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Introduction  

Within the following Supporting Information we include: 

• a more detailed description of the tsunami numerical modelling scheme along 

with the validation of the presented scheme against some standard benchmark 

test 

• 16 Figures to support the results presented in the main text 

• 3 Tables summarizing: 

o Sampled seismic source parameters  

o Seismic source parameters selected for each simulation (only caption, 

Table S2 in a separate file) 

o Seismic source parameterization for real events reported in Figure 8 

• 10 captions for the movie included to Supporting Information as separate files. 

The movies represent the animated wave evolution of simulations whose 

snapshots are plotted in Figures 2 and 3 (in the main text) and S12, S14 and S15 

(in Supporting Information).  

 

Text S1 Tsunami numerical modelling 

 

We briefly describe the numerical discretization of system in equations (3)-(5) in the 

main text assuming a constant split of the layers 𝑙𝛼 = 1/𝐿. Here, we follow the procedure 

described in Escalante et al. (2019). The numerical scheme is based on a two-step 

projection-correction method, similar to the standard Chorin’s projection method for 

Navier-Stokes equations (Chorin, 1968). That is a standard procedure when dealing with 

dispersive systems (see Ma et al., 2012; Kazolea & Delis, 2013; Ricchiuto & Filippini, 

2014; Escalante et al., 2018, 2019 and references therein). 

First, we shall solve the non-conservative hydrostatic underlying system in equation (3) 

given by the compact equation: 

 

  𝜕𝑡𝐔 + 𝜕𝑥𝐅(𝐔) + 𝐁(𝐔)𝜕𝑥𝐔+ 𝐆(𝐔)𝜕𝑥𝜂 = 0 (S1) 
 

where the following compact notation has been used: 

 

 

𝐔 =

(

 
 
 
 

ℎ
ℎ𝑢1
⋮
ℎ𝑢𝐿
ℎ𝑤1
⋮
ℎ𝑤𝐿)

 
 
 
 

,  𝐅(𝐔) =

(

 
 
 
 

ℎ𝑢
𝑢1ℎ𝑢1
⋮

𝑢𝐿ℎ𝑢𝐿
𝑢1ℎ𝑤1
⋮

𝑢𝐿ℎ𝑢𝐿)

 
 
 
 

,  𝐆(𝐔) =

(

 
 
 
 

0
𝑔ℎ
⋮
𝑔ℎ
0
⋮
0 )

 
 
 
 

, 

 
(S2) 
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and 𝑩 is a matrix such 𝑩𝜕𝑥𝑈 contains the non-conservative products related to the 

mass transfer across interfaces appearing at the momentum equations. 

Then, in a second step, the non-hydrostatic terms from the right-hand side of equations (3) 

collected by the pressure vector. 

  

𝒯(ℎ, 𝜕𝑥ℎ, 𝑧𝑏 , 𝜕𝑥𝑧𝑏 , 𝐏, 𝜕𝑥𝐏) = −𝐿

(

 
 
 
 
 
 
 

0
1

2
ℎ1𝜕𝑥(𝑝3 2⁄ + 𝑝1 2⁄ ) − (𝑝3 2⁄ − 𝑝1 2⁄ )𝜕𝑥𝑧1

⋮
1

2
ℎ𝐿𝜕𝑥 (0 + 𝑝𝐿−1

2
) − (0 − 𝑝

𝐿−
1
2
) 𝜕𝑥𝑧𝐿

ℎ1(𝑝3 2⁄ − 𝑝1 2⁄ )

⋮

ℎ𝐿 (0 − 𝑝𝐿−1
2
)

)

 
 
 
 
 
 
 

, 𝐏 = (

𝑝1 2⁄
𝑝3 2⁄
⋮

𝑝𝐿−1/2

) 

 
 
 
(S3) 

 

as well as the divergence constraints at each layer given in equation (5) will be taken into 

account. Concerning the constraints, we will equivalently impose  

 

 ℬ𝛼 = 0, where ℬ1 = ℐ1,  ℬ2 = ℐ2 − ℐ1,  … ,  ℬ𝐿 = ℐ𝐿 − ℐ𝐿−1 (S4) 
 

so that the divergence impositions read as follows: 

 

