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Abstract15

Advances in data assimilation (DA) methods and the increasing amount of observations16

have continuously improved the accuracy of initial fields in numerical weather prediction17

during the last decades. Meanwhile, in order to effectively utilize the rapidly increasing data,18

Earth scientists must further improve DA methods. Recent studies have introduced machine19

learning (ML) methods to assist the DA process. In this paper, we explore the potential of a20

four-dimensional variational (4DVar) constrained neural network (NN) method for accurate21

DA. Our NN is trained to approximate the solution of the variational problem, thereby22

avoiding the need for expensive online optimization when generating the initial fields. In the23

context that the full-field system truths are unavailable, our approach embeds the system’s24

kinetic features described by a series of analysis fields into the NN through a 4DVar-form25

loss function. Numerical experiments on the Lorenz96 physical model demonstrate that26

our method can generate better initial fields than most traditional DA methods at a low27

computational cost, and is robust when assimilating observations with higher error outside28

of the distributions where it is trained. Furthermore, our NN-based DA model is effective29

against Lorenz96 physical models with larger variable numbers. Our approach exemplifies30

how ML methods can be leveraged to improve both the efficiency and accuracy of DA31

techniques.32

Plain Language Summary33

The use of machine learning (ML) to approximate mappings from data has made a34

significant impact on numerical weather prediction. In the data assimilation (DA) process,35

several recent studies have applied ML to accelerate or improve the accuracy of DA output.36

In this paper, we investigate the potential of employing physical constraints based on four-37

dimensional variational (4DVar) DA to further enhance the accuracy of an end-to-end ML-38

based DA model. Our objective is to determine whether the 4DVar-constrained ML model39

can perform the DA task more efficiently and produce comparable accuracy to the traditional40

DA methods. We trained our NN-based model without true values as labels and test it on41

the Lorenz96 physical model. Several experiments have been applied to verify that the42

4DVar-constrained ML model can be used as a potential substitute for the DA process.43

1 Introduction44

Numerical weather prediction (NWP) is an initial-value problem, and the discrepancy45

between the initial field and the true state of Earth can lead to errors in NWP models. To46

address this issue, data assimilation (DA) techniques have been developed and applied to47

NWP, resulting in notable improvements in accuracy (Gustafsson et al., 2018). In particular,48

the development and operational use of three-dimensional and four-dimensional variational49

assimilation (3D/4DVar) methods (Courtier et al., 1994), the more recent development50

of ensemble DA approaches (Evensen et al., 2009), and other variational-ensemble hybrid51

methods have been significant milestones in NWP (Bocquet, 2016; Bannister, 2017). Most52

of the top operational centers for NWP and reanalysis use variations of these techniques53

(Hersbach et al., 2020; Compo et al., 2011; Clayton et al., 2013). In addition, the expansion54

of the amount and diversity of observations is also essential to NWP. In the future, increasing55

observations with a higher spatial and temporal resolution and greater accuracy (Gettelman56

et al., 2022) presents a tremendous opportunity to further enhance the quality of initial57

fields, while the challenge of extracting all relevant information using traditional methods58

is becoming more severe (Düben et al., 2021). Furthermore, the growing grid number of59

the numerical models also makes DA approaches increasingly computational cost in many60

realistic situations (Carrassi et al., 2018). Consequently, it necessitates Earth scientists to61

consider improving DA efficiency further (Huang et al., 2021).62

The application of machine learning (ML) techniques (Goodfellow et al., 2016) to a63

variety of tasks, such as image recognition (Han et al., 2022), neural language processing64
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(Kenton & Toutanova, 2019), and video prediction (Oprea et al., 2020), has been widely65

reported. In the earth science domain, ML also offers a powerful toolkit to improve the66

computational efficiency of models and extract information from large amounts of data67

about Earth (Düben et al., 2021). Further, Bocquet (2023) and Cheng et al. (2023) highlight68

the potential of ML and DA for improving the accuracy and efficiency of models in Earth69

sciences. In addition, the synergy between ML and DA has been highlighted by Boukabara et70

al. (2020), while Bocquet, Brajard, et al. (2020) numerically demonstrated that ML and DA71

both act as coordinate descent minimization for the specified loss function. This has enabled72

the training of neural networks (NNs) to directly minimize a pixel-wise distance measure for a73

regression task. However, such pixel-by-pixel ground truth is unavailable for DA applications74

in NWP, making the direct comparison between the NN’s output and the system truth75

impossible. As a result, most of these studies have trained NNs as approximators of the76

traditional DA methods to alleviate the computational burden associated with the NWP’s77

initializing process. For example, Wu et al. (2021) used a multilayer perceptron (MLP)78

to learn the relationship between the observed data and the dynamic model solution, and79

learned to minimize the mean square error (MSE) between the MLP output and the 4DVar80

method result to speed up the DA process. Arcucci et al. (2021) trained a recurrent neural81

network with the state of the dynamical system and the results of the DA process to learn82

the assimilation process, using the distance between the dynamical system prediction and83

the DA results as the training loss function. Fablet et al. (2021) proposed an appealing84

solution to learn the unknown dynamic mapping in the variational formulation jointly to85

computationally efficient solvers for the DA problem and achieved superb reconstruction86

performances. While these trends are encouraging, these NNs are not explicitly grounded87

in physics, making it challenging to produce initial fields consistent with the kinetic features88

of the system.89

This paper aims to enhance the accuracy of initial fields by integrating a 4DVar-form90

physical constraint into the NN while keeping the computational cost low. A loss function91

based on analysis-based 4DVar is derived to train the DA model using the NN. Furthermore,92

we compare our NN-based DA model with several traditional DA methods and the 4DVarNet93

model (Fablet et al., 2021). The primary contributions of our study are as follows:94

• The proposed NN-based DA method in this study combines two essential elements.95

The first element is an NN architecture constructed using residual convolutional NNs96

and incorporates one-dimensional channel attention. This architecture enables end-97

to-end DA. The second element involves utilizing an analysis-based 4DVar-form loss98

function. This loss function is designed to provide the NN access to long-term kinetic99

information about the dynamic system.100

• This end-to-end DA method offers novel techniques for the ML-based DA model101

training without the need for ground truths as training labels.102

• When establishing the initial fields for numerical predictions, the trained model can103

avoid expensive online optimization regarding the cost function and produce initial104

fields that are comparable to that of the traditional DA method.105

We evaluate our approach using the Lorenz96 physical model (Lorenz, 1996), a system106

of nonlinear differential equations that models atmospheric chaos and serves as a standard107

benchmark for DA and ML tasks in Earth science (Hassanzadeh et al., 2019; Brajard et al.,108

2020; Huang et al., 2021; Nonnenmacher & Greenberg, 2021; Dong et al., 2022). Lorenz96109

is a good test case for our purposes, as it can be accurately differentiated automatically110

by any deep learning (DL) framework. We systematically investigate how the prediction111

skill depends on the DA method and how observational errors affect the method. We112

also demonstrate how the scalability of our NN for Lorenz96 physical models varies with113

different variable numbers. Our work incorporates insights and techniques from previous114

studies using NNs to approximate DA methods (Wu et al., 2021; Arcucci et al., 2021) but115

is the first to our knowledge to break the performance upper bound of the ML-based DA116

method when tested on the Lorenz96 physical model.117
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The rest of this paper is organized as follows. Section 2 introduces the architecture118

design of our NN-based DA model and the theoretical derivation of our loss function. Section119

