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      Abstract— Interferometric Synthetic Aperture Radar 
(InSAR) time series analysis is a powerful technique to estimate 
long-term water level changes in wetlands ecosystems. 
However, few studies have applied InSAR on wetlands that are 
highly segmented by canals and levees due in part to the 
challenge of selecting qualified reference points to minimize 
unwrapping errors, which, by contrast, is a relatively easy task 
for unsegmented wetlands. Here we developed a new method to 
automatically select the optimal reference point for InSAR time 
series analysis. The method selects reference points by 
considering temporal behaviors of coherence and InSAR phase 
connectivity from each reference point to its wetland of interest. 
We tested the method on six managed and highly segmented 
wetland units within the Sacramento National Wildlife Refuge 
in the Central Valley, California. We validated the InSAR 
measurement against water depth gauge measurements during 
a low water depth (<10 cm) period from 2016 to 2018. The 
overall accuracy of the estimated water depth changes achieved 
an RMSE of 1.60 cm. Compared with the traditional method of 
manually selecting a single reference point for all wetland units 
with an overall RMSE of 1.82 cm, our method showed 
significantly lower RMSE values (p-value < 0.05) for five out of 
six units and similar RMSE for the remaining one. This new 
automatic method enables us to maximize the performance of 
InSAR to predict water depth and could be applied to other 
types of InSAR applications as well.  
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I. INTRODUCTION 
Interferometric Synthetic Aperture Radar (InSAR) has been 
successfully applied to estimate water level variations in both 
managed and natural wetlands [1-6]. This application of 
remote sensing technology is most effective in wetlands with 
emergent herbaceous and woody vegetation with vertical 
structures above water surfaces, which enables double-

bounce scattering [1-3]. Early studies used phase differences 
measured by a pair of SAR observations to estimate water 
level change between two snapshots in time [1-3]. To satisfy 
the need of wetland management for continuous monitoring 
of water levels, recent studies used advanced time series 
analysis, such as small baseline subsets (SBAS), to estimate 
water level variation across an extended time window (e.g., 
years) [5]. One of the critical steps for those InSAR 
applications is to select reference points with high and stable 
coherence over time and close to the target area, such as 
nearby residential areas [2]. Previous studies used a single 
reference point for wetlands of interest because they only 
focused on natural wetlands or managed wetland units with 
limited spatial segmentation [1-3], and thus only needed one 
stable point outside the wetland area.  
    However, the single reference point method may fail for 
highly segmented wetlands with distinct hydrologic regimes 
because of (1) unwrapping errors among different wetland 
units and (2) decorrelation areas of vegetation that obstruct a 
coherent path from the reference location to the wetland of 
interest [6]. While multi-segment processing (each segment 
with its own local reference point) recently proposed by 
Kang et al. (2021) could mitigate the impact of decorrelation 
[7], it still requires manual reference point selection, which 
can be tedious and challenging even for experts.  
    Our study developed an automatic reference point 
selection method for multi-temporal InSAR applications. 
The method considers the location, coherence, and phase 
connectivity between the reference and wetland unit to 
maximize the phase connectivity between the two, thus, 
minimizing the impact of unwrapping errors. We tested the 
method using highly segmented managed wetlands with 
areas much smaller than those of previous studies [1-6]. The 
method builds upon the connected components from the 
phase unwrapping process and can be incorporated into 
open-source InSAR time series analysis packages, such as 
MintPy [8]. We tested the method using a C-band Sentinel-1 
InSAR dataset over six segmented wetland units, where 
water depth gauge data were available, located within the 
Sacramento National Wildlife Refuge (Sacramento Refuge) 
in the Central Valley of California, USA (Fig. 1(a)). This 
method can select an optimal reference for each unit. We 
compared water depth estimates from this automated 
reference point selection to water depth estimates made using 
the traditional, manual reference point selection method. 
Since most wetlands in California are managed with limited 



 
 

information on water depth, which often differs among units, 
this study meets the urgent need to assist wetland resource 
managers in monitoring surface water depth.   