 ℬ(𝐔(𝑘), 𝜕𝑥𝐔
(𝑘), 𝑧𝑏 , 𝜕𝑥𝑧𝑏) =

(

−ℎ1𝜕𝑥(ℎ1𝑢1) + 2𝜕𝑥𝑧1ℎ1𝑢1 − 2ℎ1𝑤1 + 2ℎ1𝜕𝑡𝑧𝑏
−ℎ2𝜕𝑥(ℎ2𝑢2) − ℎ1𝜕𝑥(ℎ1𝑢1) + 2ℎ2𝑢2𝜕𝑥𝑧2 − 2ℎ1𝑢1𝜕𝑥𝑧1 − 2ℎ2𝑤2 + 2ℎ1𝑤1

⋮
−ℎ𝐿𝜕𝑥(ℎ𝐿𝑢𝐿) − ℎ𝐿−1𝜕𝑥(ℎ𝐿−1𝑢𝐿−1) + 2ℎ𝐿𝑢𝐿𝜕𝑥𝑧𝐿 − 2ℎ𝐿−1𝑢𝐿−1𝜕𝑥𝑧𝐿−1 − 2ℎ𝐿𝑤𝐿 + 2ℎ𝐿−1𝑤𝐿−1

) .

 

 
 

(S5) 

 

 

   
System in eq. (S1) is discretized using a second-order finite volume PVM positive-

preserving well-balanced path-conservative method (Castro Díaz & Fernández-Nieto, 

2012). As usual, we consider a set of 𝑁 finite volume cells 𝐼𝑖 = [𝑥(𝑖−1/2)  , 𝑥(𝑖+1/2)] with 

constant lengths 𝛥𝑥 and define: 

 

 
𝐔𝑖(𝑡) =

1

𝛥𝑥
∫𝐔
𝐼𝑖

(𝑥, 𝑡) 𝑑𝑥 
(S6) 

 

the cell average of the function 𝑈(𝑥, 𝑡) on cell 𝐼𝑖 at time 𝑡. Concerning non-hydrostatic 

terms, we consider mid-points 𝑥𝑖 of each cell 𝐼𝑖  and denote the point values of the function 

𝑃 at time 𝑡 by: 
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𝐏𝑖(𝑡) =

(

 

𝑝1 2⁄ (𝑥𝑖, 𝑡)

𝑝3 2⁄ (𝑥𝑖, 𝑡)

⋮
𝑝𝐿−1/2(𝑥𝑖, 𝑡))

 . 

(S7) 

 

Non-hydrostatic terms will be approximated by second-order compact finite differences. 

Let us detail the time stepping procedure followed. Assume given time steps 𝛥𝑡𝑛 , and 

denote 𝑡𝑛 = ∑ 𝛥𝑡𝑘𝑘≤𝑛  . To obtain second-order accuracy in time, the two-stage second-

order TVD Runge-Kutta scheme is adopted. At the kth stage, 𝑘 ∈ {1,2}, the two-step 

projection-correction method is given by: 

 

 𝐔(𝑘̃) − 𝐔(𝑘−1)

𝛥𝑡
+ 𝜕𝑥𝐅(𝐔

(𝑘−1)) + 𝐁(𝐔(𝑘−1))𝜕𝑥𝐔
(𝑘−1) + 𝐆(𝐔(𝑘−1))𝜕𝑥𝑧𝑏 = 0,

𝐔(𝑘) −𝐔(𝑘̃)

𝛥𝑡
− 𝒯(ℎ(𝑘), 𝜕𝑥ℎ

(𝑘), 𝑧𝑏 , 𝜕𝑥𝑧𝑏 , 𝐏
(𝑘), 𝜕𝑥𝐏

(𝑘)) = 0

ℬ(𝐔(𝑘), 𝜕𝑥𝐔
(𝑘), 𝑧𝑏 , 𝜕𝑥𝑧𝑏) = 0

 

 
 

(S8) 

 

 

 

where 𝑈(0) is 𝑈 at the time level 𝑡𝑛, 𝑈(𝑘̃) is an intermediate value in the two-step 

projection-correction method that contains the numerical solution of the hyperbolic system 

(S1) at the corresponding kth stage of the Runge-Kutta, and 𝑈(𝑘) is the 𝑘 − 𝑡ℎ stage 

estimate. After that, a final value of the solution at the 𝑡𝑛+1 time level is obtained: 

 

 
𝐔𝑛+1 =

1

2
𝐔𝑛 +

1

2
𝐔(2). 

