References
[1] A. K. Jha, I. Larizgoitia, C. Audera-Lopez, N. Prasopa-Plaizier,
H. Waters, and D. W. Bates, “The global burden of unsafe medical care:
Analytic modelling of observational studies,” BMJ Quality and
Safety , 22, 10, 809–815, doi: 10.1136/bmjqs-2012-001748.
[2] F. A. Anderson and F. A. Spencer, “Risk factors for venous
thromboembolism,” Circulation , 107, SUPPL. 23, doi:
10.1161/01.CIR.0000078469.07362.E6.
[3] C. Kearon, W. Ageno, S. C. Cannegieter, B. Cosmi, G. J.
Geersing, and P. A. Kyrle, “Categorization of patients as having
provoked or unprovoked venous thromboembolism: guidance from the SSC of
ISTH,” Journal of Thrombosis and Haemostasis , 14, 7, 1480–1483,
doi: 10.1111/jth.13336.
[4] M. E. Colling, B. E. Tourdot, and Y. Kanthi, “Inflammation,
Infection and Venous Thromboembolism,” Circulation Research ,
2017–2036, doi: 10.1161/CIRCRESAHA.121.318225.
[5] L. Mazzolai et al. , “Diagnosis and management of acute
deep vein thrombosis: A joint consensus document from the European
Society of Cardiology working groups of aorta and peripheral vascular
diseases and pulmonary circulation and right ventricular function,”European Heart Journal , 39, 47, 4208–4218, doi:
10.1093/eurheartj/ehx003.
[6] J. I. Weitz, P. Prandoni, and P. Verhamme, “Anticoagulation for
Patients with Venous Thromboembolism: When is Extended Treatment
Required?,” TH Open , 04, 04, e446–e456, doi:
10.1055/s-0040-1721735.
[7] J. I. J. I. Weitz et al. , “Rivaroxaban or Aspirin for
Extended Treatment of Venous Thromboembolism,” New England
Journal of Medicine , 367, 13, 1211–1222, doi: 10.1056/NEJMoa1700518.
[8] D. Scott et al. , “Oral Rivaroxaban for Symptomatic
Venous Thromboembolism,” New England Journal of Medicine , 363,
26, 2499–2510, doi: 10.1056/nejmoa1007903.
[9] C. I. Coleman, T. J. Bunz, and A. G. G. Turpie, “Effectiveness
and safety of rivaroxaban versus warfarin for treatment and prevention
of recurrence of venous thromboembolism,” Journal of Thrombosis
and Haemostasis , 117, 1841–1847.
[10] H. Ichikawa et al. , “Rivaroxaban, a Direct Factor Xa
Inhibitor, Ameliorates Hypertensive Renal Damage Through Inhibition of
the Inflammatory Response Mediated by Protease-Activated Receptor
Pathway,” Journal of the American Heart Association , 8, 8,
1–14, doi: 10.1161/JAHA.119.012195.
[11] J. Liu et al. , “Rivaroxaban suppresses the progression
of ischemic cardiomyopathy in a murine model of diet-induced myocardial
infarction,” Journal of Atherosclerosis and Thrombosis , 26, 10,
915–930, doi: 10.5551/jat.48405.
[12] M. F. Bode et al. , “The factor Xa inhibitor rivaroxaban
reduces cardiac dysfunction in a mouse model of myocardial infarction,”Thrombosis Research , 167, 128–134, doi:
10.1016/j.thromres.2018.05.015.
[13] P. Ellinghaus et al. , “Expression of pro-inflammatory
genes in human endothelial cells: Comparison of rivaroxaban and
dabigatran,” Thrombosis Research , 142, 44–51, doi:
10.1016/j.thromres.2016.04.008.
[14] E. van der Pol et al. , “Classification, Functions, and
Clinical Relevance of Extracellular Vesicles,” Pharmacological
Reviews , 64, 3, 676–705, doi: 10.1124/pr.112.005983.
[15] B. Hosseinkhani, S. Kuypers, N. M. S. Van Den Akker, D. G. M.
Molin, and L. Michiels, “Extracellular Vesicles Work as a Functional
Inflammatory Mediator Between Vascular Endothelial Cells and Immune
Cells,” Frontiers in Immunology , 9, 1–13, doi:
10.3389/fimmu.2018.01789.
[16] E. I. Buzas, B. György, G. Nagy, A. Falus, and S. Gay,
“Emerging role of extracellular vesicles in inflammatory diseases,”Nature Reviews Rheumatology , 10, 6, 356–364, doi:
10.1038/nrrheum.2014.19.
