References
[1] O’Brien PJ. Peroxidases. Chem Biol Interact. 2000;129(1-2):113–139.
[2] Lau D, Mollnau H, Eiserich JP, et al. Myeloperoxidase mediates neutrophil activation by association with CD11b/CD18 integrins. Proc Natl Acad Sci U S A. 2005;102(2):431–436.
[3] Nakabo S, Ohmura K, Akizuki S, et al. Activated neutrophil carbamylates albumin via the release of myeloperoxidase and reactive oxygen species regardless of NETosis. Mod Rheumatol. 2020;30(2):345–349.
[4] Galijasevic S. The development of myeloperoxidase inhibitors. Bioorg Med Chem Lett. 2019;29(1):1–7.
[5] Antonelou M, Michaëlsson E, Evans RDR, et al. Therapeutic myeloperoxidase inhibition attenuates neutrophil activation, ANCA-mediated endothelial damage, and crescentic GN. J Am Soc Nephrol. 2020;31(2):350–364.
[6] Ndrepepa G. Myeloperoxidase - A bridge linking inflammation and oxidative stress with cardiovascular disease. Clin Chim Acta. 2019;493:36–51.
[7] Hirche TO, Gaut JP, Heinecke JW, Belaaouaj A. Myeloperoxidase plays critical roles in killing Klebsiella pneumoniae and inactivating neutrophil elastase: effects on host defense. J Immunol. 2005 Feb 1;174(3):1557-65. doi: 10.4049/jimmunol.174.3.1557. PMID: 15661916.
[8] Zhang W, Jiao L, Liu R, et al. The effect of exposure to high altitude and low oxygen on intestinal microbial communities in mice. PLoS One. 2018;13(9):e0203701.
[9] Su L, Su CW, Qi Y, Yang G, Zhang M, Cherayil BJ, Zhang X, Shi HN. Coinfection with an intestinal helminth impairs host innate immunity against Salmonella enterica serovar Typhimurium and exacerbates intestinal inflammation in mice. Infect Immun. 2014 Sep;82(9):3855-66. doi: 10.1128/IAI.02023-14. Epub 2014 Jun 30. PMID: 24980971; PMCID: PMC4187801.
[10] Mariani F, Roncucci L. Role of the Vanins-Myeloperoxidase Axis in Colorectal Carcinogenesis[J].Int J Mol Sci,2017,18(5):918-922.
[11] Zárate A, Saucedo R, Valencia J, et al. Early disturbed placental ischemia and hypoxia creates immune alteration and vascular disorder causing preeclampsia. Arch Med Res. 2014;45(7):519–524.
[12] Barsoum IB, Koti M, Siemens DR, et al. Mechanisms of hypoxia-mediated immune escape in cancer. Cancer Res. 2014;74(24):7185–7190.
[13] Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 2010;10(2):131–144.
[14] Opipari A, Franchi L. Role of inflammasomes in intestinal inflammation and Crohn’s disease. Inflamm Bowel Dis. 2015;21(1):173–181.
[15] Man SM, Zhu Q, Zhu L, et al. Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer. Cell. 2015;162(1):45–58.
[16] Swamy M, Jamora C, Havran W, et al. Epithelial decision makers: in search of the ’epimmunome’. Nat Immunol. 2010;11(8):656–665.
[17] Semenza GL. Perspectives on oxygen sensing. Cell. 1999;98(3):281–284.
[18] Kung AL, Wang S, Klco JM, et al. Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat Med. 2000;6(12):1335–1340.
[19] Garside P. Cytokines in experimental colitis. Clin Exp Immunol. 1999;118(3):337–339.
[20] Wang K, Jin X, Li Q, et al. Propolis from different geographic origins decreases intestinal inflammation and bacteroides spp. Populations in a model of DSS-induced colitis. Mol Nutr Food Res. 2018;62(17):e1800080.
[21] Alex P, Zachos NC, Nguyen T, et al. Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm Bowel Dis. 2009;15(3):341–352.
[22] Boussenna A, Goncalves-Mendes N, Joubert-Zakeyh J, et al. Impact of basal diet on dextran sodium sulphate (DSS)-induced colitis in rats. Eur J Nutr. 2015;54(8):1217–1227.
[23] Chen Y, Jin Y, Stanton C, et al. Alleviation effects of Bifidobacterium breve on DSS-induced colitis depends on intestinal tract barrier maintenance and gut microbiota modulation. Eur J Nutr. 2021;60(1):369–387.
[24] Haas A. The phagosome: compartment with a license to kill. Traffic. 2007;8(4):311–330.
[25] Buckley CM, Heath VL, Guého A, et al. PIKfyve/Fab1 is required for efficient V-ATPase and hydrolase delivery to phagosomes, phagosomal killing, and restriction of Legionella infection. PLoS Pathog. 2019;15(2):e1007551.
[26] Dickerhof N, Huang J, Min E, et al. Myeloperoxidase inhibition decreases morbidity and oxidative stress in mice with cystic fibrosis-like lung inflammation. Free Radic Biol Med. 2020;152:91–99.
[27] Bar-On L, Zigmond E, Jung S. Management of gut inflammation through the manipulation of intestinal dendritic cells and macrophages? Semin Immunol. 2011;23(1):58–64.
[28] Zhang C, Zong H, Yu RT, et al. Proteomics research on maturation of immune cell vphagosomes. J Cell Mol Immunol. 2010;26(8):833–835.
[29] Pauwels AM, Trost M, Beyaert R, et al. Patterns, receptors, and signals: regulation of phagosome maturation. Trends Immunol. 2017;38(6):407–422.
[30] Schenk M, Bouchon A, Seibold F, et al. TREM-1–Expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases. J Clin Invest. 2007;117(10):3097–3106.
[31] Xue D, Pan ST, Zhou X, et al. Plumbagin enhances the anticancer efficacy of cisplatin by increasing intracellular ROS in human tongue squamous cell carcinoma. Oxid Med Cell Longev. 2020;2020:5649174.
[32] El Kasmi KC, Stenmark KR. Contribution of metabolic reprogramming to macrophage plasticity and function. Semin Immunol. 2015;27(4):267–275.
[33] Bain CC, Scott CL, Uronen-Hansson H, et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol. 2013;6(3):498–510.
[34] Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 2006;70(5):1469–1480.
[35] Fitzpatrick SF. Immunometabolism and sepsis: a role for HIF? Front Mol Biosci. 2019;6:85–92.