(S9) 

 

Observe that equations  

 

(S8) require, at each stage of the calculation respectively, to solve a Poisson-like 

equation for each one of the variables contained in 𝑃(𝑘). The resulting linear system is 

solved using an iterative Jacobi method combined with a scheduled relaxation (see Adsuara 

et al., 2016; Escalante et al., 2018, 2019). Note that the usual CFL restriction must be 

imposed for the computation of the time step 𝛥𝑡. 

When friction with the bottom (𝜏𝛼
𝑢), viscous shear stress (𝐾𝛼+1/2), and the breaking 

model (𝜏𝛼
𝑤) are considered, they will be computed semi-implicitly at the end of the second 

step of the projection-correction method at each kth stage of the TVD Runge-Kutta method 

as it is done in (Escalante et al., 2019). Note that the resolution of a straightforward 

tridiagonal system on the vertical for each volume 𝐼𝑖 is exclusively required for the 

viscosity model. In contrast, the friction and breaking models can be considered by solving 

conventional algebraic problems, as is commonly the practice for friction models. 

The resulting numerical scheme is well-balanced for the water at rest solution and is 

linearly 𝐿∞-stable under the usual CFL condition related to the hydrostatic system. It is 

also worth mentioning that the numerical scheme is positive preserving and can deal with 

emerging topographies. 
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Text S2 Benchmark comparison 

S2.1 Propagation of regular non-breaking waves over submerged bar 

 

The experiments discussed in references (Beji & Battjes, 1994; Dingemans, 1994) 

conducted in a wave flume featuring a submerged trapezoidal bar, are well-known as a 

significant benchmark for dispersive models. In this test case, the spatial domain spans 

from 0 to 30 meters and includes a submerged trapezoidal obstacle, as depicted in Figure 

S3. The domain is discretized into cells with a constant length of Δx = 0.02 meters. An 

incident sinusoidal wave train is applied as a boundary condition on the left-hand side of 

the domain at x = 0 meters, following the approach described in (Escalante et al., 2019) 

with the following parameters: 

 

 
𝜂𝑙(𝑡) = 𝐴 sin (

2𝜋

𝑇
𝑡) 

(S10) 

 

 

where 𝐴 =  0.01 meters and 𝑇 =  2.02 seconds represent the amplitude and period, 

respectively. The remaining flow variables at 𝑥 =  0 meters are set to zero. On the right 

side of the domain, free-outflow boundary conditions are enforced. The friction term is set 

to 𝑛 =  0.01 in this test, and the CFL number is set to 0.9. 

The resulting wave train is measured at eight wave gauge stations denoted as WG1, WG2, 

. . . ,WG8 for the free-surface elevation 𝜂 (see Figure S3). Figure S4 compares numerical 

simulations and experimental laboratory observations at various gauge points. Initially, we 

observe a good agreement for the two-layer model (𝐿 =  2) with the experimental data, 

and there is a slight improvement in results when the number of layers is increased to 𝐿 =
3.  
It’s worth noting that we corroborate similar observations found in the literature, such as 

that in Ma et al. (2012) which utilizes 𝜎-coordinates, or Escalante et al., (2019), where an 

enhanced two-layer version of the nonhydrostatic pressure multilayer system described 

here is employed. The findings in Chazel et al. (2011) with a three-parameter Green-

Naghdi model optimized for uneven bottoms exhibit a comparable level of agreement. 

 

S2.2 Solitary wave runup impinging on a plane beach 

 

A classic test for dispersive shallow flows corresponds to the experimental setup by (Titov 

& Synolakis, 1995). Incident solitary waves of multiple relative amplitudes 𝐴/𝐻∗ were 

simulated to study propagation, breaking, and runup over a planar beach with a slope of 

1:19.85 (corresponding to a bathymetry angle of about 2.9°). Experimental data are 

available in (Titov & Synolakis, 1995) for surface elevation at different times. 

We consider the bathymetry of the problem as described in Figure 5. The computational 

domain [−15, 70] m is covered with cells of constant length 𝛥𝑥 =  0.01 𝑚. The CFL 

number is set to 0.9, and free-outflow boundary conditions were imposed everywhere. 
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We begin by considering the initial condition for the model provided by a solitary wave of 

amplitude 𝐴 =  0.3𝑚 centered at point 𝑥 =  25𝑚 (see Escalante et al., 2018) for details 

on the expression of the solitary wave). In this case, a friction coefficient of n = 0.02 was 

used to account for the glass surface roughness effects appearing in the experiments. Figure 

S6 shows snapshots at different times, 𝑡√𝑔/𝐻∗  =  𝑡0. A good agreement between 

experimental and simulated 

data is seen. We remark that wave breaking is observed at 𝑡√𝑔/𝐻∗  =  20 and 25 during 

the experiment. The breaking criteria mechanism is mandatory, as it can be seen in Figure 

S7 where, independently of the number of layers, a nonphysical overshoot on the flow 

variables arise when waves start to break without any breaking dissipation mechanism as 

the one considered here. 

