- Gupta, M., & George, J. F. (2016). Toward the development of a big
data analytics capability. Information & Management, 53(8),
1049-1064.
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning
for image recognition. Proceedings of the IEEE conference on computer
vision and pattern recognition.
- Hinkka, V., et al. (2019). Deep learning for predicting package
delivery times in last-mile logistics. Applied Soft Computing, 85,
105813.
- Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N.,
… & Kingsbury, B. (2012). Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research
groups. IEEE Signal processing magazine, 29(6), 82-97.
- Huang, G. H., & Xu, Y. (2017). Public blockchain and private trust:
The case for a hybrid supply chain. 2017 IEEE Symposium Series on
Computational Intelligence (SSCI).
- Jha, A. K., & Michels, J. D. (2019). A study on inventory management
using artificial intelligence. Procedia computer science, 152,
1042-1049.
- Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114.
- Köhler, M. F., et al. (2020). Dynamic route optimization in last-mile
logistics using artificial intelligence. Transportation Research
Procedia, 46, 20-27.
- LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz,
N. (2020). Using AI to Enhance Business Operations. MIT Sloan
Management Review, 61(3), 1-9.
- Leitão, D., Saleiro, P., & Figueiredo, M. A. T. (2022). Human-AI
Collaboration in Decision-Making: Beyond Learning to Defer. arXiv
preprint arXiv:2206.13202.
- Liu, J., Dolan, J. B., & Andrews, G. E. (2018). Survey of machine
learning for high-quality forecasts of building energy loads.
Renewable and Sustainable Energy Reviews, 82, 1678-1691.
- Makridakis, S. (2017). The forthcoming Artificial Intelligence (AI)
revolution: Its impact on society and firms. Futures, 90, 46-60.
- Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C.,
& Byers, A. H. (2011). Big data: The next frontier for innovation,
competition, and productivity.
- Mayer-Schönberger, V., & Cukier, K. (2013). Big data: A revolution
that will transform how we live, work, and think. Houghton Mifflin
Harcourt.
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J.
(2013). Distributed representations of words and phrases and their
compositionality. Advances in neural information processing systems.
- Psychoula, I., Gutmann, A., Mainali, P., Lee, S. H., Dunphy, P., &
Petitcolas, F. A. P. (2023). Explainable Machine Learning for Fraud
Detection. arXiv preprint arXiv:2105.06314.
- Rajpurkar, P., Hannun, A. Y., Haghpanahi, M., Bourn, C., & Ng, A. Y.
(2017). Cardiologist-level arrhythmia detection with convolutional
neural networks. arXiv preprint arXiv:1707.01836.