References:
[1] Shoenfeld Y, Selmi C, Zimlichman E, et al. The autoimmunologist: geoepidemiology, a new center of gravity, and prime time for autoimmunity. J Autoimmun. 2008, 31(4): 325-330.
[2] Wang F, Chu C, Zhao C, et al. Diffusion kurtosis imaging in sacroiliitis to evaluate the activity of ankylosing spondylitis. J Magn Reson Imaging: JMRI. 2019, 49(1).
[3] Ji W, Lu Y, Ma Z, et al. Triptolide attenuates inhibition of ankylosing spondylitis-derived mesenchymal stem cells on the osteoclastogenesis through modulating exosomal transfer of circ-0110634. J Orthop Translat. 2022, 36: 132-144.
[4] Xu F, Jin L, Jin Y, et al. Long noncoding RNAs in autoimmune diseases. J Biomed Mater Res A, 2019, 107: 468-475.
[5] Liu H, Zhu Z, Fang J, et al. The ceRNA Network Has Potential Prognostic Value in Clear Cell Renal Cell Carcinoma: A Study Based on TCGA Database. Biomed Res Int, 2020, 2020: 4830847.
[6] Chen L L, Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015, 12(4): 381-388.
[7] Pamudurti N R, Bartok O, Jens M, et al. Translation of CircRNAs. Mol Cell. 2017, 66(1): 9-21.
[8] Zhong Y, Du Y, Yang X, et al. Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer. 2018, 17(1): 79.
[9] Wang J J, Shan K, Liu B H, et al. Targeting circular RNA-ZRANB1 for therapeutic intervention in retinal neurodegeneration. Cell Death Dis. 2018, 9(5): 540.
[10] Liu C, Zhang C, Yang J, et al. Screening circular RNA expression patterns following focal cerebral ischemia in mice. Oncotarget. 2017, 8(49): 86535-86547.
[11] Garlapati P, Ling J, Chiao P J, et al. Circular RNAs regulate cancer-related signaling pathways and serve as potential diagnostic biomarkers for human cancers. Cancer Cell Int. 2021, 21(1): 317.
[12] Han B, Zhang Y, Zhang Y, et al. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy. 2018, 14(7): 1164-1184.
[13] Greene J, Baird A M, Brady L, et al. Circular RNAs: Biogenesis, Function and Role in Human Diseases. Front Mol Biosci. 2017, 4: 38.
[14] Li L J, Zhu Z W, Zhao W, et al. Circular RNA expression profile and potential function of hsa_circ_0045272 in systemic lupus erythematosus. Immunology. 2018, 155(1): 137-149.
[15] Zhang C, Wang X, Chen Y, et al. The down-regulation of hsa_circ_0012919, the sponge for miR-125a-3p, contributes to DNA methylation of CD11a and CD70 in CD4(+) T cells of systemic lupus erythematous. Clin Sci (Lond). 2018, 132(21): 2285-2298.
[16] Iparraguirre L, Munoz-Culla M, Prada-Luengo I, et al. Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosi. Hum Mol Genet. 2017, 26(18): 3564-3572.
[17] Zhong S, Ouyang Q, Zhu D, et al. Hsa_circ_0088036 promotes the proliferation and migration of fibroblast-like synoviocytes by sponging miR-140-3p and upregulating SIRT 1 expression in rheumatoid arthritis. Mol Immunol. 2020, 125: 131-139.
[18] Luo Q, Liu J, Fu B, et al. Circular RNAs Hsa_circ_0002715 and Hsa_circ_0035197 in Peripheral Blood Are Novel Potential Biomarkers for New-Onset Rheumatoid Arthritis. Dis Markers. 2019, 2019: 2073139.
[19] Zheng J, Li Z, Wang T, et al. Microarray Expression Profile of Circular RNAs in Plasma from Primary Biliary Cholangitis Patients. Cell Physiol Biochem. 2017, 44(4): 1271-1281.
[20] Li H, Yang H H, Sun Z G, et al. Whole-transcriptome sequencing of knee joint cartilage from osteoarthritis patients. Bone Joint Res. 2019, 8(7): 290-303.
[21] Li Z, Yuan B, Pei Z, et al. Circ_0136474 and MMP-13 suppressed cell proliferation by competitive binding to miR-127-5p in osteoarthritis. J Cell Mol Med. 2019, 23(10): 6554-6564.
[22] van der Linden S, Valkenburg H A, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 1984, 27(4): 361-368.
[23] Acquaviva M, Menon R, Di Dario M, et al. Inferring Multiple Sclerosis Stages from the Blood Transcriptome via Machine Learning. Cell Rep Med. 2020, 1(4): 100053.
[24] Chen J, Yang X, Liu R, et al. Circular RNA GLIS2 promotes colorectal cancer cell motility via activation of the NF-kappaB pathway. Cell Death Dis. 2020, 11(9): 788.