3 presents the experimental design of our work. Section 4 shows the experimental results120

compared with traditional DA methods. Section 5 discusses how the proposed method121

relates to and is different from previous works, as well as the 4DVar method. Section 6122

concludes our work.123

2 Methods124

2.1 Preliminaries125

This study considers a chaotic system that describes the changing atmospheric states126

throughout time (e.g., atmospheric fluctuations across a spatial grid). The following explicit,127

fixed-time step numerical model can represent the system:128

dx

dt

∣∣
x=x(t)

= f(x(t)), (1)

xk =Mk:k−1(xk−1) ≈ x(tk−1) +
∫ tk
tk−1

f(x(t))dt, (2)

where xk = x(tk) ∈ Rm denotes the system state at tk moment, and m denotes the system129

space’s grid number. The integration model, Mk:k−1 : Rm 7→ Rm, is usually a chaotic130

partial differential equation, which maps the system state at tk−1 moment into the state131

at tk moment. The system is assumed to be Lipschitz continuous. The Picard–Lindelöf132

theorem (Coddington & Levinson, 1984) demonstrates that such an initial value problem133

has a unique solution. In discrete time, the system state can be observed through134

yk = H(xk) + εok, (3)

where H : Rm 7→ Rn denotes the observation operator and n denotes the observation space’s135

grid number. The observation operator H is utilized to observe a set of local points from136

the whole system. The observation error is expressed as a system-independent random137

error εok, mainly comprising instrumentation and representation errors. Assuming that the138

observation errors follow a Gaussian distribution, i.e., H = diag(a1, a2, · · · , am) and εok ∼139

N (0,R), where R = σ2
oIn×n denotes the observation error covariance matrix (Frei &140

Künsch, 2013; Bocque et al., 2015). The observation error covariance matrix was set to the141

same matrix R when performing the assimilation. The background field is the short-term142

prediction by the numerical model. It can be defined as follows:143

xb
k =Mk:k−1(x

a
k−1), (4)

where xa
k−1, called the ”analysis field”, is obtained from a DA method. Our study needs to144

fuse the background fields and observations to provide accurate initial fields using the NN145

N :146

N (xb
0,y; θ) : x

b
0,y 7→ xn

0 , (5)

where xn
0 denotes the NN’s assimilation result, y describes the observations in the assimi-147

lation window, and the goal is to make the NN output to approach the true system state148

xt
0 at the initial time t0, i.e., (∥xn

0 − xt
0∥ ∼ 0). The θ indicates all the parameters in our149

NN-based model.150

2.2 Architecture Design of Our NN-based DA Model151

In this work, we develop a residual fully convolutional NN (ResFCNN) model to fuse152

background fields and observations into accurate initial fields. Our NN-based DA model153

architecture incorporates three common properties of DA systems: (1) spatial structure,154

(2) local dependencies, and (3) increment of the analysis fields. Figure 1 illustrates the155

overall architecture of the model. To capture spatial structure, we use convolutional NNs156

with stacked layers of trainable convolutional filters followed by Gaussian error linear unit157
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Figure 1. The overall training framework of our proposed NN-based DA model. The blue

dashed box shows the structure of the basic convolutional block of the model. The green dashed

box represents the pipeline of the model. The background field (xb
0) and the series of observations

(y) are concatenated together as input, and the analysis increment (dx) is obtained by a stack of

basic convolutional blocks and channel attention, which are then added to the background field to

obtain the fusion product (xn
0 ). The red dashed box illustrates the training logic of the model. The

fusion product (xn
0 ) is used as the initial field of the numerical model (Mk:0). Physical constraints

constrain the numerically predicted trajectories using the analysis field provided by traditional DA

methods.

(GeLU) (Hendrycks & Gimpel, 2016) as the activation function. GeLU is a smooth and158

monotonic activation function that has been shown to improve the performance of NNs.159

Our basic convolution block has two repeating convolution-activation-dropout structures,160

a skip-connection structure, and a final convolution composition. The one-dimensional161

convolution layers in our basic blocks are set to have kernel sizes equal to the neighborhood162

size, such that an element depends only on the state of the system in a local neighborhood163

around it. In particular, in the Lornz96 physical model, the neighborhood size is equal164

to 4. Our model uses a residual block (He et al., 2016) to combine the incremental field165

with the background field. The residual block is a type of NN structure that allows for the166

addition of the input of a model to its output. This allows for the model to easily learn the167

change from the background field to the final initial field. Finally, to integrate information168

on each channel, we reform the channel attention mechanism (CAM) (Hu et al., 2018) into a169

one-dimensional CAM (1DCAM) block. The 1DCAM block uses global average pooling to170

generate channel-wise statistics of features z coming from the output of a basic convolution171

module (see Figure 2). The 1DCAM block allows the model to learn the importance of each172

channel, which can then be used to improve the performance of the model. The channel173

feature aggregation module can be expressed as follows:174

s = σ(W2δ(W1z)), (6)

where σ denotes the sigmoid function, δ denotes the ReLU function (Glorot et al., 2011),175

W1 ∈ RC×C
r and W2 ∈ RC

r ×C denote the squeeze and extend linear layers, respectively.176

In our study, r is set to be 8. The 1DCAM is set to be followed by each basic convolution177

module and the attention score (s) is multiplied by the output of the basic convolutional178

block to enhance the channel-wise feature.179

An assimilation cycle using our NN-based DA model can be represented as follows:180

Forecast Step xb
k =Mk:k−1x

n
k−1, (7)
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Figure 2. The schematic diagram of 1DCAM. The channel feature aggregation module is de-

scribed by equation (6).

Analysis Step xn
k = N (xb

k,y; θ) = xb
k + Finc(x

b
k,yk; θ), (8)

where N denotes the model, Finc represents the incremental field extraction component,181

and y denotes the observations during the assimilation window. To describe the detailed182

model architecture, we propose an architecture inspired by the model used in the work of183

(Nonnenmacher & Greenberg, 2021). Our basic block of the architecture consists of two 4×1184

convolutional kernels followed by the GeLU activation function and a 1D-CAM that yield a185

k-channel feature map. It has a convolutional stride of 1 and employs circular padding we186

denote it as b4s1-k. Additionally, the dk notation indicates a layer that implements a 4× 1187

convolutional kernel, producing k-channel feature maps at both inputs and outputs. The188

model architecture with 4 blocks is then189

xb
k,yk → b4s1−32→ d32→ b4s1−32→ b4s1−64→ d64→ b4s1−128→ d1→ F inc. (9)

2.3 Loss Function for Model Training190

Our overarching strategy aims to develop an ML-based DA method without ground191

truths as training labels. The objective is to achieve comparable or even higher accuracy192

than the SOTA traditional DA methods. Thus, the prediction accuracy is the best evaluator193

for a DA method. In the DA domain, the 4DVar method is successfully implemented194

by using a prediction task as a cost function to improve the initial field. In the widely195

used strong-constraint 4DVar (Le Dimet & Talagrand, 1986), the following cost function is196

optimized,197

J 4DV ar(x0) = J B + J O =
1

2
∥x0 − xb∥2B−1 +

1

2

L∑
l=0

∥yl −H ◦Mk:0(x0)∥2R−1 , (10)

where the ◦ symbol represents the composition of operators and ∥ ·∥2X = (·)TX(·) represents198

the Mahalanobis norm, l denotes the index of the observations during the DAW and L199

is the DAW length. B denotes the background error covariance matrix and R denotes200

the observation error covariance matrix. However, the 4DVar method is a computationally201

costly online learning strategy. To reduce the computational cost of 4DVar but maintain the202

meaningful physical constraint, we train the NN by using a 4DVar-form loss function. Figure203