Then, we consider the numerical simulation of solitary waves of different wave amplitudes 

𝐴 =  0.1, 𝐴 =  0.2, . . . , 𝐴 =  0.6 𝑚, and compute the maximum runup for each test case, 

and for different values of the Manning parameter 𝑛 =  0.013, 𝑛 =  0.015, 𝑛 =  0.02 and 

𝑛 =  0.025, and number of layers 𝐿 =  1, 𝐿 =  3. Furthermore, the numerical tests were 

run considering hydrostatic and non-hydrostatic pressure. 

We then plot and compare the results with the experimental results given in (Titov & 

Synolakis, 1995) (See Figure S8). We first observe consistency on the computed 

numerically runup when considering different numbers of layers and hydrostatic or non-

hydrostatic regimes. Moreover, we perform a sensitivity numerical analysis by considering 

a reasonable range for the Manning coefficient and observe good consistency in the runup 

results. 
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Figure S1. Schematic diagram describing the multilayer system   

 

 

Figure S2. Relative error for the phase velocities (left), the group velocities (center), and 

comparison with the reference shoaling gradient (right), w.r.t. the Airy theory for NH-ML 

systems. NH-𝒙L stands for NH-ML system with L = 1, 2, 3, 5 layers. 
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Figure S3. Periodic waves breaking over a submerged bar. Sketch of the topography and 

layout of the wave gauges 

 

 

Figure S4. Comparison of data time series (red star points) and numerical values at wave 

gauges WG1, WG2, WG3, WG4, WG5, WG6, WG7, WG8. 
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Figure S5. Sketch of the topography mimicking a beach   
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Figure S6. Comparison of experimental data (star points) and simulated ones (solid lines) 

at times 𝑡√𝑔/𝐻  = 15, 20, 25, 30.  
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Figure S7. Comparison of experimental data (star points) and simulated ones (solid lines) 

at time 𝑡√𝑔/𝐻  =  20   
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Figure S8. Experimental maximum runup (red points) and numerically computed 

maximum runups. A sensitivity numerical study considering different numbers of layers (1L 

a-c-e-g, 3L b-d-f-h), Manning coefficient 𝑛 (0.013, 0.015, 0.02 and 0.025 for panels a-b, c-

d, e-f, g-h respectively), and pressure regimes (Hydrostatic Non-Hydrostatic).   

 

 

 

 

Figure S9. Parameters of the set of the simulated sources. (a) Stress drop and rigidity for all the 

possible combination of parameters in Table S1. Green stars represent the 81 selected simulations 

(See Table S2) while the red stars indicate the discarded ones according to the parametric choices 

described in Section 3. (b) The 81 selected simulations are plotted accordingly to their duration 𝜏 

and width 𝑊. 
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Figure S10. Results of convergence tests. (a) and (b): Δ𝐷𝑚𝑎𝑥  computed with respect to 

the reference grid (Δ𝑥 = 15.625 𝑚) at different topographic elevation up to the maximum 

run-up for simulation ID 81 and 1 respectively. Different colors refer to different grids as 

indicated in the legend within the panel (a). The black dashed lines represent Δ𝐷𝑚𝑎𝑥 =

0.01 and Δ𝐷𝑚𝑎𝑥 = 0.05 levels. (c) and (d): Δ𝜂𝑚𝑎𝑥  computed with respect to the reference 

grid (Δ𝑥 = 15.625 𝑚) at different distances from the trench both rightward and leftward 

(towards to the coast) from the source, for simulation ID 81 and 1 respectively. Different 

colors refer to different grids as indicated in the legend within the panel (a). The black 

dashed lines represent Δ𝜂𝑚𝑎𝑥 = 0.01 and Δ𝜂𝑚𝑎𝑥 = 0.05 levels. 
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Figure S11. Relative discrepancy Δ𝐷𝑚𝑎𝑥 between time-dependent shallow water (TD-SW) 

and instantaneous source shallow water (IS-SW) results in terms of flow-depth at the first 

point on the coast as a function of 𝜏/𝑊 with color scale marking the source horizontal 

extension 𝜆. The black dashed line separates the two highlighted trends for small and large 

ruptures similarly to what is shown in the Figure 4(a) for the non-hydrostatic case. 
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Figure S12. Wave amplitude as a function of the distance from the trench for TD – NH 