II. STUDY AREAS AND DATASETS 
    Managed wetlands in California provide important 
services such as supporting millions of shorebirds and 
waterfowl during their non-breeding season [9-10]. The 
Sacramento Refuge, primarily made up of emergent non-
tidal wetlands, is located in the northern half of the Central 
Valley, which is a critical part of the Pacific Flyway, hosting 
one of the largest concentrations of migratory birds in the 
world during fall and winter [10]. The wetland hydrology is 
characterized by a seasonal pattern (Fig. 1(b)) of flooding 
and drawdowns, scheduled to mimic historical dry and wet 
seasonality and facilitate waterfowl management in the 
winter and spring seasons. The wetland units are 
intentionally flooded from fall through spring, i.e., the wet 
season, from October to March [9]. The source of the 
flooding is subject to local rainfall and water allocation 
decisions by refuge managers. The Sacramento Refuge 
wetlands are highly segmented with a total number of 196 
units across 4000 ha, with an average of ~20 ha per unit (Fig. 
1(a)). We tested the reference point selection method 
described below using six wetland units (Fig. 1(a)), each 
outfitted with a pressure transducer water level gauge 
measuring sub-daily water depth from December 2016 to 
May 2018. We obtained 10-m Digital Terrain Models (DTM) 
for each unit generated by the previous study via Real-Time 
Kinematic Survey [9]. 
    The Sentinel-1 satellite constellation operates in C-band 
and works in all weather conditions, day and night. This 
study used Sentinel-1 Interferometric Wide (IW) mode 
Single Look Complex (SLC) products with 250 km wide 
swath and pixel spacing of 2.3 m by 14.1 m in range and 
azimuth directions, respectively. The revisit period for each 
Sentinel-1 satellite is 12 days. Sentinel-1 provides VV and 
VH polarizations for the study areas, but we only used VV 
for analysis, which showed better performance in 
interferometry than VH [3]. We obtained 43 scenes 
(including Sentinel-1A and 1B) from descending path 115, 
covering from December 24, 2016 to May 13, 2018, which 
overlapped with measurements of water depths (Fig. 1(b)).     
    We processed the time series of Sentinel-1 repeat-pass 
SAR acquisitions to form sets of coregistered unwrapped 
interferograms, including unwrapped phase, coherence, and 
connected components, by employing the ISCE-2 stack 
Sentinel processor and SNAPHU phase unwrapping [11-13]. 
We connected each SAR acquisition with its nearest two 
neighbors. For each interferogram, we applied a Goldstein 
filter with a strength of 0.8, and a multilooking with a factor 
of two and six in azimuth and range directions, respectively. 
We geocoded the output products into the WGS84 coordinate 
system and resampled to a ~30 m grid. We used only the dry 
season when water depths were lower than 10 cm because 
high water levels and high variations lead to greater  

 
Fig. 1. (a) Location of the Sacramento Refuge. (b) Unit 
boundaries (yellow), six units with water depth data, and 
water gauges (white triangles). (c) Time series of daily mean 
water depth of Unit 2 (left axis, blue line), measurements 
corresponding to SAR acquisitions (dark diamonds), and 
InSAR coherence value (between current and following 
adjacent observation, right axis, red dot). 
 
unwrapping errors, which makes it difficult to test the 
algorithm. The low water-depth period is from April to 
October, and it can be slightly different between different 
units. 