3 illustrates the process of 4DVar and our loss. Unlike 4DVar, our loss uses the analysis204

fields rather than the observations as the fitting objective. These fields are generated by205

traditional DA methods such as Ensemble Kalman filter (EnKF) (Evensen et al., 2009),206

4DVar, iterative ensemble Kalman smoothing (IEnKS) (Bocquet & Sakov, 2014), etc., and207

are used exclusively for training the model. The background field xb
k+1 at time tk+1 is208

the result of the numerical prediction using the analysis field xa
k at time tk as the initial209

value. Assume that predictions are made with our NN-based DA model’s result xn
k at time210
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Figure 3. Illustration of 4DVar and our loss function. Figure 3(a) shows the pipeline of the

4DVar method. The control variable (blue multi-pointed stars) is the state at the beginning of the

assimilation window xb
tk . The whole cost function of 4DVar contains two parts, the background

part JB and the observation part JO. JB is the distance between the analysis field (red five-

pointed stars) and the background field. JO is constructed by the distance between the prediction

trajectory and observations (green diamonds). Corrections are computed at the time of observation

but then propagated back to the start of the assimilation window using the adjoint model. Once the

cost function is optimized, the analysis field at tk is used to run a prediction until tk+1. Figure 3(b)

represents the main idea of our 4DVar-form loss function. The output of our NN-based DA model

at tk (the four-vertex orange star) is used as the initial field to run a numerical prediction until

tk+2. The prediction trajectory (blue double arrow curve) is moved forward to the analysis fields

(red five-pointed stars) generated by traditional methods. Corrections are computed at tk+1 and

tk+2 but then propagated back to optimize the parameters of the model using the backpropagating

process of a DL framework.

tk as the initial field. Suppose that the predictions approach the analysis fields xa
k+1,x

a
k+2211

at time tk + 1 and tk + 2. It is reasonable to conclude that our NN-based DA model is212

better suited to generate initial fields than the NNs trained to just approximate traditional213

DA methods. This is because the analysis field combines the information from both the214

numerical predictions and the observations, and is in general much closer to the true system215

state than the background field. Thus, we can embed optimal representations of the system’s216

kinetic features into the NN by using analysis fields as training labels. Accordingly, by217

assuming that the analysis fields at each moment are independent of each other, we can218

derive our loss function as follows.219

Predictions from an NWP model and observations can be fused using a well-known220

traditional DA method to obtain analysis fields xa. Let xt be the system state truth and let221

x̃a = xa − xt. The error covariance matrix A = E[x̃a(x̃a)T ] is positive definite. The error222

is assumed to follow a Gaussian distribution, i.e., xa ∼ N (xt,A). Then, the probability223

density function of the occurrence of the historical analysis fields xa is224

p(xa) =
1

(2π)
m
2 (detA)

1/2
exp[−1

2
∥xa − xt∥2A−1 ]. (11)

The analysis fields were used as the labels to train the model to simulate a mapping rela-225

tionship from the background fields and observations to an optimal estimate of the system226

state truth. Under the condition that the above error distribution is satisfied and the NWP227

model error is ignored, the probability of the analysis fields being the predicted result should228

be the highest. The probability of the analysis fields occurrence at moments after the initial229

moment is as follows:230
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p(xa
k) = 1

(2π)
m
2 (detA)1/2

exp[− 1
2∥x

a
k − xt

k∥2A−1 ] (12)

= 1

(2π)
m
2 (detA)1/2

exp[− 1
2∥x

a
k −Mk:0(x

t
0)∥2A−1 ]. (13)

Thus, the probability density function of the fit to the series of analysis fields is as231

follows:232

K∏
k=1

p(xa
k) =

∏K
k=1

exp[− 1
2∥x

a
k−Mk:0(x

t
0))∥

2
A−1 ]

(2π)
m
2 (detA)1/2

(14)

= C · exp[− 1
2

∑K
k=1 ∥xa

k −Mk:0(x
t
0))∥2A−1 ], (15)

where C denotes a positive constant term. The analysis field xa
k obtained by solving using233

the traditional assimilation method will theoretically maximize the above probability, thus,234

when we have obtained the analysis field xa
k, we only need to optimize the following cost235

function to obtain xn
0 that satisfies the objective of this work:236

J (x̂0) =
1

K

K∑
k=1

∥xa
k −Mk:0(x

n
0 )∥2A−1 , (16)

where xn
0 denotes the accurate initial field to be found. In our loss function, the back-237

ground term is ignored. The proof of the effectiveness of this loss function can be found in238

Supporting Information. Moreover, by considering the norm of the matrix A−1/2, such that239

∥A−1/2∥2 = max
x ̸=0

∥A−1/2x∥2

∥x∥2
= max

x̸=0

xTA−1/2TA−1/2x

xTx
= max

x̸=0

∥x∥2A−1

∥x∥2
= λmax

(
A−1

)
,

(17)
where λmax(A

−1) > 0 is the largest eigenvalue of A−1.240

Adherence to the equations above enables us to derive the following inequation:241

∥x∥2A−1 ≤ λmax(A
−1)∥x∥2. (18)

Thus, we have242

J (x̂0) =

K∑
k=1

∥xa
k −Mk:0(x

n
0 )∥2A−1 ≤ λmax(A

−1)

K∑
k=1

∥xa
k −Mk:0(x

n
0 )∥2. (19)

This means that the cost function J (x0) has an upper bound λmax(A
−1)

∑K
k=1 ∥xa

k −243

Mk:0(x
n
0 )∥2, and we can consider optimizing this upper bound to implicitly optimize the244

corresponding cost function. Thus we use the unit array I to implement the loss function245

rather than directly computing the unknown analysis error covariance matrix A to imple-246

ment it, thus transforming the loss function into:247

L =
1

K

K∑
k=1

∥xa
k −Mk:0(x

n
0 )∥2. (20)
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Algorithm 1: The procedure to train our NN-based DA model.

Input : xb background fields
y observations
xa analysis fields generated by a kind of traditional DA method

Output: xn Initial fields generated by our NN model.
xp Numerical predictions by utilizing xn as initial fields.