[17] C. Han et al. , “Placenta-derived extracellular vesicles
induce preeclampsia in mouse models,” Haematologica , 105, 6,
1686–1694, doi: 10.3324/haematol.2019.226209.
[18] S. La Salvia, L. Musante, J. Lannigan, J. C. Gigliotti, and T.
H. Le, “Control of Renal Function in Hypertension and Kidney Disease T
cell-derived extracellular vesicles are elevated in essential HTN,”American Journal of Physiology - Renal Physiology , 319, 868–875,
doi: 10.1152/ajprenal.00433.2020.
[19] R. Xu, A. Rai, M. Chen, W. Suwakulsiri, D. W. Greening, and R.
J. Simpson, “Extracellular vesicles in cancer — implications for
future improvements in cancer care,” Nature Reviews Clinical
Oncology , 15, 10, 617–638, doi: 10.1038/s41571-018-0036-9.
[20] E. Karasu et al. , “Complement C5a Induces
Pro-inflammatory Microvesicle Shedding in Severely Injured Patients,”Frontiers in Immunology , 11, 1–17, doi:
10.3389/fimmu.2020.01789.
[21] E. Karasu, S. U. Eisenhardt, J. Harant, and M. Huber-Lang,
“Extracellular vesicles: Packages sent with complement,”Frontiers in Immunology , 9, APR, doi: 10.3389/fimmu.2018.00721.
[22] T. Vajen et al. , “Platelet extracellular vesicles
induce a pro-inflammatory smooth muscle cell phenotype,” Journal
of Extracellular Vesicles , 6, 1, doi: 10.1080/20013078.2017.1322454.
[23] G. Cheng et al. , “Endothelial damage effects of
circulating microparticles from patients with stable angina are reduced
by aspirin through ERK/p38 MAPKs pathways,” Cardiovascular
Therapeutics , 35, 4, 1–8, doi: 10.1111/1755-5922.12273.
[24] S. J. Kuravi, P. Harrison, G. E. Rainger, and G. B. Nash,
“Ability of Platelet-Derived Extracellular Vesicles to Promote
Neutrophil-Endothelial Cell Interactions,” Inflammation , 42, 1,
290–305, doi: 10.1007/s10753-018-0893-5.
[25] E. Ramacciotti et al. , “Evaluation of Soluble
P-selectin for the Diagnosis of Deep Venous Thrombosis,” Clinical
Applications in Thrombosis and Hemostasis , 17, 4, 425–431, doi:
10.1177/1076029611405032.Evaluation.
[26] L. Bal et al. , “Factors influencing the level of
circulating procoagulant microparticles in acute pulmonary embolism,”Archives of Cardiovascular Diseases , 103, 6–7, 394–403, doi:
10.1016/j.acvd.2010.06.005.
[27] R. Ye, C. Ye, Y. Huang, L. Liu, and S. Wang, “Circulating
tissue factor positive microparticles in patients with acute recurrent
deep venous thrombosis,” Thrombosis Research , 130, 2, 253–258,
doi: 10.1016/j.thromres.2011.10.014.
[28] V. Sánchez-López et al. , “Differential biomarker
profiles between unprovoked venous thromboembolism and cancer,”Annals of Medicine , 52, 6, 1–11, doi:
10.1080/07853890.2020.1779956.
[29] S. Jamaly, M. G. Basavaraj, I. Starikova, R. Olsen, S. K.
Brækkan, and J. B. Hansen, “Elevated plasma levels of P-selectin
glycoprotein ligand-1-positive microvesicles in patients with unprovoked
venous thromboembolism,” Journal of Thrombosis and Haemostasis ,
16, 8, 1546–1554, doi: 10.1111/jth.14162.
[30] J. A. Chirinos et al. , “Elevation of endothelial
microparticles, platelets, and leukocyte activation in patients with
venous thromboembolism,” Journal of the American College of
Cardiology , 45, 9, 1467–1471, doi: 10.1016/j.jacc.2004.12.075.
[31] P. Bucciarelli et al. , “Circulating microparticles and
risk of venous thromboembolism,” Thrombosis Research , 129, 5,
591–597, doi: 10.1016/j.thromres.2011.08.020.
[32] S. M. Passamonti et al. , “Plasma levels of
extracellular vesicles and the risk of post-operative pulmonary embolism
in patients with primary brain tumors: a prospective study,”Journal of Thrombosis and Thrombolysis , 0123456789, doi:
10.1007/s11239-021-02441-3.
[33] C. Guervilly et al. , “Dissemination of extreme levels
of extracellular vesicles: Tissue factor activity in patients with
severe COVID-19,” Blood Advances , 5, 3, 628–634, doi:
10.1182/bloodadvances.2020003308.