(red curves) and TD – SW (black dotted lines) at three different time steps and for two 

simulations: the ID 70 (left panels) and the ID 7 (right panels) in Table S2. These simulations 
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represent examples of small and large size sources respectively. The whole evolution can 

be found in the Supporting Information (Movie S5 and S6) 

 

 

 

Figure S13.  Relative discrepancy between Non-Hydrostatic (NH) and Shallow Water (SW) 

results when IS sources are used for both propagation regime. (a) 𝛥𝜂𝑚𝑎𝑥 at a gauge placed 

along the coastward propagation as a function of 𝜏/𝑊 with color scale marking the source 

horizontal extension 𝜆. (b) 𝛥𝜂𝑚𝑎𝑥 at a gauge placed rightward beyond the trench as a 

function of 𝜏/𝑊 with color scale marking the source horizontal extension 𝜆. (c) 𝛥𝐷𝑚𝑎𝑥 at 

the first point on coast as a function of 𝜏/𝑊 with color scale marking the source horizontal 

extension 𝜆. For sake of comparison the figures are plotted with the same scale.   

 

 

 

 

 



 

 

18 

 

 

Figure S14. Wave amplitude as a function of the distance from the trench for IS – NH (red 

curves) and IS – SW (black dotted lines) at three different time steps and for two 

simulations: the ID 70 (left panels) and the ID 7 (right panels) in Table S2. These simulations 
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represent examples of small and large size sources respectively. The whole evolution can 

be found in the Supporting Information (Movie S7 and S8) 

 

Figure S15 Wave amplitudes, zoomed around the coast, as a function of the distance from 

the trench for TD – NH (red curves) and TD – SW (black dotted lines) at three different time 

steps and for two simulations: the ID 70 (left panels) and the ID 7 (right panels) in Table 

S2. These simulations represent examples of small and large size sources respectively. The 



 

 

20 

 

short-dashed line on the left represents the coast line within each panel. The whole 

evolution can be found in the Supporting Information (Movie S9 and S10). 

 

 

Figure S16 (a): Final sea-floor deformation for the simulation ID 1 in Table S2 (on the 

“Tohoku Hypo” bathymetry, red curve, “Simulation ID 1” in the legend) compared to the 

sea-floor deformation generated by a rupture dynamic simulation performed with a 

perfect matching between the free surface and the tsunami simulation bathymetry (blue 

dashed curve, “Free surface matching” in the legend). The grey curve represents a final 

sea-floor deformation with a doubled amplitude as compared to the red curve (grey curve, 

“Doubled amplitude” in the legend). For this test, these deformations have been used as 

initial conditions for further TD-NH (simulated with the same source dynamics) and IS-NH 

simulations. (b) Δ𝐷𝑚𝑎𝑥 (TD-NH vs IS-NH) at different topographic elevations for the initial 

conditions described in panel (a) (with the same color scheme). “Simulation ID 1” and “Free 

surface matching” simulations lead to  Δ𝐷𝑚𝑎𝑥  values  in the same range ([4.6%-5.0%]) 

converging to the same value in the vicinity of the maximum run-up. As expected, the high 

amount of available energy for “Doubled amplitude” simulations lead to larger 

discrepancies between IS and TD sources at the first points on the coast. Nevertheless, in 

the vicinity of the maximum run-up (doubled as compared to the other simulations) the 

Δ𝐷𝑚𝑎𝑥 converges to a consistent value as compared to the one from “Simulation ID 1”. (c) 

Δ𝜂𝑚𝑎𝑥 (TD-NH vs IS-NH) offshore as a function of  distance from the trench for the initial 
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conditions described in panel (a) (with the same color scheme). Regardless of the different 

initial conditions Δ𝜂𝑚𝑎𝑥 takes on consistent values. 