III. METHODOLOGY 
    Given a given Area of Interest (AOI, in this case, a wetland 
unit), the method automatically selects the reference point as 
a part of the procedure in InSAR time series analysis. The 
main goal of the method is to find optimal reference points 
that satisfy three criteria: (1) located outside but close to a 
wetland unit, (2) have high coherence values over time, and 
(3) have a coherent path, i.e., spatially adjacent pixels with 
high coherence values, from the reference to the AOI.  
    Data preparation obtains several products from Terrain 
Observation with Progressive Scan (TOPS) stack processing. 
The unwrapped phase (the yellow rectangle outlined by a 
dashed line in the Data Preparation step of Fig. 2(a)) is not 
used in the reference selection method but is used in later 
steps of InSAR processing. The reference selection method 
also requires a user-supplied geographic delineation of an 
AOI (e.g., shapefile data, Fig. 2(a)) with the same coordinate 
system (WGS84) as InSAR data. The method can be 
described as a five-step procedure as below.  
    Step 1 labels the pixels using the AOI shapefile. Pixels 
outside of the AOI are labeled as 0 and those within as 1. For 
this study, the method selects reference candidates outside 
the AOI (a wetland unit) because selecting a reference within 
the AOI cancels out displacement signals due to 
homogeneous water level changes in space. 
    Step 2 selects reference pixel candidates based on 
coherence values in time. This step identifies pixels with 
spatial coherence values greater than threshold coh_thd 
(initial value of 0.9) for more than perc_thd (initial value of 
95%) of InSAR pairs in time (blue patches in Fig. 3(a)).  
    Step 3 evaluates phase connectivity using a pixel-level 
iterative searching process for each pixel within an AOI. This 
step evaluates phase connectivity using the percentage of 
InSAR pairs that an AOI pixel’s connections to a nearby 
reference candidate obtained from Step 2 using the connected 
component output from the data preparation step (Fig. 2(a)). 
For a connected component image, zero values indicate no  



 
 

 
Fig. 2. (a) Flowchart of the five-step procedure. (b) 
Schematic plot for Step 3. The search grid is centered at a 
pixel within the AOI (with a light green square). Orange 
grids represent the extent of an AOI; purple pixels are pixels 
within the AOI; blue pixels are outside of the AOI.  

 
TABLE I  

Initial threshold parameters used in this study 
 

Parameters Initial 
value 

Parameters Initial 
Value 

coh_thd 0.9 quality_thd 30 

perc_thd 0.95 min_area 30 

edge 1000 px_per_comp 5 

conn_perc_thd 0.8 path_thd 0.9 

     
connection with neighbor pixels, and pixels sharing the same 
positive values are connected. For each AOI pixel, this step 
searches for surrounding reference candidates within a 
square with an edge length of 1000 pixels (edge parameter in 
Table 1), i.e., ~3000 m, which covers almost the entire 
Sacramento Refuge (Fig. 3(b)). For a reference candidate 
within the square (e.g., the cyan dot in Fig. 3(b)), if the 
percentage of connections to the AOI pixel is greater than a 
conn_perc_thd threshold (initial value of 0.8), we identify it 
as a reference candidate (red, yellow, and green dots in Fig. 
3(b)). As a result, each AOI pixel has a list of reference 
candidates.  
    Step 4 selects reference points at the AOI level. To remove 
noisy AOI pixels (e.g., open water), we remove AOI pixels 
with less than quality_thd (initial value of 30) reference 
candidates. We intersect the reference candidate lists for all 
remaining AOI pixels to obtain a list of reference candidates 
that have high connections with all qualified AOI pixels (Fig. 
3(c)). If this step does not find any reference points, tuning 
of the perc_thd and conn_perc_thd parameters is required. 
Considering coherence is the priority for reference selection, 
parameter tuning prioritizes decreasing conn_perc_thd. We 
use an increment of 0.5 for both parameters.       
    Step 4 conducts a connected component analysis to 
represent different locations of clusters of the reference 
candidates (Fig. 3(d)). A min_area threshold (initial value of 
30) is applied to remove clusters with a low number of 
candidates. For each component, we selected the top  

 
Fig. 3. Intermediate results for each step using Unit 3 as an 
example. (a) Percentage of high coherence in time. (b) 
Percentage of connections to the AOI pixel (cyan dot). (c, d) 
Selected reference candidates and connected components 
representing different locations. (e) Connected component 
based on mean coherence value (pink color is the background 
with a zero value) with selected and unselected reference 
points. (f) Locations of reference for each unit and the 
manually selected reference point (black triangle).  
 
