http://doi:10.1186/s40168-023-01486-1.
Martin-Gallausiaux, C., Marinelli, L., Blottiere, H. M., Larraufie, P.,
& Lapaque, N. (2021). SCFA: mechanisms and functional importance in the
gut. Proc Nutr Soc , 80 (1), 37-49.
https://doi.org/10.1017/S0029665120006916
Martin, J. C., Beriou, G., Heslan, M., Chauvin, C., Utriainen, L.,
Aumeunier, A., Scott, C. L., Mowat, A., Cerovic, V., Houston, S. A.,
Leboeuf, M., Hubert, F. X., Hemont, C., Merad, M., Milling, S., &
Josien, R. (2014). Interleukin-22 binding protein (IL-22BP) is
constitutively expressed by a subset of conventional dendritic cells and
is strongly induced by retinoic acid. Mucosal Immunol ,7 (1), 101-113. https://doi.org/10.1038/mi.2013.28
Mihi, B., Gong, Q., Nolan, L. S., Gale, S. E., Goree, M., Hu, E., Lanik,
W. E., Rimer, J. M., Liu, V., Parks, O. B., Lewis, A. N., Agrawal, P.,
Laury, M. L., Kumar, P., Huang, E., Bidani, S. S., Luke, C. J., Kolls,
J. K., & Good, M. (2021). Interleukin-22 signaling attenuates
necrotizing enterocolitis by promoting epithelial cell regeneration.Cell Rep Med , 2 (6), 100320.
https://doi.org/10.1016/j.xcrm.2021.100320
Neu, J. (2014). Necrotizing enterocolitis. World Rev Nutr Diet ,110 , 253-263. https://doi.org/10.1159/000358474
Okumura, R., & Takeda, K. (2017). Roles of intestinal epithelial cells
in the maintenance of gut homeostasis. Exp Mol Med , 49 (5),
e338. https://doi.org/10.1038/emm.2017.20
Patnaude, L., Mayo, M., Mario, R., Wu, X., Knight, H., Creamer, K.,
Wilson, S., Pivorunas, V., Karman, J., Phillips, L., Dunstan, R.,
Kamath, R. V., McRae, B., & Terrillon, S. (2021). Mechanisms and
regulation of IL-22-mediated intestinal epithelial homeostasis and
repair. Life Sci , 271 , 119195.
https://doi.org/10.1016/j.lfs.2021.119195
Protopsaltis, N. J., Liang, W., Nudleman, E., & Ferrara, N. (2019).
Interleukin-22 promotes tumor angiogenesis. Angiogenesis ,22 (2), 311-323. https://doi.org/10.1007/s10456-018-9658-x
Rangel-Huerta, E., & Maldonado, E. (2017). Transit-Amplifying Cells in
the Fast Lane from Stem Cells towards Differentiation. Stem Cells
Int , 2017 , 7602951. https://doi.org/10.1155/2017/7602951
Schumacher, F., Florian, S., Schnapper, A., Monien, B. H., Mewis, I.,
Schreiner, M., Seidel, A., Engst, W., & Glatt, H. (2014). A secondary
metabolite of Brassicales, 1-methoxy-3-indolylmethyl glucosinolate, as
well as its degradation product, 1-methoxy-3-indolylmethyl alcohol,
forms DNA adducts in the mouse, but in varying tissues and cells.Arch Toxicol , 88 (3), 823-836.
https://doi.org/10.1007/s00204-013-1149-7
Sommer, K., Wiendl, M., Muller, T. M., Heidbreder, K., Voskens, C.,
Neurath, M. F., & Zundler, S. (2021). Intestinal Mucosal Wound Healing
and Barrier Integrity in IBD-Crosstalk and Trafficking of Cellular
Players. Front Med (Lausanne) , 8 , 643973.
https://doi.org/10.3389/fmed.2021.643973
Tanaka, H., Tamura, A., Suzuki, K., & Tsukita, S. (2017). Site-specific
distribution of claudin-based paracellular channels with roles in
biological fluid flow and metabolism. Ann N Y Acad Sci ,1405 (1), 44-52. https://doi.org/10.1111/nyas.13438
Tsuchida, C., Sakuramoto-Tsuchida, S., Taked, M., Itaya-Hironaka, A.,
Yamauchi, A., Misu, M., Shobatake, R., Uchiyama, T., Makino, M.,
Pujol-Autonell, I., Vives-Pi, M., Ohbayashi, C., & Takasawa, S. (2017).
Expression of REG family genes in human inflammatory bowel diseases and
its regulation. Biochem Biophys Rep , 12 , 198-205.
https://doi.org/10.1016/j.bbrep.2017.10.003
Wang, Y., Mumm, J. B., Herbst, R., Kolbeck, R., & Wang, Y. (2017).
IL-22 Increases Permeability of Intestinal Epithelial Tight Junctions by
Enhancing Claudin-2 Expression. J Immunol , 199 (9),
3316-3325. https://doi.org/10.4049/jimmunol.1700152
Wolk, K., Kunz, S., Witte, E., Friedrich, M., Asadullah, K., & Sabat,
R. (2004). IL-22 increases the innate immunity of tissues.Immunity , 21 (2), 241-254.
https://doi.org/10.1016/j.immuni.2004.07.007
Zenewicz, L. A. (2021). IL-22 Binding Protein (IL-22BP) in the
Regulation of IL-22 Biology. Front Immunol , 12 , 766586.
https://doi.org/10.3389/fimmu.2021.766586
Zenewicz, L. A., Yancopoulos, G. D., Valenzuela, D. M., Murphy, A. J.,
Stevens, S., & Flavell, R. A. (2008). Innate and adaptive
interleukin-22 protects mice from inflammatory bowel disease.Immunity , 29 (6), 947-957.
https://doi.org/10.1016/j.immuni.2008.11.003
Zha, J. M., Li, H. S., Lin, Q., Kuo, W. T., Jiang, Z. H., Tsai, P. Y.,
Ding, N., Wu, J., Xu, S. F., Wang, Y. T., Pan, J., Zhou, X. M., Chen,
K., Tao, M., Odenwald, M. A., Tamura, A., Tsukita, S., Turner, J. R., &
He, W. Q. (2019). Interleukin 22 Expands Transit-Amplifying Cells While
Depleting Lgr5(+) Stem Cells via Inhibition of Wnt and Notch Signaling.Cell Mol Gastroenterol Hepatol , 7 (2), 255-274.
https://doi.org/10.1016/j.jcmgh.2018.09.006
Zhang, X., Fisher, R., Hou, W., Shields, D., Epperly, M. W., Wang, H.,
Wei, L., Leibowitz, B. J., Yu, J., Alexander, L. M., JP, V. A. N. P.,
Watkins, S., Wipf, P., & Greenberger, J. S. (2020). Second-generation
Probiotics Producing IL-22 Increase Survival of Mice After Total Body
Irradiation. In Vivo , 34 (1), 39-50.
https://doi.org/10.21873/invivo.11743
Zhang, Y. Z., & Li, Y. Y. (2014). Inflammatory bowel disease:
pathogenesis. World J Gastroenterol , 20 (1), 91-99.
https://doi.org/10.3748/wjg.v20.i1.91