Result: Training of a NN that learns the optimal solution of our 4Var-form
loss function in equation (20)

1 Initialization: Set the number of training epochs ne, batch size nb, Adam hyper-
parameters α, β1, β2, initial parameters for our NN-based DA model θ, the predic-
tion constrained window size K.
2 for i = 1, 2, · · · , ne do
3 Sample nb snapshots {(xb(j),y(j)}nb

j=1;

4 Sample nb training labels {(xa
1(j),x

a
2(j), · · · ,xa

K(j)}nb
j=1;

5 for j = 1, 2, · · · , nb do
6 xn(j) = N (xb(j),y(j), θ)) ;
7 for k = 1, 2, · · · ,K do
8 if k = 1 then
9 xp

k(j) =Mk:k−1(x
b
0(j))

10 else
11 xp

k(j) =Mk:k−1(x
p
k−1(j))

12 end

13 end

14 end

15 L = 1
nb

∑nb

j=1
1
K

∑K
k=1 ∥xa

k(j)− xp
k(j)∥2

∂L
∂θ = 1

nb

∑nb

j=1
1
K

∑K
k=1

∂L
∂xp

k(j)

∂xp
k(j)

∂xn
0 (j)

∂xn
0 (j)
∂θ

= 1
nb

∑nb

j=1
1
K

∑K
k=1

∂L
∂xp

k(j)
Mk:0

∂xn
0 (j)
∂θ

θ ← Adam(∂L∂θ , θ, α, β1, β2)

16 end
17 * All gradients are computed using automatic differentiation, and Mk:0 is the
tanjent linear of the physical model.
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3 Experimental Design248

The Lorenz96 physical model is used as the experimental object to test the proposed249

method. It can be expressed as follows:250

dxj

dt
= (xj+1 − xj−2)xj−1 − xj + F, (21)

where j = 1, 2, · · · , J and x−1 = xJ−1,x0 = xJ ,xJ+1 = x1. J denotes the number of251

discrete lattice points of the system, set to 40 in the common experiments, and the forcing252

term F is set to 8. This setting is the most widely used for a test system in DA algorithms253

(Bocquet et al., 2019; Brajard et al., 2020; Wu et al., 2021). In our general experiments,254

all ensemble assimilation methods were performed with an ensemble number of 20. One255

integration step of the model and the observing time interval were set to be 0.01 unit time256

(Huang et al., 2020). An assimilation window was set to be 0.05 unit time which simulates257

a 6-h window in the real world. The integration numerical scheme we adopted is the 4th-258

order Runge-Kutta method, as proposed by Lorenz in his 1996 paper (Lorenz, 1996). The259

assimilation cycle times are set to four years in all experiments, where each year has 365 days.260

After training the model with the data generated by 4DVar, EnKF, local ensemble transform261

Kalman filter (LETKF) (Hunt et al., 2007), and IEnKS, all evaluation experiments were262

compared with the corresponding algorithm in the same ten sets of initial fields for 4-year263

assimilation cycles. Further, the assimilation windows for 4DVar and IEnKS are both set to264

be 0.05. All results contained the mean and standard deviation (±). The DA and prediction265

codes are implemented based on the DAPPER (Raanes et al., 2018) framework with our266

trained model for proper validation. The metrics compared are the root mean square errors267

(RMSEs) of the analysis fields and predictions at the beginning of each assimilation window268

with the system state truths, which can be expressed as follows:269

RMSEa =
√∑n

i=1(x
a
i −xt

i)
2

Ncyc
, (22)

RMSEf =

√∑n
i=1[M(xa

i−1)−xt
i]

2

Ncyc
, (23)

where RMSEa denotes the RMSE between the analysis fields and system state truths,270

RMSEf denotes the RMSE between the predictions and system state truths, andNcyc is the271

number of assimilation cycles. Our NN-based DA model, as well as the auto-differentiable272

Lorenz96 physical model, are written in Pytorch. The AdamW (Loshchilov & Hutter, 2017)273

optimizer was used with a cosine adaptive learning rate strategy (Loshchilov & Hutter,274

2016). In fully observed experiments, the learning rates were all set to be 3e − 4, while in275

partially observed experiments, the learning rates were all set to be 1e− 3. The NN-based276

4DVar model was trained for 50 epochs, and early stopping was set to avoid overfitting. The277

models were trained on V100 GPUs and tested on Intel(R) Core(TM) i7-1065G7 CPUs.278

All experiments are performed simultaneously on both full observations and 75% of the279

observations (for processing of partial observations when using ML-based DA method, see280

Figure 4). This strategy of filling in unobserved grid points can offer a more comprehensive281

understanding of the data, even if there are discrepancies between the predicted data and282

the observed distribution. Additionally, the NN has the capability to remove the added283

noise.284

3.1 Data Preparation285

For the numerical experiments shown in the following sections, the database is made of286

Nexp = 12 trajectories. The initial values are set as {1, 0, 0, · · · , 0}, and the 12 initial values287

are sampled from a Gaussian random vector space with 0 as the expectation and 0.001 as288

the standard deviation separately. In the experiment step, the first trajectory is used for289

training, the second is used for validation, and the 10 remainings are used for testing. In290

contrast to most ML studies, larger test datasets are used for testing to obtain reliable test291

metrics.292
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Replace

Figure 4. The partial observations are included in the input of the 4DVar-constrained NN-based

DA model by replacing the missing values with the predicted values.

Table 1. HyperParametric search space for traditional DA methods.

Method Parameter Range

4DVar B-Scale 0.02,0.04,0.06,0.08,0.1,0.2,0.4,0.6,0.8,1.0, 2.0, 4.0, 6.0, 8.0

EnKF
Inflation 1.0,1.02,1.04,1.06,1.08,1.1
Rotation True, False

LETKF
Inflation 1.0,1.02,1.04,1.06,1.08,1.1
Rotation True, False

Localization Radiation 2, 4, 6, 8, 10

IEnKS
Inflation 1.0,1.02,1.04,1.06,1.08,1.1
Rotation True, Flase

3.1.1 Ground Truth and Observations293

Starting from a set of initial conditions, x
(i)
0 (i = 1, · · · , Nexp), of the true model, we294

computed two trajectories to generate the ground truth databases. In addition, we created295

two databases of observations as follows. The observation error follows a zero-mean Gaus-296

sian distribution with covariance matrix R = σ2
oIn×n. We set the observation standard297

deviations to 1 in the general experiments, while in the observation sensitive experiment, σ298

ranges from 1 to 3 with 0.5 as the step. The 75% partially observed data is generated by299

setting the second out of every four grid points as unobserved.300

3.1.2 Background and Analysis Fields301

We perturb the initial fields and take them as initial values. All background and analysis302

fields are obtained through the following analysis and prediction loops:303

Forecast Step xb
k =Mk:k−1x

a
k−1, (24)

Analysis Step xa
k = DA(xb

k,yk), (25)

where xa
0 = x0 + ξ, x0 denotes the exact initial value with random Gaussian error ξ ∼304

N (0,Ξ), Ξ denotes the random initial error covariance, DA represents the compared tra-305

ditional DA method, and yk expresses the observations of the DA method used during the306

DAW.When assimilate observations utilizing the 4DVar method, yk = {yk0,yk1, · · · ,yk(L−1)}307

where L denotes the number of moments with observations in the assimilation window and308

is set as 5. It is crucial to note that hyperparameters also significantly affect the accuracy309

of traditional methods. We searched for them minutely. See Table 1 for specific search pa-310

rameters. We performed a grid search on each traditional DA method (such as the variance311
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Table 2. Evaluation of our NN-based DA model and traditional DA methods on different ob-

servation ratios between 75% and 100%. We have tested the analysis and prediction field RMSEs

of our NN-based DA model trained with analysis fields generated from different traditional DA

methods as well as the SOTA 4DVarNet method and different CNN models of varying complexity

trained using our loss function.