px_per_comp (initial value of 5) candidates with the shortest 
distance to the AOI (white dots, Fig. 3(d)). 
    Step 5 considers a coherent path between the reference 
candidates to the AOI. First, we generate a mask image based 
on a mean coherence image of all InSAR pairs using a 
threshold paththd (initial value of 0.9). The mask consists of 
1 and 0 values, representing mean coherence greater or 
smaller than paththd, respectively. We mark all the AOI 
pixels as 1 before conducting a connected component 
analysis for the mask image. For the reference obtained from 
Step 4 sharing the same connected component with the AOI 
pixels (Unit 3 and nearby component in Fig. 3(e)), meaning 
a coherence path exists between the candidate to the AOI, we 
select those as final reference points and rank them by the 
Euclidean distance to the AOI (the top one has the shortest 
distance). If the AOI is not connected to any component, we 
conduct an incremental dilation (step of 1) to surrounding 
pixels until the AOI is connected to a component.  

IV. RESULTS  
    We applied the method to each of the six wetland units in 
Sacramento Refuge and calculated water depth variation 
based on selected reference points. Results from the applied 
method showed (1) the predicted water depth from InSAR 
compared to the ground reference (Fig. 4), and (2) the 
comparison between our automated method and a manually 
selected single reference point in terms of accuracy for the 
estimated water depths (Fig. 5, 6). 



 
 

 
Fig. 4. (a) Comparison between InSAR-derived water depths 
and ground reference using a representative pixel from each 
of the six units. (b, c) Example of the time series of InSAR 
and ground reference shown for units 2 and 3, respectively.  
 
    The hydrograph of Unit 2 in the Sacramento Refuge 
showed a clear seasonal pattern with low water depths from 
April to October when wetlands were drawn down (Fig. 
1(b)). Coherence data also showed a seasonal pattern with 
low and varying values in winter and spring when water 
depths were high, whereas coherence was relatively high and 
stable when water depth was low (shaded area in Fig. 1(b)), 
which was consistent with a previous study [14]. 
 
A. Reference pixel locations 
    By applying our automated method, we successfully found 
a reference point for each of the six units (Fig. 3(f)). The 
reference points were located close to the corresponding unit 
and were characterized by high coherence values in time and 
high phase connectivity with a coherent path to the unit. Note 
that we obtained multiple reference points for each unit and 
only showed the one with the shortest distance to the AOI.  
    The default threshold parameters worked for most of the 
units with some exceptions. We tuned conn_perc_thd from 
0.8 to 0.75 for units 4 and 5, and additional tuning of 
perc_thd from 0.95 to 0.9 for unit 4 to be able to find a 
reference point. In addition, we applied a dilation of 2 pixels 
for units 1 and 3 in Step 5 to connect the unit to a close 
component (e.g., unit 3 and a nearby component in Fig. 3(e)). 
 
B. Validation of InSAR estimated water depths 
    When estimating the time series of water depth, we set the 
starting date as the reference date for both InSAR and gauge 
water depth measurements (value of 0 for Fig.4(b), (c)). 
Considering a gauge is located at marginal places for each 
unit (Fig. 1(a)) with relatively high terrain elevation, we only 
used wetland pixels with lower elevation values of the DTM 
than the gauge’s elevation and, therefore, the pixel locations 
were consistently flooded. We selected one representative 
wetland pixel for each unit with a relatively low RMSE to 
illustrate the results (Fig. 4). The water depth change from 
the selected wetland pixels was assumed to be the same as 
the changes in the gauge measurements considering a 
homogenous water surface for each small unit. The 
representative pixels from each of the units showed 
consistent InSAR results and ground reference with an R2  

 
Fig. 5. Comparison of RMSE spatial distribution using the 
automatic and manually selected reference points. 

 
Fig. 6. Comparison of spatial average RMSE for six units 
using automatic and manually selected reference points.  
 
value of 0.85 and RMSE of 0.77 cm (Fig. 4(a)) and time 
series results showed that InSAR successfully tracked draw- 
down of the flooding (Fig. 4(b), (c)). Overall, the average 
RMSE for all qualified wetland pixels in six units is 1.60cm 
using the automatic method and 1.82 cm for the manually 
selected reference point. 
 
