In conclusion, while the current understanding of AI is substantial, the
field is vast and evolving. Focusing on these areas can enhance
knowledge, optimize AI’s potential, and ensure a balanced, inclusive
future in AI-driven business environments.
REFERENCES:
[1] Agrawal, A., Gans, J., & Goldfarb, A. (2022). Prediction Machines, Updated and Expanded: The Simple Economics of Artificial Intelligence. Harvard Business Press.
[2] Ten, C. W., Hong, J., & Liu, C. C. (2011). Anomaly detection for cybersecurity of the substations. IEEE Transactions on Smart Grid, 2(4), 865-873.
[3] Othman, F., Bahrin, M. A., & Azli, N. (2016). Industry 4.0: A review on industrial automation and robotic. J Teknol, 78(6-13), 137-143.
[4] Bao, Y., Hilary, G., & Ke, B. (2022). Artificial intelligence and fraud detection. Innovative Technology at the Interface of Finance and Operations: Volume I, 223-247.
[5] Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1-8.
[6] Cai, Y., & Zhu, D. (2015). Fraud detections for online businesses: a perspective from blockchain technology. Financial Innovation, 1(1), 20.
[7] Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS quarterly, 1165-1188.
[8] Chen, S., Meng, Q., & Choi, T. M. (2022). Transportation research Part E-logistics and transportation review: 25 years in retrospect. Transportation Research Part E: Logistics and Transportation Review, 161, 102709.
[9] F. Sherwani, M. M. Asad and B. S. K. K. Ibrahim, "Collaborative Robots and Industrial Revolution 4.0 (IR 4.0)," 2020 International Conference on Emerging Trends in Smart Technologies (ICETST), Karachi, Pakistan, 2020, pp. 1-5, doi: 10.1109/ICETST49965.2020.9080724.
[10] Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108-116.
[11] Albon, C. (2018). Machine learning with Python cookbook: practical solutions from preprocessing to deep learning. O’Reilly Media, Inc.
[12] Dogru, A. K., & Keskin, B. B. (2020) . AI in operations management: applications, challenges and opportunities. Journal of Data, Information and Management, 2(2), 67-74.
[13] Ghadge, A., Dani, S., Chester, M., & Kalawsky, R. (2013). A systems approach for modelling supply chain risks. Supply chain management: an international journal, 18(5), 523-538.
[14] Graves, A., Mohamed, A. R., & Hinton, G. (2013, May). Speech recognition with deep recurrent neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing (pp. 6645-6649). Ieee.
[15] Ransbotham, S., Kiron, D., Gerbert, P., & Reeves, M. (2017). Reshaping business with artificial intelligence: Closing the gap between ambition and action. MIT Sloan Management Review, 59(1).
[16] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
[17] de Araujo, A. C., & Etemad, A. (2021). End-to-end prediction of parcel delivery time with deep learning for smart-city applications. IEEE Internet of Things Journal, 8(23), 17043-17056.
[18] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N., … & Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal processing magazine, 29(6), 82-97.
[19] Thanujan, T., Rajapakse, C., & Wickramaarachchi, D. (2021, September). A community-based hybrid blockchain architecture for the organic food supply chain. In 2021 International Research Conference on Smart Computing and Systems Engineering (SCSE) (Vol. 4, pp. 77-83). IEEE.
[20] Osman, B. M., Alinkeel, S., & Bhavshar, D. (2022). A study on role of artificial intelligence to improve inventory management system. Int Res J Moderniz Eng Technol Sci, 4(3), 226-233.
[21] Lopez, R., Boyeau, P., Yosef, N., Jordan, M., & Regier, J. (2020). Decision-making with auto-encoding variational Bayes. Advances in Neural Information Processing Systems, 33, 5081-5092.
[22] Ramírez-Villamil, A., Montoya-Torres, J. R., Jaegler, A., & Cuevas-Torres, J. M. (2023). Reconfiguration of last-mile supply chain for parcel delivery using machine learning and routing optimization. Computers & Industrial Engineering, 184, 109604.
[23] Review, M. S. M. (2020). 11 Using AI to Enhance Business Operations.
[24] Leitão, D., Saleiro, P., & Figueiredo, M. A. T. (2022). Human-AI Collaboration in Decision-Making: Beyond Learning to Defer. arXiv preprint arXiv:2206.13202.
[25] Psychoula, I., Gutmann, A., Mainali, P., Lee, S. H., Dunphy, P., & Petitcolas, F. (2021). Explainable machine learning for fraud detection. Computer, 54(10), 49-59.
[26] Enholm, I. M., Papagiannidis, E., Mikalef, P., & Krogstie, J. (2022). Artificial intelligence and business value: A literature review. Information Systems Frontiers, 24(5), 1709-1734.