Methods Fields EnKF LETKF IEnKS 4DVar
75% 100% 75% 100% 75% 100% 75% 100%

Traditional (Baseline)
Analysis 0.225± 0.009 0.185± 0.004 0.220± 0.002 0.181± 0.004 0.208± 0.003 0.177± 0.004 0.201± 0.002 0.159± 0.001
Prediction 0.246± 0.003 0.203± 0.005 0.241± 0.002 0.198± 0.004 0.228± 0.003 0.193± 0.004 0.215± 0.003 0.171± 0.001

4DVarNet (supervised)
Analysis 0.209± 0.003 0.169± 0.001 0.215± 0.022 0.165± 0.001 0.216± 0.026 0.169± 0.002 0.207± 0.002 1.218± 1.563
Prediction 0.224± 0.003 0.181± 0.001 0.231± 0.023 0.178± 0.001 0.233± 0.026 0.178± 0.001 0.222± 0.002 1.249± 1.589

TinyNet
Analysis 0.360± 0.004 0.287± 0.003 0.293± 0.005 0.291± 0.003 0.301± 0.005 0.295± 0.003 0.275± 0.003 0.299± 0.002
Prediction 0.379± 0.005 0.300± 0.004 0.309± 0.005 0.305± 0.004 0.319± 0.006 0.309± 0.004 0.290± 0.004 0.321± 0.003

TinyResNet
Analysis 0.247± 0.003 0.187± 0.002 0.227± 0.002 0.192± 0.002 0.229± 0.003 0.192± 0.002 0.217± 0.003 0.185± 0.002
Prediction 0.264± 0.004 0.199± 0.002 0.231± 0.004 0.205± 0.002 0.246± 0.003 0.205± 0.002 0.217± 0.003 0.201± 0.002

ResNet
Analysis 0.206± 0.002 0.155± 0.002 0.181± 0.002 0.157± 0.002 0.183± 0.002 0.157± 0.002 0.192± 0.002 0.149± 0.001
Prediction 0.222± 0.002 0.166± 0.002 0.196± 0.002 0.169± 0.002 0.199± 0.002 0.169± 0.002 0.205± 0.002 0.161± 0.001

Ours
Analysis 0.196± 0.002 0.149± 0.002 0.179± 0.002 0.150± 0.002 0.178± 0.002 0.152± 0.002 0.191± 0.001 0.149± 0.001
Prediction 0.211± 0.002 0.160± 0.002 0.195± 0.002 0.162± 0.002 0.194± 0.002 0.164± 0.002 0.205± 0.002 0.160± 0.001

Note. The first two rows of the table describe the quality of the analysis and forecast fields using traditional

data assimilation methods, which are defined as baseline results for comparison. The third and fourth rows

describe the performance of the 4DVarNet model trained with true values as labels, which is referred to as

supervised training by Fablet et al. (2021). The remaining rows describe the best results obtained from

training different CNN models of varying complexity using the loss function proposed in this paper. The

best results throughout the experiment are highlighted in bold.
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Figure 5. Plot of the error analysis for models trained with different prediction lengths K in

the loss function. The first row shows the analysis and prediction errors when the system is fully

observed. The second row represents the errors when 75% of grid points are observed.

inflation coefficient, localization radiation, and whether to include rotation). The results312

of the hyperparameters search are provided in Supporting Information Table S2-S9. After313

testing, for each tested traditional DA method, the parameter combination with the smallest314

root mean square error and the most stable results with respect to the truth of the system315

state is selected. Table 1 lists all the searched parameters.316
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Figure 6. The 6-hour error curve for simulating 5-day forecasts using the analysis field is plotted.

The first line is the comparison of our method with baseline and 4DVarNet at 100% observation,

and the second line is the comparison at 75% observation.

Table 3. Ratios of the running speed of the analysis and prediction loop processes (our NN-based

DA model and 4DVarNet compared to traditional methods).

Method EnKF LETKF IEnKS 4DVar

4DVarNet 0.068± 0.003 0.207± 0.008 0.446± 0.011 1.475± 0.111
Ours 0.675± 0.033 2.055± 0.066 4.430± 0.212 14.605± 0.702

4 Experimental Results317

4.1 Comparision to traditional DA methods and several ML-based DA318

models319

Table 2 presents the RMSEs of the tested DA methods applied to the Lorenz96 physical320

model with fully and partially spaced direct observations of the state variables. As baselines321

for the DA experiments, we consider four different traditional DA methods. All NN-based322

DA models, except 4DVarNet, were trained using analysis fields generated by relevant base-323

line methods. The 4DVarNet model was implemented based on the publicly available code324

of Fablet et al. (2021). It was trained using a supervised learning strategy, with the ground325

truths as training labels. In contrast, the TinyNet, TinyResNet, and ResNet models were326

implemented based on the publicly available code of Nonnenmacher and Greenberg (2021),327

which can capture the dynamic features of the Lorenz96 physical model quite well and can328

learn the solution to our proposed loss function. Comparing these models partly demon-329

strates that our proposed architecture can learn the solution to the proposed cost function330

more accurately. Table 2 highlights the best results obtained in bold font. It is evident331

that 4DVarNet achieves comparable results with the baselines since it is a surrogate opti-332

mizer for 4DVar. However, when background fields generated from 4DVar were utilized as333

training input, the RMSEs of 4DVarNet exhibited large standard deviations. This might be334

because the small background field error used in training 4DVarNet contributes to inade-335

quate estimation of the background error after training, leading to an unreasonable implicit336

depiction of the weights for the background and observations by 4DVarNet. On the other337

hand, our method demonstrated a significant performance improvement compared to all338

other methods. For instance, our method showed a 14.4% reduction in analysis RMSE339

when tested on partially observed data, compared to IEnKS. Additionally, our method con-340

sistently produced accurate analysis fields, as evidenced by the low standard deviation of341
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errors in all outcomes. The results suggest that the use of analysis fields to constrain the342

predicted trajectories could potentially impose implicit physical constraints on the output of343

our NN-based DA model, which could be beneficial in improving the accuracy of the predic-344

tions. Furthermore, our method achieves a quality improvement regardless of the baseline345

method used to provide the training labels. In addition, our 1D-CAM gives our NN-based346

model the ability to learn the better solution of our loss function than the ResNet model347

(Nonnenmacher & Greenberg, 2021).348

The results of training various machine learning models using the loss function proposed349

in our study are exhibited in Figure 5. We use analysis fields of multiple time steps as labels350

and range the length of the prediction constraint. As the number of analysis fields increased,351

most of the models showed a decreasing trend in analysis and forecasting errors that signified352

the effectiveness of our proposed loss function. The simplest TinyNet model showed a353

continuous decrease in error as the number of analysis fields increased. This finding indicates354

that we can improve the performance of simple models by augmenting the number of analysis355

fields and prediction length restricted by the loss. Our NN-based DA model structure has356

higher abilities in extracting system physics information described by the proposed loss357

function, as indicated by the performance improvement of our NN-based DA model over358