[34] M. E. M. Parsons et al. , “Platelet Releasate Proteome
Profiling Reveals a Core Set of Proteins with Low Variance between
Healthy Adults,” Proteomics , 1800219, 1800219, doi:
10.1002/pmic.201800219.
[35] L. Weiss et al. , “Non‐valvular atrial fibrillation
patients anticoagulated with rivaroxaban compared with warfarin exhibit
reduced circulating extracellular vesicles with attenuated
pro‐inflammatory protein signatures.,” Journal of Thrombosis and
Haemostasis , 0–3, doi: 10.1111/jth.15434.
[36] C. Théry et al. , “Minimal information for studies of
extracellular vesicles 2018 (MISEV2018): a position statement of the
International Society for Extracellular Vesicles and update of the
MISEV2014 guidelines,” Journal of Extracellular Vesicles , 7,
1535750, doi: 10.1080/20013078.2018.1535750.
[37] E. Á. Tóth et al. , “Formation of a protein corona on
the surface of extracellular vesicles in blood plasma,” Journal
of Extracellular Vesicles , 10, doi: 10.1002/jev2.12140.
[38] F. Sofi et al. , “Low protein Z levels in patients with
peripheral arterial disease,” Thrombosis and Haemostasis , 98,
05, 1114–1117.
[39] F. Sofi et al. , “Protein Z plasma levels in different
phases of activity of coronary atherosclerosis,” Journal of
Thrombosis and Haemostasis , 3, 10, 2254–2258, doi:
10.1111/j.1538-7836.2005.01536.x.
[40] S. Fedi et al. , “Low protein Z plasma levels are
independently associated with acute coronary syndromes,”Thrombosis and Haemostasis , 90, 6, 1173–1178, doi:
10.1160/th03-04-0237.
[41] M. F. Ghozlan, A. A. E. H. Mohamed, D. S. Eissa, and H. S.
Eldawy, “Low Protein Z Level: A Thrombophilic Risk Biomarker for Acute
Coronary Syndrome,” Indian Journal of Hematology and Blood
Transfusion , 35, 2, 339–346, doi: 10.1007/s12288-018-1002-5.
[42] S. Patel, R. Singh, and C. Preuss, Warfarin . 2021.
Accessed: Jul. 21, 2021. [Online]. Available:
https://www.ncbi.nlm.nih.gov/books/NBK470313/
[43] S. Patel, R. Singh;, C. V. Preuss;, N. Patel, R. Singh, and C.
Preuss, “Warfarin,” StatPearls , 2021.
[44] M. Vasse, E. Guegan-massardier, and J. Borg, “Frequency of
protein Z deficiency in patients with ischaemic stroke 20-fold increase
in risk of lamivudine resistance in hepatitis B virus subtype adw For
personal use only . Reproduce with permission from The Lancet Publishing
Group .,” The Lancet , 357, 933–934.
[45] I. Martinelli, C. Razzari, E. Biguzzi, P. Bucciarelli, and P.
M. Mannucci, “Low levels of protein Z and the risk of venous
thromboembolism,” Journal of Thrombosis and Haemostasis , 3, 12,
2817–2819, doi: 10.1111/j.1538-7836.2005.01664.x.
[46] A. Al-Shanqeeti, A. van Hylckama Vlieg, E. Berntorp, F. R.
Rosendaal, and G. J. Broze, “Protein Z and protein Z-dependent protease
inhbitor. Determinants of level and risk of venous thrombosis,”Thrombosis and Haemostasis , 93, 3, 411–413, doi:
10.1160/TH04-11-0715.
[47] A. R. Rezaie, M. F. Sun, and D. Gailani, “Contributions of
basic amino acids in the autolysis loop of factor XIa to serpin
specificity,” Biochemistry , 45, 31, 9427–9433, doi:
10.1021/bi060820+.
[48] X. Han, R. Fiehler, and G. J. Broze, “Isolation of a protein
Z-dependent plasma protease inhibitor,” Proceedings of the
National Academy of Sciences of the United States of America , 95, 16,
9250–9255, doi: 10.1073/pnas.95.16.9250.
[49] T. J. Girard, N. M. Lasky, E. A. Tuley, and G. J. Broze Jr.,
“Protein Z, Protein Z-Dependent Protease Inhibitor (SerpinA10) and the
Acute Phase Response,” Journal of Thrombosis and Haemostasis ,
11, 2, 375–378, doi: 10.1111/jth.12084.Protein.