[25] Li W, Yang P, Zhong C, et al. The circ-PITX1 promotes non-small cell lung cancer development via the miR-30e-5p/ITGA6 axis. Cell Cycle. 2022, 21(3): 304-321.
[26] Maass P G, Glazar P, Memczak S, et al. A map of human circular RNAs in clinically relevant tissues. J Mol Med (Berl). 2017, 95(11): 1179-1189.
[27] Ebbesen K K, Hansen T B, Kjems J. Insights into circular RNA biology. RNA Biol. 2017, 14(8): 1035-1045.
[28] Zhang M, Han Y, Zhai Y, et al. Integrative analysis of circRNAs, miRNAs, and mRNAs profiles to reveal ceRNAs networks in chicken intramuscular and abdominal adipogenesis. BMC Genomics. 2020, 21(1): 594.
[29] Zhu X, Wang X, Wang Y, et al. The regulatory network among CircHIPK3, LncGAS5, and miR-495 promotes Th2 differentiation in allergic rhinitis. Cell Death Dis. 2020, 11(4): 216.
[30] Wu H J, Zhang C Y, Zhang S, et al. Microarray Expression Profile of Circular RNAs in Heart Tissue of Mice with Myocardial Infarction-Induced Heart Failure. Cell Physiol Biochem. 2016, 39(1): 205-216.
[31] Shao Y, Song Y, Xu S, et al. Expression Profile of Circular RNAs in Oral Squamous Cell Carcinoma. Front Oncol. 2020, 10: 533616.
[32] Gao X, Ma X K, Li X, et al. Knockout of circRNAs by base editing back-splice sites of circularized exons. Genome Biol. 2022, 23(1): 16.
[33] Limb C, Liu D, Veno M T, et al. The Role of Circular RNAs in Pancreatic Ductal Adenocarcinoma and Biliary-Tract Cancers. Cancers (Basel). 2020, 12(11).
[34] Chen J, Chen T, Zhu Y, et al. circPTN sponges miR-145-5p/miR-330-5p to promote proliferation and stemness in glioma. J Exp Clin Cancer Res. 2019, 38(1): 398.
[35] Wang Z, Deng C, Zheng Y. Involvement of circRNAs in Proinflammatory Cytokines-Mediated beta-Cell Dysfunction. Mediators Inflamm. 2021, 2021: 5566453.
[36] Wang L, Wei Y, Yan Y, et al. CircDOCK1 suppresses cell apoptosis via inhibition of miR‑196a‑5p by targeting BIRC3 in OSCC. Oncol Rep. 2018, 39(3): 951-966.
[37] Song W, Zeng Z, Zhang Y, et al. CircRNF144B/miR-342-3p/FBXL11 axis reduced autophagy and promoted the progression of ovarian cancer by increasing the ubiquitination of Beclin-1. Cell Death Dis. 2022, 13(10): 857.
[38] Zhong C, Wu K, Wang S, et al. Autophagy-related circRNA evaluation reveals hsa_circ_0001747 as a potential favorable prognostic factor for biochemical recurrence in patients with prostate cancer. Cell Death Dis. 2021, 12(8): 726.
[39] Tang Y P, Zhang Q B, Dai F, et al. Circular RNAs in peripheral blood mononuclear cells from ankylosing spondylitis. Chin Med J (Engl). 2021, 134(21): 2573-2582.
[40] Song M, Gao J, Yan T, et al. Hsa_circ_0000652 Aggravates Inflammation by Activation of Macrophages and Enhancement of OX40/OX40L Interaction in Ankylosing Spondylitis. Front Cell Dev Biol. 2021, 9: 737599.
[41] Talbott S J, Luanpitpong S, Stehlik C, et al. S-nitrosylation of FLICE inhibitory protein determines its interaction with RIP1 and activation of NF-kappaB. Cell Cycle. 2014, 13(12): 1948-1957.
[42] Xu P, Zhang X, Cao J, et al. The novel role of circular RNA ST3GAL6 on blocking gastric cancer malignant behaviours through autophagy regulated by the FOXP2/MET/mTOR axis. Clin Transl Med. 2022, 12(1): e707.
[43] Xiang P, Ge T, Zhou J, et al. Protective role of circRNA CCND1 in ulcerative colitis via miR-142-5p/NCOA3 axis. BMC Gastroenterol. 2023, 23(1): 18.
[44] Cao J, Huang Z, Ou S, et al. circ0093740 Promotes Tumor Growth and Metastasis by Sponging miR-136/145 and Upregulating DNMT3A in Wilms Tumor. Front Oncol. 2021, 11: 647352.
[45] Wang F, Li J, Li L, et al. Circular RNA circ_IRAK3 contributes to tumor growth through upregulating KIF2A via adsorbing miR-603 in breast cancer. Cancer Cell Int. 2022, 22(1): 81.