1. Al-Turjman, F., Alsharif, M. H., & Alsharif, A. (2022). Artificial Intelligence and Blockchain Integration in Business: Trends and Opportunities. Information Systems Frontiers, 25(4), 871-896.
  2. Bahrin, M. A. K., Othman, M. F., Azli, N. H., & Talib, M. F. (2016). Industry 4.0: A review on industrial automation and robotic. Jurnal Teknologi, 78(6-13), 137-143.
  3. Bao, Y., Hilary, G., & Ke, B. (2021). Artificial Intelligence and Fraud Detection. Springer Series in Supply Chain Management, forthcoming, Springer Nature. https://doi.org/10.1007/978-3-030-75808-7_8
  4. Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1-8.
  5. Cai, Y., & Zhu, D. (2015). Fraud detections for online businesses: a perspective from blockchain technology. Financial Innovation, 1(1), 20.
  6. Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS quarterly, 1165-1188.
  7. Choi, T. M., et al. (2019). Intelligent logistics: Integration of AI and operations research in hub logistics. Transportation Research Part E: Logistics and Transportation Review, 128, 16-33.
  8. Dalal, S., & Zaveri, M. (2017). Collaborative robots in industry: A review. 2017 International Conference on Nascent Technologies in Engineering (ICNTE).
  9. Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108-116.
  10. Engel, S., & Bengfort, B. (2017). Machine learning with Python cookbook: practical solutions from preprocessing to deep learning. O’Reilly Media, Inc.
  11. Sarker, S., Ahmadi, R., & Sarker, S. (2020). AI in operations management: applications, challenges and opportunities. Journal of Data, Information and Management, 2(2), 67-74.
  12. Ghadge, A., Dani, S., Chester, M., & Kalawsky, R. (2019). A systems thinking approach for modelling supply chain risk propagation. Systems Research and Behavioral Science, 36(5), 686-704.
  13. Graves, A., Mohamed, A. R., & Hinton, G. (2013). Speech recognition with deep recurrent neural networks. ICASSP.
  14. Ransbotham, S., Kiron, D., Gerbert, P., & Reeves, M. (2017). Reshaping business with artificial intelligence. MIT Sloan Management Review, 59(1), 1-17.
  15. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition.
  16. Hinkka, V., et al. (2019). Deep learning for predicting package delivery times in last-mile logistics. Applied Soft Computing, 85, 105813.
  17. Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N., … & Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal processing magazine, 29(6), 82-97.
  18. Huang, G. H., & Xu, Y. (2017). Public blockchain and private trust: The case for a hybrid supply chain. 2017 IEEE Symposium Series on Computational Intelligence (SSCI).
  19. Jha, A. K., & Michels, J. D. (2019). A study on inventory management using artificial intelligence. Procedia computer science, 152, 1042-1049.
  20. Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
  21. Köhler, M. F., et al. (2020). Dynamic route optimization in last-mile logistics using artificial intelligence. Transportation Research Procedia, 46, 20-27.
  22. LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2020). Using AI to Enhance Business Operations. MIT Sloan Management Review, 61(3), 1-9.
  23. Leitão, D., Saleiro, P., & Figueiredo, M. A. T. (2022). Human-AI Collaboration in Decision-Making: Beyond Learning to Defer. arXiv preprint arXiv:2206.13202.
  24. Psychoula, I., Gutmann, A., Mainali, P., Lee, S. H., Dunphy, P., & Petitcolas, F. A. P. (2023). Explainable Machine Learning for Fraud Detection. arXiv preprint arXiv:2105.06314.