C. Comparison with the existing reference selection method 
    We compared the accuracy of predicted water depths for 
all six units between the automatic method (one reference for 
each unit) and a manually selected reference point method 
(one reference for all six units) (Fig. 5, 6). The manually 
selected point is in the western part of the study area and it 
was characterized by (1) concrete road with high coherence 
(95% of InSAR pairs with a coherence value greater than 
0.90, Fig. 3(a)), (2) high-coherence pixels on the paths to all 
six units. We displayed the spatial distribution of RMSE for 
representative units (Fig. 5) and calculated for each unit the 
average of RMSE for all the pixels with elevation lower than 
the corresponding gauge elevation (Fig. 6). 
    The spatial distribution of RMSE of units 1, 2 & 6 
(combined), and 3 clearly showed the advantage of using the 
algorithmically selected reference point compared to the 
manually selected point with lower RMSE values (Fig. 5). 
We used the Wilcoxon rank-sum statistical test to evaluate 
the difference among RMSE distributions resulting from the 
two methods and found that they were significantly different 
(Fig. 5, p-value < 0.05). Overall, the automatic approach 



 
 

outperformed the manual selection for five out of six units, 
and only unit 5 showed a higher RMSE, which was close to 
the location of the manually selected point (Fig. 1(a)).  

V. DISCUSSIONS AND CONCLUSIONS 
    Our study developed a method for automatically selecting 
optimal reference points for multi-temporal InSAR small 
baseline subsets analysis. We illustrated the effectiveness of 
the method by estimating long-term water depth variations in 
small, hydrologically distinct managed wetlands in the 
Sacramento National Wildlife Refuge, Central Valley, 
California. The five-step method evaluates coherence 
behavior and connectivity between a reference candidate to 
the AOI (wetland unit in this case). We tested the method on 
six wetland units, a landscape highly segmented by canals 
and levees as a challenging environment for InSAR analysis. 
The method successfully found optimal reference points for 
each of the units, which were used to generate accurate 
estimates of surface water depth.   
    When compared to the manually selected single reference, 
the automatic method with unit-based reference point 
selection achieved better results in five out of six units. The 
one with a slightly worse result (Unit 5 with 2.55 cm of 
RMSE for the automatic and 2.45 cm for the manual method) 
is characterized by a close distance to the location of the 
manually selected point and a coherent path (Fig. 3(a)). The 
manually selected point was also identified by the automatic 
method for Unit 5, whereas it ranked 20th due to a relatively 
longer distance to the AOI. Therefore, the automatic method 
does not necessarily result in better accuracy, but it achieves 
comparable accuracy to a manually selected point. For other 
studies with more complicated landscapes, there may not 
exist a single point with great phase connectivity to the AOIs 
and, thus, our method is expected to achieve better results. 
    One advantage of our method is to consider the coherent 
path between the reference point to the AOI. For example, 
our method outperformed the manually selected point for 
Unit 3 because there is no coherent path between the point 
and the unit (Fig. 3(e)), which introduced unwrapping errors 
that resulted in lower accuracy for the predicted water depths. 
Note that the manually selected point showed high 
connectivity to the AOI unit (Fig. 3(c), (d)) using the 
connected component generated by SNAPHU (data 
preparation step, Fig. 2(a)). We found that SNAPHU often 
showed that connected components included pixels with 
relatively low coherence values, which is partly due to the 
limit of the number of components. We successfully used a 
mask derived from the mean coherence to generate a new 
connected component that filters the reference candidates 
with coherent paths to the AOI to achieve better accuracy.   
    For future applications, users should adjust the selection 
parameters (Table 1) based on InSAR stack parameters and 
knowledge of local wetland environments. For example, the 
parameters in Table I correspond to connections with two 
nearest neighbors. If more connections are used in the stack 
processing, the threshold parameters perc_thd and 
conn_perc_thd  should decrease accordingly. Also, users 
should tune other parameters, such as the edge parameter, to 
efficiently search for nearby reference candidates. 

    This new InSAR-based reference selection method not 
only has great potential for understanding regional wetland 
hydrology for other managed wetlands located in California 
with more complicated segmentation but also scientific value 
for other types of InSAR applications (e.g., landslide) in light 
of the upcoming NASA-ISRO SAR (NISAR).  
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