1. Choi, T. M., et al. (2019). Intelligent logistics: Integration of AI and operations research in hub logistics. Transportation Research Part E: Logistics and Transportation Review, 128, 16-33.
  2. F. Sherwani, M. M. Asad and B. S. K. K. Ibrahim, "Collaborative Robots and Industrial Revolution 4.0 (IR 4.0)," 2020 International Conference on Emerging Trends in Smart Technologies (ICETST), Karachi, Pakistan, 2020, pp. 1-5, doi: 10.1109/ICETST49965.2020.9080724.
  3. Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108-116.
  4. Albon, C. (2018). Machine learning with Python cookbook: practical solutions from preprocessing to deep learning. O’Reilly Media, Inc.
  5. Dogru, A. K., & Keskin, B. B. (2020) . AI in operations management: applications, challenges and opportunities. Journal of Data, Information and Management, 2(2), 67-74.
  6. Ghadge, A., Dani, S., Chester, M., & Kalawsky, R. (2013). A systems approach for modelling supply chain risks. Supply chain management: an international journal, 18(5), 523-538.
  7. Graves, A., Mohamed, A. R., & Hinton, G. (2013, May). Speech recognition with deep recurrent neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing (pp. 6645-6649). Ieee.
  8. Ransbotham, S., Kiron, D., Gerbert, P., & Reeves, M. (2017). Reshaping business with artificial intelligence: Closing the gap between ambition and action. MIT Sloan Management Review, 59(1).
  9. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
  10. de Araujo, A. C., & Etemad, A. (2021). End-to-end prediction of parcel delivery time with deep learning for smart-city applications. IEEE Internet of Things Journal, 8(23), 17043-17056.
  11. Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N., … & Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal processing magazine, 29(6), 82-97.
  12. Thanujan, T., Rajapakse, C., & Wickramaarachchi, D. (2021, September). A community-based hybrid blockchain architecture for the organic food supply chain. In 2021 International Research Conference on Smart Computing and Systems Engineering (SCSE) (Vol. 4, pp. 77-83). IEEE.
  13. Osman, B. M., Alinkeel, S., & Bhavshar, D. (2022). A study on role of artificial intelligence to improve inventory management system. Int Res J Moderniz Eng Technol Sci, 4(3), 226-233.
  14. Lopez, R., Boyeau, P., Yosef, N., Jordan, M., & Regier, J. (2020). Decision-making with auto-encoding variational Bayes. Advances in Neural Information Processing Systems, 33, 5081-5092.
  15. Ramírez-Villamil, A., Montoya-Torres, J. R., Jaegler, A., & Cuevas-Torres, J. M. (2023). Reconfiguration of last-mile supply chain for parcel delivery using machine learning and routing optimization. Computers & Industrial Engineering, 184, 109604.
  16. Review, M. S. M. (2020). 11 Using AI to Enhance Business Operations.
  17. Leitão, D., Saleiro, P., & Figueiredo, M. A. T. (2022). Human-AI Collaboration in Decision-Making: Beyond Learning to Defer. arXiv preprint arXiv:2206.13202.
  18. Psychoula, I., Gutmann, A., Mainali, P., Lee, S. H., Dunphy, P., & Petitcolas, F. (2021). Explainable machine learning for fraud detection. Computer, 54(10), 49-59.