ResNet. However, the RMSEs of our model fluctuate with different training trajectory359

lengths. This may be related to the non-linear dynamic nature of the system. Nevertheless,360

after incorporating the 4DVar-form loss function, our model can produce higher quality361

analysis fields and more accurate predictions on the Lorenz96 physical model than the362

compared traditional DA methods. In addition, we can potentially reduce the computational363

cost of the training process by reducing the constrained trajectory length without sacrificing364

much performance, which is beneficial in applications where computational resources are365

limited. Our results demonstrate that the integration of 4DVar-form physical constraints366

with NNs can significantly improve the quality of ML-based DA.367

In order to better assess the impact of the assimilation method on the prediction, we368

further investigate the variation in the error of the 5-day 6-hour prediction using the afore-369

mentioned analysis field. The experimental results are depicted in Figure 6. The yellow370

curve represents the prediction error of the analysis field obtained through our algorithm,371

the blue curve represents the outcome of the corresponding traditional DA method, and372

the green curve represents the result of 4DVarNet trained with ground truth values. In the373

experiment with a 100% observation ratio, the background field predicted by the 4DVar374

method is employed as the training input for 4DVarNet, which yields unstable results. This375

instability may be attributed to the fact that the background field error itself is not signif-376

icant, thereby leading to a weak error correction capability acquired by 4DVarNet. Eight377

experiments conducted using the Lorenz96 physical model demonstrate that the analysis378

field obtained by our method exhibits the lowest predicting error, and the results are suffi-379

ciently stable. This is precise because our NN-based DA model incorporates prediction as380

a constraint to ensure that the output satisfies the objective of minimizing the prediction381

error of the Lorenz96 physical model.382

In addition, the running time ratio of the analysis and prediction loop processes (our383

NN-based DA model and 4DVarNet compared to traditional methods) was also reported384

in Table 3. From the table, we can see that our NN-based DA model was faster than385

IEnKS, LETKF, and 4DVar. It proves that our NN-based DA model could accelerate the386

DA process. In particular, compared to the 4DVar method on the Lorentz96 physical model,387

our method achieves a speedup ratio of 14.388

We further illustrate randomly selected time series with 200 assimilation cycles in Figure389

7. The simulations are based on random initial fields and assume that 75% of the grid points390

are observed. The difference between ground truths and predictions is shown in Figure 7(c)391

and 7(e). The results demonstrate that our NN-based DA model can produce more accurate392

predictions than baseline methods, as the distance of the prediction to the true system state393

is lower, both spatially and temporally. Figure 7(f)-(j) presents the RMSEs of predictions394
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at five randomly chosen grid points, with the overall RMSEs of the predictions with our395

NN-based DA model being lower than those of IEnKS. Comparisons of our NN-based DA396

model with 4DVar, EnKF, and LETKF are shown in Supporting Information Figures S1 to397

S3. These results demonstrate that our NN-based DA model can produce more accurate398

predictions than the compared traditional DA methods.399

4.2 The Ability to Absorb Different Error Observations400

The quality control (QC) of observations is a critical factor in the quality of DA re-401

sults (Sakov & Sandery, 2017; Jin et al., 2019). Inaccurate observations can lead to sub-402

optimal initial fields, necessitating the development of DA methods that can effectively403

assimilate observations with higher errors. To evaluate the robustness of our pretrained404

model in Section 4.1 without retraining, we conducted experiments with 5 different obser-405

vation error variations from 1 to 5. Further, these values were input into the DA system to406

adjust the corresponding observation error covariances to achieve the prescribed standard407

deviation. The results, shown in Figure 8, demonstrate that our NN-based DA model can408

assimilate observations with higher errors more efficiently than the compared traditional409

DA methods, as evidenced by the slower increase in RMSEs of the analysis and prediction410

results. Furthermore, our NN-based DA model exhibits much smaller standard deviations411

than traditional DA methods. This feature of our NN-based DA model makes the QC pro-412

cess easier. From Figure 8e, with an increase in observation error, the assimilation results413

given by EnKF fluctuate significantly, attributable to the instability of the gain matrix cal-414

culation after an increase in observation error. Furthermore, the same results can be seen415

in the experiments when assimilating partial observations using the LETKF and IEnKS416

methods. In contrast to these methods, our NN-based DA model consistently gives sta-417

ble assimilation results. This also demonstrates that our method can effectively assimilate418

observations with higher errors.419

4.3 Experiments on Lorenz96 Physical Models with Larger Variable Num-420

bers421

A key characteristic of the data assimilation method is its scalability with the increase422

of system variables. In this section, we demonstrate the effectiveness of our method on423

an extended version of the Lorenz96 physical model with more variables. We apply the424

NN method based on 4DVar constraints and validate it on Lorenz96 models with different425

numbers of variables ranging from 100 to 500. We compare our method with the LETKF426

method, which is able to handle variable expansion well, as well as the 4DVarNet method,427

and report the error growth curves for a 5-day forecast. In this experiment, we still use the428

LETKF method with 20 ensemble members as the baseline, and we tuned the parameters429

according to Table 1, the tuning results can be found in Supporting Information Table430

S1. The results of the forecast cycle experiments are shown in Table 4. In the simulation431

experiments with a 75% observation ratio, our method achieved at least a 14% reduction in432

background field error and a 12.7% reduction in analysis error compared to LETKF. It also433

improved performance compared to 4DVarNet, which was trained using the ground truth434

as labels. In addition, the results of the 5-day forecast experiments are shown in Figure435

9, which demonstrates stable error reduction for our method compared to LETKF and436

4DVarNet. These results indicate the scalability of our method in the extended Lorenz96437

physical model with more variables.438

5 Related Work439

In this section, we further discuss how the proposed method relates to and is different440

from previous works, as well as the 4DVar method. To the best of our knowledge, our441

work—while drawing on these earlier works—is the first ML-based approach to learn from442

and provide superior initial fields over traditional DA methods.443
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Figure 7. Visualization of the comparison between our NN-based DA model and IEnKS for

assimilation cycles. We randomly display a time series of 200 assimilation windows. Both simula-

tions observe 75% of the grid points as observation data. Figure 7(a) represents the truths of the

Lorenz96 physical model provided by pure numerical prediction from a random initial field. Figure

7 (b) shows the system states are generated by numerical prediction with IEnKS as the DA method.

The IEnKS method is used at each assimilation window and the simulation starts from a random

initial field. Figure 7 (c) represents the difference between (a) and (b). Figure 7 (d) shows the

system states generated by numerical prediction with our NN-based DA model as the DA method.

our NN-based DA model is used at each assimilation window and the simulation starts from a

random initial field. Figure 7 (e) represents the difference between (a) and (d). Figure 7(f)-(j)

represents the RMSEs of predictions with our NN-based DA model as the DA method compared to

predictions with IEnKS as the DA method. The green line is the RMSEs of the predictions using

IEnKS as the DA method. The blue line is the RMSEs of the predictions with our NN-based DA

model as the DA method. Five randomly chosen grid points are represented.
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Figure 8. Plot of the error analysis for increasing observational error standard derivation. The

first row shows the analysis and prediction errors when the system is fully observed. The second

row represents the errors when 75% of grid points are observed. The solid blue line represents the

error in the prediction from the analysis field generated by the traditional DA method, and the

green dashed line represents the error in the prediction from the analysis field generated by our

NN-based DA model. The orange dashed line represents the error in the analysis field generated

by the traditional DA method, and the red dashed line represents the error in the analysis field

generated by our NN-based DA model. From left to right, the results of our NN-based DA model

are compared with EnKF, LETKF, IEnKS, and 4DVar.
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Figure 9. Variations in the 5-day simulation forecast error using different assimilation methods

on an expanded variable Lorenz96 physical model. The number of variables ranges from 100 to 500.

