- Al-Turjman, F., Alsharif, M. H., & Alsharif, A. (2022). Artificial
Intelligence and Blockchain Integration in Business: Trends and
Opportunities. Information Systems Frontiers, 25(4), 871-896.
- Bahrin, M. A. K., Othman, M. F., Azli, N. H., & Talib, M. F. (2016).
Industry 4.0: A review on industrial automation and robotic. Jurnal
Teknologi, 78(6-13), 137-143.
- Bao, Y., Hilary, G., & Ke, B. (2021). Artificial Intelligence and
Fraud Detection. Springer Series in Supply Chain Management,
forthcoming, Springer Nature.
https://doi.org/10.1007/978-3-030-75808-7_8
- Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the
stock market. Journal of Computational Science, 2(1), 1-8.
- Cai, Y., & Zhu, D. (2015). Fraud detections for online businesses: a
perspective from blockchain technology. Financial Innovation, 1(1),
20.
- Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business
intelligence and analytics: From big data to big impact. MIS
quarterly, 1165-1188.
- Choi, T. M., et al. (2019). Intelligent logistics: Integration of AI
and operations research in hub logistics. Transportation Research Part
E: Logistics and Transportation Review, 128, 16-33.
- Dalal, S., & Zaveri, M. (2017). Collaborative robots in industry: A
review. 2017 International Conference on Nascent Technologies in
Engineering (ICNTE).
- Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for
the real world. Harvard Business Review, 96(1), 108-116.
- Engel, S., & Bengfort, B. (2017). Machine learning with Python
cookbook: practical solutions from preprocessing to deep learning.
O’Reilly Media, Inc.
- Sarker, S., Ahmadi, R., & Sarker, S. (2020). AI in operations management: applications, challenges and opportunities. Journal of Data, Information and Management, 2(2), 67-74.
- Ghadge, A., Dani, S., Chester, M., & Kalawsky, R. (2019). A systems
thinking approach for modelling supply chain risk propagation. Systems
Research and Behavioral Science, 36(5), 686-704.
- Graves, A., Mohamed, A. R., & Hinton, G. (2013). Speech recognition
with deep recurrent neural networks. ICASSP.
- Ransbotham, S., Kiron, D., Gerbert, P., & Reeves, M. (2017). Reshaping business with artificial intelligence. MIT Sloan Management Review, 59(1), 1-17.
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning
for image recognition. Proceedings of the IEEE conference on computer
vision and pattern recognition.
- Hinkka, V., et al. (2019). Deep learning for predicting package
delivery times in last-mile logistics. Applied Soft Computing, 85,
105813.
- Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N.,
… & Kingsbury, B. (2012). Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research
groups. IEEE Signal processing magazine, 29(6), 82-97.
- Huang, G. H., & Xu, Y. (2017). Public blockchain and private trust:
The case for a hybrid supply chain. 2017 IEEE Symposium Series on
Computational Intelligence (SSCI).
- Jha, A. K., & Michels, J. D. (2019). A study on inventory management
using artificial intelligence. Procedia computer science, 152,
1042-1049.
- Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114.
- Köhler, M. F., et al. (2020). Dynamic route optimization in last-mile
logistics using artificial intelligence. Transportation Research
Procedia, 46, 20-27.
- LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz,
N. (2020). Using AI to Enhance Business Operations. MIT Sloan
Management Review, 61(3), 1-9.
- Leitão, D., Saleiro, P., & Figueiredo, M. A. T. (2022). Human-AI
Collaboration in Decision-Making: Beyond Learning to Defer. arXiv
preprint arXiv:2206.13202.
- Psychoula, I., Gutmann, A., Mainali, P., Lee, S. H., Dunphy, P., & Petitcolas, F. A. P. (2023). Explainable Machine Learning for Fraud Detection. arXiv preprint arXiv:2105.06314.