[50] M. Razanakolona et al. , “Anti-inflammatory Activity of
the Protein Z-Dependent Protease Inhibitor,” TH Open , 05, 02,
e220–e229, doi: 10.1055/s-0041-1730037.
[51] A. Butschkau, P. Nagel, E. Grambow, D. Zechner, G. J. Broze,
and B. Vollmar, “Contribution of protein z and protein z-dependent
protease inhibitor in generalized shwartzman reaction,” Critical
Care Medicine , 41, 12, 447–456, doi: 10.1097/CCM.0b013e318298a562.
[52] M. Ben-Hadj-Mohamed et al. , “Hepatic proteins and
inflammatory markers in rheumatoid arthritis patients,” Iranian
Journal of Public Health , 46, 8, 1071–1078.
[53] B. Liu et al. , “Low protein Z plasma level is a risk
factor for acute myocardial infarction in coronary atherosclerosis
disease patients,” Thrombosis Research , 148, 25–31, doi:
10.1016/j.thromres.2016.10.010.Low.
[54] C. V. Rothlin, E. A. Carrera-Silva, L. Bosurgi, and S. Ghosh,
“TAM Receptor Signaling in Immune Homeostasis,” Annual Reviews
of Immunology , 33, 355–391, doi:
10.1146/annurev-immunol-032414-112103.TAM.
[55] A. Maimon et al. , “Myeloid cell–derived PROS1 inhibits
tumor metastasis by regulating inflammatory and immune responses via
IL-10,” Journal of Clinical Investigation , 131, 10, doi:
10.1172/JCI126089.
[56] P. T. Pham, D. Fukuda, S. Yagi, and H. Yamada, “Rivaroxaban ,
a specific FXa inhibitor , improved endothelium- dependent relaxation of
aortic segments in diabetic mice,” Scientific Reports , 9, 11206,
1–11, doi: 10.1038/s41598-019-47474-0.
[57] C. Feistritzer, R. Lenta, and M. Riewald, “Protease-activated
receptors-1 and -2 can mediate endothelial barrier protection: Role in
factor Xa signaling,” Journal of Thrombosis and Haemostasis , 3,
12, 2798–2805, doi: 10.1111/j.1538-7836.2005.01610.x.
[58] P. Ellinghaus et al. , “Expression of pro-inflammatory
genes in human endothelial cells : Comparison of rivaroxaban and
dabigatran,” Thrombosis Research , 142, 44–51, doi:
10.1016/j.thromres.2016.04.008.
[59] S. Papadaki et al. , “Factor Xa and thrombin induce
endothelial progenitor cell activation . The effect of direct oral
anticoagulants,” Platelets , 00, 00, 1–8, doi:
10.1080/09537104.2020.1802413.
[60] Y. Ishibashi, T. Matsui, S. Ueda, K. Fukami, and S. Yamagishi,
“Advanced glycation end products potentiate citrated plasma-evoked
oxidative and inflammatory reactions in endothelial cells by
up-regulating protease-activated receptor-1 expression,”Cardiovascular Diabetology , 13, 60, 1–8.
[61] X. Lou, Z. Yu, X. Yang, and J. Chen, “Protective effect of
rivaroxaban on arteriosclerosis obliterans in rats through modulation of
the toll‑like receptor 4/NF‑κB signaling pathway,” Experimental
and Therapeutic Medicine , 18, 3, 1619–1626, doi:
10.3892/etm.2019.7726.
[62] N. O. Al-Harbi et al. , “Role of rivaroxaban in
sunitinib-induced renal injuries via inhibition of oxidative
stress-induced apoptosis and inflammation through the tissue nacrosis
factor-α induced nuclear factor-κappa B signaling pathway in rats,”Journal of Thrombosis and Thrombolysis , 50, 2, 361–370, doi:
10.1007/s11239-020-02123-6.
[63] P. Gorzelak-Pabis et al. , “Rivaroxaban protects from
the oxysterol-induced damage and inflammatory activation of the vascular
endothelium,” Tissue Barriers , doi:
10.1080/21688370.2021.1956284.
[64] Q. Zhou et al. , “Evaluation of plaque stability of
advanced atherosclerotic lesions in Apo E-deficient mice after treatment
with the oral factor Xa inhibitor rivaroxaban,” Mediators of
Inflammation , doi: 10.1155/2011/432080.
[65] M. Laurent et al. , “Comparative study of the effect of
rivaroxaban and fondaparinux on monocyte’s coagulant activity and
cytokine release,” Experimental Hematology and Oncology , 3, 1,
1–12, doi: 10.1186/2162-3619-3-30.