The first line represents the results with a 100% observation ratio, while the second line represents

the results with a 75% observation ratio. The blue line represents the error for LETKF, the green

line represents the error for 4DVarNet, and the yellow line represents the error for our method.
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Table 4. The performance of the proposed method was compared with LETKF and 4DVarNet

on the Lorenz96 physical model with more variables. We have tested the analysis and prediction

field RMSEs of our NN-based DA model trained with analysis fields generated from LETKF as well

as the SOTA 4DVarNet method and LETKF.

Variables Methods Fields LETKF
75% 100%

100

LETKF Analysis 0.219± 0.003 0.185± 0.001
Prediction 0.240± 0.003 0.202± 0.001

4DVarNet (supervised)
Analysis 0.205± 0.002 0.166± 0.001
Prediction 0.221± 0.003 0.178± 0.002

Ours
Analysis 0.191± 0.002 0.146± 0.001
Prediction 0.206± 0.002 0.159± 0.001

200

LETKF Analysis 0.222± 0.003 0.185± 0.001
Prediction 0.244± 0.003 0.203± 0.001

4DVarNet (supervised)
Analysis 0.207± 0.001 0.166± 0.001
Prediction 0.223± 0.002 0.179± 0.001

Ours
Analysis 0.193± 0.001 0.143± 0.001
Prediction 0.209± 0.001 0.179± 0.001

300

LETKF Analysis 0.223± 0.002 0.187± 0.005
Prediction 0.245± 0.002 0.205± 0.005

4DVarNet (supervised)
Analysis 0.207± 0.001 0.165± 0.001
Prediction 0.223± 0.001 0.178± 0.001

Ours
Analysis 0.184± 0.001 0.142± 0.000
Prediction 0.199± 0.001 0.154± 0.000

400

LETKF Analysis 0.237± 0.033 0.185± 0.001
Prediction 0.259± 0.033 0.204± 0.001

4DVarNet (supervised)
Analysis 0.207± 0.001 0.165± 0.000
Prediction 0.223± 0.001 0.178± 0.000

Ours
Analysis 0.173± 0.000 0.141± 0.000
Prediction 0.188± 0.000 0.153± 0.001

500

LETKF Analysis 0.206± 0.001 0.187± 0.001
Prediction 0.273± 0.060 0.206± 0.001

4DVarNet (supervised)
Analysis 0.206± 0.001 0.166± 0.000
Prediction 0.223± 0.001 0.179± 0.000

Ours
Analysis 0.184± 0.001 0.142± 0.000
Prediction 0.200± 0.001 0.154± 0.000
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5.1 ML-based method for DA444

In recent years, the integration of ML, DA, and uncertainty quantification has demon-445

strated promising outcomes in enhancing the accuracy and comprehension of models in446

diverse fields (Cheng et al., 2023). Our work builds on the growing literature describing447

ML-based methods for learning and aiding the DA processes. These efforts fell into the fol-448

lowing three groups: 1) ML-based tangent linear and adjoint models; 2) ML-based surrogate449

models for ensemble DA; and 3) ML-based models for directly dealing with DA tasks.450

5.1.1 ML-based Tangent Linear and Adjoint Models451

A variety of ML-based surrogate models have been proposed for replacing tangent lin-452

ear and adjoint models of 4DVar methods (Nonnenmacher & Greenberg, 2021; Kotamarthi,453

2022; Dong et al., 2022). These studies generally learn the numerical model by relying on an454

NN. The minimization of the 4DVar cost function is achieved by using the NN’s backprop-455

agation and some kind of gradient descent methods. For instance, in Nonnenmacher and456

Greenberg (2021), a differentiable emulator was trained on the Lorenz96 physical model457

and applied to the 4DVar assimilation method. This work proved that the Jacobians of458

the differentiable emulator and the numerical system show close agreement, and the differ-459

entiable emulator can provide missing derivatives for the 4D-Var method without greatly460

degrading forecast accuracy. Furthermore, Dong et al. (2022) also proved that the auto461

differentiable function of the DL framework could provide a simple adjoint model for the462

4DVar method. Additionally, in Kotamarthi (2022), the differentiable reduced-order surro-463

gate model is merged into an optimization strategy where observations of the genuine state464

are used to enhance the forecast of the surrogate. This work assessed the long short-term465

memory model on a real-world forecasting task for geopotential height and obtained compet-466

itive results to climatology and persistence baselines for mean absolute error. Although most467

of the hybrid ML-4DVar methods focus on the efficient adjoint process, they also require468

iteratively optimizing the cost function. It still consumes more computational resources469

than the end-to-end process of our NN-based DA model. Furthermore, the quality of the470

initial fields generated by these hybrid ML-4DVar methods was similar to that of 4DVar,471

which is lower than our methods on the Lorenz96 physical model. This may contribute to472

the longer-term and more comprehensive information provided by our loss than 4DVar’s473

cost function. Thus, our NN-based DA model is potentially an alternative DA method for474

accurate end-to-end assimilation.475

5.1.2 ML-based Surrogate Models for Ensemble DA476

Some works seek to build data-driven surrogate models combined with ensemble DA477

methods to predict the future(Brajard et al., 2020; Chattopadhyay et al., 2021, 2023), e.g.,478

Brajard et al. (2020), who built an iterative algorithm with the EnKF (Evensen et al., 2009)479

to generate the initial field and then alternate with an NN to learn the Lorenz96 physical480

model. By tuning certain parameters of the algorithm (the number of forecast steps of481

the NN and the standard deviation of the model noise in DA), it was possible to favor the482

prediction skill over the long-term dynamics reconstruction. Furthermore, a sigma-point483

ensemble Kalman algorithm and the U-STN model were also integrated in Chattopadhyay484

et al. (2021) to provide stable, accurate DA cycles for geopotential height prediction. It485

showed that the gain from applying DA to an ML-based surrogate model would be most486

significant when the observations are noisy and sparse. Additionally, Chattopadhyay et al.487

(2023) employs a pretrained ML-based surrogate model that generates and evolves a large488

ensemble of states cheaply to compute the background error covariance matrix with smaller489

sampling errors. This work estimates a better initial condition without the need for any490

ad-hoc localization strategies. Recently, some works investigate the possibility of learning491

both the state and dynamics of a physical system online, to update their estimates when492

new observations are acquired, using sequential DA techniques such as the EnKF and a493

simple representation for the surrogate model and state augmentation (Bocquet, Farchi, &494
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Malartic, 2020; Malartic et al., 2022). Malartic et al. (2022) investigated the possibility of495

integrating a local EnKF with a data-driven surrogate dynamical core to jointly estimate496

the state and parameters of the system. Peyron et al. (2021) proposed an ETKF-Q-L497

method that learned the latent structure of the dynamic using an autoencoder to reduce the498

computational cost and memory storage. These interdisciplinary approaches, which combine499

ML and DA, have shown promising results in improving the accuracy and interpretability500

of models across various domains (Bocquet, 2023). However, the demand for huge ensemble501

members requires more external storage and computational resources than the proposed502

end-to-end model. The online calculation for a large background covariance matrix and its503

inversion is another term leading to unavoidable computational cost. Thus, our NN-based504

DA model can provide a better trade-off between the computational cost and assimilation505

quality.506

5.1.3 ML-based Models for Directly Dealing with DA tasks507

Many researchers aim to introduce the applications of NN design to approximate the508

mapping from the background fields and observations to the analysis fields (Cintra et al.,509

