Zakeri, S., &
Reinisch, W. (2000). IL-10 secretion and sensitivity in normal human
intestine and inflammatory bowel disease. J Clin Immunol ,20 (5), 362-370. https://doi.org/10.1023/a:1006672114184
Goyal, S., Tsang, D. K. L., Maisonneuve, C., & Girardin, S. E. (2021).
Sending signals - The microbiota’s contribution to intestinal epithelial
homeostasis. Microbes Infect , 23 (6-7), 104774.
https://doi.org/10.1016/j.micinf.2020.10.009
Granlund, A., Beisvag, V., Torp, S. H., Flatberg, A., Kleveland, P. M.,
Ostvik, A. E., Waldum, H. L., & Sandvik, A. K. (2011). Activation of
REG family proteins in colitis. Scand J Gastroenterol ,46 (11), 1316-1323.
https://doi.org/10.3109/00365521.2011.605463
Gronke, K., Hernandez, P. P., Zimmermann, J., Klose, C. S. N.,
Kofoed-Branzk, M., Guendel, F., Witkowski, M., Tizian, C., Amann, L.,
Schumacher, F., Glatt, H., Triantafyllopoulou, A., & Diefenbach, A.
(2019). Interleukin-22 protects intestinal stem cells against genotoxic
stress. Nature , 566 (7743), 249-253.
https://doi.org/10.1038/s41586-019-0899-7
Gunasekera, D. C., Ma, J., Vacharathit, V., Shah, P., Ramakrishnan, A.,
Uprety, P., Shen, Z., Sheh, A., Brayton, C. F., Whary, M. T., Fox, J.
G., & Bream, J. H. (2020). The development of colitis in Il10(-/-) mice
is dependent on IL-22. Mucosal Immunol , 13 (3), 493-506.
https://doi.org/10.1038/s41385-019-0252-3
Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next
generation. Cell , 144 (5), 646-674.
https://doi.org/10.1016/j.cell.2011.02.013
He, G. W., Lin, L., DeMartino, J., Zheng, X., Staliarova, N., Dayton,
T., Begthel, H., van de Wetering, W. J., Bodewes, E., van Zon, J., Tans,
S., Lopez-Iglesias, C., Peters, P. J., Wu, W., Kotlarz, D., Klein, C.,
Margaritis, T., Holstege, F., & Clevers, H. (2022). Optimized human
intestinal organoid model reveals interleukin-22-dependency of paneth
cell formation. Cell Stem Cell , 29 (12), 1718-1720.
https://doi.org/10.1016/j.stem.2022.11.001
Helander, H. F., & Fandriks, L. (2014). Surface area of the digestive
tract - revisited. Scand J Gastroenterol , 49 (6), 681-689.
https://doi.org/10.3109/00365521.2014.898326
Huber, S., Gagliani, N., Zenewicz, L. A., Huber, F. J., Bosurgi, L., Hu,
B., Hedl, M., Zhang, W., O’Connor, W., Jr., Murphy, A. J., Valenzuela,
D. M., Yancopoulos, G. D., Booth, C. J., Cho, J. H., Ouyang, W.,
Abraham, C., & Flavell, R. A. (2012). IL-22BP is regulated by the
inflammasome and modulates tumorigenesis in the intestine.Nature , 491 (7423), 259-263.
https://doi.org/10.1038/nature11535
Jiang, R., Wang, H., Deng, L., Hou, J., Shi, R., Yao, M., Gao, Y., Yao,
A., Wang, X., Yu, L., & Sun, B. (2013). IL-22 is related to development
of human colon cancer by activation of STAT3. BMC Cancer ,13 , 59. https://doi.org/10.1186/1471-2407-13-59
Kamanaka, M., Huber, S., Zenewicz, L. A., Gagliani, N., Rathinam, C.,
O’Connor, W., Jr., Wan, Y. Y., Nakae, S., Iwakura, Y., Hao, L., &
Flavell, R. A. (2011). Memory/effector (CD45RB(lo)) CD4 T cells are
controlled directly by IL-10 and cause IL-22-dependent intestinal
pathology. J Exp Med , 208 (5), 1027-1040.
https://doi.org/10.1084/jem.20102149
Kim, C. H., Hashimoto-Hill, S., & Kim, M. (2016). Migration and Tissue
Tropism of Innate Lymphoid Cells. Trends Immunol , 37 (1),
68-79. https://doi.org/10.1016/j.it.2015.11.003
Kim, Y. S., & Ho, S. B. (2010). Intestinal goblet cells and mucins in
health and disease: recent insights and progress. Curr
Gastroenterol Rep , 12 (5), 319-330.
https://doi.org/10.1007/s11894-010-0131-2
Liao, X., Lan, Y., Wang, W., Zhang, J., Shao, R., Yin, Z., Gudmundsson,
G. H., Bergman, P., Mai, K., Ai, Q., & Wan, M. (2023). Vitamin D
influences gut microbiota and acetate production in zebrafish (Danio
rerio) to promote intestinal immunity against invading pathogens.Gut Microbes , 15 (1), 2187575.
https://doi.org/10.1080/19490976.2023.2187575
Lindemans, C. A., Calafiore, M., Mertelsmann, A. M., O’Connor, M. H.,
Dudakov, J. A., Jenq, R. R., Velardi, E., Young, L. F., Smith, O. M.,
Lawrence, G., Ivanov, J. A., Fu, Y. Y., Takashima, S., Hua, G., Martin,
M. L., O’Rourke, K. P., Lo, Y. H., Mokry, M., Romera-Hernandez, M., . .
. Hanash, A. M. (2015). Interleukin-22 promotes
intestinal-stem-cell-mediated epithelial regeneration. Nature ,528 (7583), 560-564. https://doi.org/10.1038/nature16460
Maloy, K. J., & Powrie, F. (2011). Intestinal homeostasis and its
breakdown in inflammatory bowel disease. Nature ,474 (7351), 298-306. https://doi.org/10.1038/nature10208
Mar JS, Ota N, Pokorzynski ND, Peng Y, Jaochico A, Sangaraju D,
Skippington E, Lekkerkerker AN, Rothenberg ME, Tan MW, Yi T, Keir ME
(2023). IL-22 alters gut microbiota composition and function to increase
aryl hydrocarbon receptor activity in mice and humans.Microbiome. 2023 Mar 9;11(1):47.