 

 

Table S1. Elastic and rheological parameters used to re-scale the dimensionless outputs 

of rupture dynamic simulations. In the last it is reported the subduction layer that can be 

realistically associated to the correspondent 𝑉𝑠, 𝜌 and 𝜇 values 

 

# 𝑽𝒔 (𝒌𝒎/𝒔) 𝝆 (𝒈/𝒄𝒎𝟑) 𝝁 (𝑮𝑷𝒂) Layer 

1 0,35 1,80 0,22 Accretionary prism 

2 0,5 1,95 0,49 // 

3 0,6 2,00 0,72 // 

4 0,7 2,05 1,00 // 

5 0,8 2,07 1,32 // 

6 0,9 2,10 1,70 // 

7 1,0 2,15 2,15 // 

8 1,3 2,20 3,72 // 

9 1,5 2,25 5,06 // 

10 1,7 2,30 6,65 // 

11 2,0 2,35 9,4 // 

12 2,4 2,45 14,11 // 

13 2,9 2,60 21,87 Seismic bedrock 

14 3,2 2,65 27,14 // 

15 3,4 2,70 31,21 Upper crust layer 

16 3,8 2,80 40,43 Lower crust 

17 4,5 3,20 64,80 Mantle 

18 2,8 2,60 20,38 Oceanic layer 1 

19 2,9 2,40 20,18 // 

20 3,5 2,80 34,3 Oceanic layer 2 

21 4,0 2,90 46,4 // 

22 4,6 3,40 71,94 Oc.-Cont. Mantle 

23 4,7 3,20 70,69 Oceanic Mantle 



 

 

22 

 

Table S2 (In a separate file) Parameters (S-wave velocity, rigidity, stress drop and 𝐷𝑐 from 

column to 2 to 5), duration (column 6) and width (column 7) for the 81 selected source 

models. They are ordered as indicated in column 1. 

Table S3 Real subduction events used in Figure 8, classified according to their Moment 

magnitude Mw, stress drop, duration, width and dip 

Event Date Mw Stress Drop 

(MPa) 

 Duration 

(s) 

 Width 

(km) 

Dip     

(°) 

Nicaragua 1992-09-02 7.62 0.78 100 70 15 

Java-Bali 1994-06-02 7.75 0.65 64 120 12 

Peru 1996-02-21 7.50 0.76  79 70 14 

Sumatra 2004 2004-12-26 9.10 4.3 567.35 330 16 

Nias-Simeuleu 2005-03-28 8.61 1.20 142 275 8 

Java-Pangandaran 2006-06-17 7.71 1.66 144.5 70 10 

Sumatra 2007 2007-09-12 8.48 3.19 109 180 12 

Papua 2009-01-03 7.66 1.75 51 65 28 

Maule 2010-02-27 8.78 3.16 122 180 18 

Tohoku foreshock 2011-03-09 7.34 1.76 22.5 55 12 

Tohoku 2011-03-11 9.08 12.50 157.5 220 10 

Iquique 2014-04-01 8.08 7.66 77.5 90 18 

 

 

 



 

 

23 

 

Movie S1. Wave amplitude time-evolution as a function of the distance from the trench 

for the simulations shown in Figures 2(a), 2(c) and 2(e). 

Movie S2. Wave amplitude time-evolution as a function of the distance from the trench 

for the simulations shown in Figures 2(b), 2(d) and 2(f). 

Movie S3. Inundation time-evolution as a function of the distance from the trench for 

the simulations shown in Figures 3(a), 3(c) and 3(e). 

Movie S4. Inundation time-evolution as a function of the distance from the trench for 

the simulations shown in Figures 3(b), 3(d) and 3(f). 

Movie S5. Wave amplitude time-evolution as a function of the distance from the trench 

for the simulations shown in Figures S12(a), S12(c) and S12(e) in Supporting Information. 

Movie S6. Wave amplitude time-evolution as a function of the distance from the trench 

for the simulations shown in Figures S12(b), S12(d) and S12(f) in Supporting Information. 

Movie S7. Wave amplitude time-evolution as a function of the distance from the trench 

for the simulations shown in Figures S14(a), S14(c) and S14(e) in Supporting Information. 

Movie S8. Wave amplitude time-evolution as a function of the distance from the trench 

for the simulations shown in Figures S14(b), S14(d) and S14(f) in Supporting Information. 

Movie S9. Inundation time-evolution as a function of the distance from the trench for 

the simulations shown in Figures S15(a), S15(c) and S15(e) in Supporting Information. 

Movie S10. Inundation time-evolution as a function of the distance from the trench for 

the simulations shown in Figures S15(b), S15(d) and S15(f) in Supporting Information. 
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