References
[1] O’Brien PJ. Peroxidases. Chem
Biol Interact. 2000;129(1-2):113–139.
[2] Lau D, Mollnau H, Eiserich JP,
et al. Myeloperoxidase mediates neutrophil activation by association
with CD11b/CD18 integrins. Proc Natl Acad Sci U S A.
2005;102(2):431–436.
[3] Nakabo S, Ohmura K, Akizuki S,
et al. Activated neutrophil carbamylates albumin via the release of
myeloperoxidase and reactive oxygen species regardless of NETosis. Mod
Rheumatol. 2020;30(2):345–349.
[4] Galijasevic S. The development
of myeloperoxidase inhibitors. Bioorg Med Chem Lett. 2019;29(1):1–7.
[5] Antonelou M, Michaëlsson E,
Evans RDR, et al. Therapeutic myeloperoxidase inhibition attenuates
neutrophil activation, ANCA-mediated endothelial damage, and crescentic
GN. J Am Soc Nephrol. 2020;31(2):350–364.
[6] Ndrepepa G. Myeloperoxidase -
A bridge linking inflammation and oxidative stress with cardiovascular
disease. Clin Chim Acta. 2019;493:36–51.
[7] Hirche TO, Gaut JP, Heinecke
JW, Belaaouaj A. Myeloperoxidase plays critical roles in killing
Klebsiella pneumoniae and inactivating neutrophil elastase: effects on
host defense. J Immunol. 2005 Feb 1;174(3):1557-65. doi:
10.4049/jimmunol.174.3.1557. PMID: 15661916.
[8] Zhang W, Jiao L, Liu R, et al.
The effect of exposure to high altitude and low oxygen on intestinal
microbial communities in mice. PLoS One. 2018;13(9):e0203701.
[9] Su L, Su CW, Qi Y, Yang G,
Zhang M, Cherayil BJ, Zhang X, Shi HN. Coinfection with an intestinal
helminth impairs host innate immunity against Salmonella enterica
serovar Typhimurium and exacerbates intestinal inflammation in mice.
Infect Immun. 2014 Sep;82(9):3855-66. doi: 10.1128/IAI.02023-14. Epub
2014 Jun 30. PMID: 24980971; PMCID: PMC4187801.
[10] Mariani F, Roncucci L. Role
of the Vanins-Myeloperoxidase Axis in Colorectal
Carcinogenesis[J].Int J Mol Sci,2017,18(5):918-922.
[11] Zárate A, Saucedo R,
Valencia J, et al. Early disturbed placental ischemia and hypoxia
creates immune alteration and vascular disorder causing preeclampsia.
Arch Med Res. 2014;45(7):519–524.
[12] Barsoum IB, Koti M, Siemens
DR, et al. Mechanisms of hypoxia-mediated immune escape in cancer.
Cancer Res. 2014;74(24):7185–7190.
[13] Abreu MT. Toll-like receptor
signalling in the intestinal epithelium: how bacterial recognition
shapes intestinal function. Nat Rev Immunol. 2010;10(2):131–144.
[14] Opipari A, Franchi L. Role
of inflammasomes in intestinal inflammation and Crohn’s disease. Inflamm
Bowel Dis. 2015;21(1):173–181.
[15] Man SM, Zhu Q, Zhu L, et al.
Critical role for the DNA sensor AIM2 in stem cell proliferation and
cancer. Cell. 2015;162(1):45–58.
[16] Swamy M, Jamora C, Havran W,
et al. Epithelial decision makers: in search of the ’epimmunome’. Nat
Immunol. 2010;11(8):656–665.
[17] Semenza GL. Perspectives on
oxygen sensing. Cell. 1999;98(3):281–284.
[18] Kung AL, Wang S, Klco JM, et
al. Suppression of tumor growth through disruption of hypoxia-inducible
transcription. Nat Med. 2000;6(12):1335–1340.
[19] Garside P. Cytokines in
experimental colitis. Clin Exp Immunol. 1999;118(3):337–339.
[20] Wang K, Jin X, Li Q, et al.
Propolis from different geographic origins decreases intestinal
inflammation and bacteroides spp. Populations in a model of DSS-induced
colitis. Mol Nutr Food Res. 2018;62(17):e1800080.
[21] Alex P, Zachos NC, Nguyen T,
et al. Distinct cytokine patterns identified from multiplex profiles of
murine DSS and TNBS-induced colitis. Inflamm Bowel Dis.
2009;15(3):341–352.
[22] Boussenna A,
Goncalves-Mendes N, Joubert-Zakeyh J, et al. Impact of basal diet on
dextran sodium sulphate (DSS)-induced colitis in rats. Eur J Nutr.
2015;54(8):1217–1227.
[23] Chen Y, Jin Y, Stanton C, et
al. Alleviation effects of Bifidobacterium breve on DSS-induced colitis
depends on intestinal tract barrier maintenance and gut microbiota
modulation. Eur J Nutr. 2021;60(1):369–387.
[24] Haas A. The phagosome:
compartment with a license to kill. Traffic. 2007;8(4):311–330.
[25] Buckley CM, Heath VL, Guého
A, et al. PIKfyve/Fab1 is required for efficient V-ATPase and hydrolase
delivery to phagosomes, phagosomal killing, and restriction of
Legionella infection. PLoS Pathog. 2019;15(2):e1007551.
[26] Dickerhof N, Huang J, Min E,
et al. Myeloperoxidase inhibition decreases morbidity and oxidative
stress in mice with cystic fibrosis-like lung inflammation. Free Radic
Biol Med. 2020;152:91–99.
[27] Bar-On L, Zigmond E, Jung S.
Management of gut inflammation through the manipulation of intestinal
dendritic cells and macrophages? Semin Immunol. 2011;23(1):58–64.
[28] Zhang C, Zong H, Yu RT, et
al. Proteomics research on maturation of immune cell vphagosomes. J Cell
Mol Immunol. 2010;26(8):833–835.
[29] Pauwels AM, Trost M, Beyaert
R, et al. Patterns, receptors, and signals: regulation of phagosome
maturation. Trends Immunol. 2017;38(6):407–422.
[30] Schenk M, Bouchon A, Seibold
F, et al. TREM-1–Expressing intestinal macrophages crucially amplify
chronic inflammation in experimental colitis and inflammatory bowel
diseases. J Clin Invest. 2007;117(10):3097–3106.
[31] Xue D, Pan ST, Zhou X, et
al. Plumbagin enhances the anticancer efficacy of cisplatin by
increasing intracellular ROS in human tongue squamous cell carcinoma.
Oxid Med Cell Longev. 2020;2020:5649174.
[32] El Kasmi KC, Stenmark KR.
Contribution of metabolic reprogramming to macrophage plasticity and
function. Semin Immunol. 2015;27(4):267–275.
[33] Bain CC, Scott CL,
Uronen-Hansson H, et al. Resident and pro-inflammatory macrophages in
the colon represent alternative context-dependent fates of the same
Ly6Chi monocyte precursors. Mucosal Immunol. 2013;6(3):498–510.
[34] Ke Q, Costa M.
Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol.
2006;70(5):1469–1480.
[35] Fitzpatrick SF.
Immunometabolism and sepsis: a role for HIF? Front Mol Biosci.
2019;6:85–92.