2016; Pawar et al., 2020; Wu et al., 2021; Arcucci et al., 2021). Cintra et al. (2016)510

presents the ML-based approach to emulate the LETKF method. With greater computing511

performance and comparable quality to LETKF analyses, the DA procedure is carried out512

by employing the NN to obtain the initial conditions for the atmospheric global model. In513

Pawar et al. (2020), an LSTM embedding model is recommended to estimate the nudging514

term, which not only drives the state trajectories to the observations but also acts as a515

stabilizer. Wu et al. (2021) introduced a fast DA (FDA) method that replaces the DA516

process by training an NN with 4DVar results as target outputs. When tested on the517

Lorenz63 system, FDA outperforms 4DVar in terms of computational performance under518

the premise of similar quality. Furthermore, in Arcucci et al. (2021), a recurrent NN trained519

with the state of the dynamical system and the results of the 3DVar process is applied for520

DA purposes. Fablet et al. (2021) utilized the automatic differentiation tools embedded in521

DL frameworks to learn a variational model and a gradient-based solver both implemented522

as NNs. Lafon (2023) proposed an algorithm that jointly learns a parametric distribution523

of the state, the dynamics governing the evolution of the parameters, and a solver. These524

works successfully accelerated the process of DA but were not explicitly grounded in physics,525

making it challenging to produce initial fields consistent with the kinetic features of the526

system. Our NN-based DA model is also an end-to-end solution for DA tasks. We can not527

only take advantage of the low computational cost but also provide higher-quality initial528

fields. Thus, our study provides a new idea for building accurate ML-based DA methods.529

5.2 Relationship with PINNs and 4DVar530

To make the NN satisfy the basic physical laws described by PDEs, a class of physics-531

informed machine learning methods (Raissi et al., 2019; Sirignano & Spiliopoulos, 2018) is532

introduced to solve the forward and inverse problems involving PDEs. These approaches533

use auto differentials to compute spatial or temporal derivatives and use PDEs as the train-534

ing loss. These approaches provide new ideas for combinatorial physics and data-driven535

approaches. Moreover, in the traditional DA area, the 4DVar method (Peng et al., 2017)536

minimizes cost functions to optimize 1) the fit of the initial field to the background field537

and 2) the mapping from the state of the model to the observations. The initial field is538

the one that leads to an accurate numerical prediction that fits the observations well. The539

success of solving the PDE-based variational problem in both 4DVar and PINNs indicates540

the suitability of 4DVar-form physical constraint loss for training ML-based DA models,541

especially when no direct pixel-wise ground truth exists. This further suggests that training542

with 4DVar-form loss functions may enable NNs to generate initial fields that can drive543

accurate predictions, as the 4DVar-form physical constraint loss can provide an accurate544

representation of the system’s kinetic features. Thus, we use a series of analysis fields to545
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constrain the prediction trajectories starting from our NN-based DA model’s output. This546

is because the observed data are usually sparse and irregular, whereas the analysis field is547

complete and distributed over the grid points. Using analysis fields as constraint targets can548

make the cost function converge more easily. At the same time, the analysis field is usually549

physically consistent with the numerical model, which also allows our NN-based DA model550

to learn a more physically stable result.551

6 Discussion and Conclusion552

6.1 Contributions553

In this paper, we introduce a novel 4DVar-constrained ML-based DA method for effi-554

cient and high-quality DA. This method combines the computational efficiency of NNs with555

the physical constraints of the 4DVar method. As the full-field ”state” of Earth is unavail-556

able due to the sparsity of observations, a comparison of an NN’s output and pixel-by-pixel557

ground truth pairs is not possible. To address this issue, we constructed a 4DVar-form loss558

function using analysis fields as fitting targets. Numerical experiments on the Lorenz96559

physical model show that the ability of the 4DVar-form constrained NN can improve the560

ML-based DA method’s accuracy while giving an approximately 14-fold speedup ratio over561

the 4DVar method. When put to the test on the 500-variables Lorenz96 physical model,562

the experimental results show that our approach can achieve at least a 13% reduction in563

RMSEs compared to baseline traditional methods. The main advantage of our approach564

is that it does not require system truths as training labels and inherently incorporates the565

4DVar-form physical consistency of the system.566

6.2 Limitations and Future Work567

While this and other works have successfully trained ML-based DA models on simple568

systems such as Lorenz96, it is less certain whether they can scale to more complex systems569

with additional spatial variables and additional interaction variables. Here, we highlight570

some limitations of the current method. Such issues will be subject to future research.571

6.2.1 Nonlinear and weakly constrained problems572

In real-world DA applications, the numerical prediction models are always strongly573

nonlinear, and the models all have errors. In order to make the proposed method suitable574

for these situations multiple approaches may be helpful. For example, we find that the575

spatial organization and localization of the system aid in reducing the size of the function576

space where we search for the ML-based DA model. Nonlinear and weakly constrained577

problems can be overcome by learning to improve the parameterized schemes or to correct578

model errors (Farchi et al., 2021; Bonavita & Laloyaux, 2020).579

6.2.2 Scalability580

The input to the NN may not resemble the training data, which is a concern when581

fusing unexpected observations with a trained DA model. This issue may affect the per-582

formance of the NN-based model. One might resolve this problem by using regularization583

techniques (Sanchez-Gonzalez et al., 2020) that introduce noise into the inputs during train-584

ing. However, these potential solutions require additional experimentation and research be-585

fore they are likely to solve the corresponding problems. Furthermore, in complex systems,586

considering the error covariance matrices may allow us to describe the spatial and physical587

correlations between variables, thereby enhancing the method’s adaptability to the system.588
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6.2.3 Computational cost589

The existing method is employed for estimating initial fields in the Lorenz96 physical590

model. However, implementing a large numerical prediction model using deep learning591

frameworks like PyTorch proves to be time-consuming. Furthermore, the iterative running592

of the numerical model for training DA models results in substantial costs. Consequently, the593

immense size of the Earth system presents a significant challenge in applying the methods594

outlined in this paper to future real-world NWP processes. One possible solution to this595

problem is to explore the use of reduced-order modeling techniques as a replacement for the596

physical prediction model used in the 4DVar-form constraint discussed in this paper. With597

the advancements in artificial intelligence technology, ML has demonstrated its potential in598

the field of medium-term forecasting. This is evident in recent works such as FourCastNet599

(Kurth et al., 2023), PanGu-Weather (Bi et al., 2023), GraphCast (Lam et al., 2023),600

ClimaX (Nguyen et al., 2023), and et al. However, it is essential to address the training cost601

when incorporating an ML prediction model as a constraint.602

6.3 Summary603

In summary, our approach combines the physical constraints of the 4DVar method with604

the computational efficiency of NNs. Users can solve costly assimilations much faster with605

our NN-based 4DVar method. It potentially exemplifies how ML methods can be leveraged606

to improve both the efficiency and quality of DA techniques without system truths as training607

labels. By applying the 4DVar-form loss function for model training, NNs can also improve608

the quality of the initial field. These improvements are due to the combined effect of physical609

laws and NNs, which are still undergoing rapid improvement: modern physics-informed ML610

methods allow accelerating numerical methods with much more compact representations by611

following fundamental physical laws. We expect the trend toward physics-informed ML to612

continue for the foreseeable future and eventually improve our predictive skills for Earth.613
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