Cyber Intrusion detection in
Industry 4.0 Data using Machine Learning

Md Ismail Hossain!, Kakoli Khatun?, Imtiaz Ahmed?
New Mexico Institute of Mining and Technology, USA!?3
Email: ! statistician71@ gmail.com, 2 kakoli.khatun @student.nmt.edu, 3 imtiaz.ahmed @student.nmt.edu

Abstract—Industry 4.0, also known as the Fourth Industrial
Revolution, is characterized by the incorporation of advanced
manufacturing technologies such as the Internet of Things
(IoT), Artificial Intelligence (AI), and automation. With the
increasing adoption of Industry 4.0 technologies, it becomes
crucial to implement effective security measures to safeguard
these systems from cyber attacks. The development of intrusion
detection systems (IDS) that can detect and respond to cyber
threats in real-time is crucial for securing Industry 4.0 systems.
This research topic seeks to investigate the various techniques
and methodologies employed in developing IDS for Industry
4.0 systems, with a particular concentration on identifying the
most effective solutions for protecting these systems from cyber
attacks. In this study, we compared supervised and unsupervised
intrusion detection algorithms. We utilized data collected from
heterogeneous sources, including Telemetry datasets of IoT and
The industrial Internet of things (IIoT) sensors, Operating
systems (OS) datasets of Windows 7 and 10, as well as Ubuntu
14 and 18 TLS and Network traffic datasets simulated by
the School of Engineering and Information Technology (SEIT),
UNSW Canberra @ the Australian Defence Force Academy
(ADFA). The preliminary results of IDS accuracy are extremely
encouraging on the selected data for this study (Windows OS
and Ubuntu OS), which motivates the continuance of this line
of inquiry using a variety of other data sources to formulate a
general recommendation of IDS for Industry 4.0.

Index Terms—Cybersecurity; Intrusion detection;Machine
Learning (ML); Supervised ML; Unsupervised ML; Industry 4.0.

I. INTRODUCTION

In 2011, the fourth industrial revolution dawned upon us
with the introduction of the “Industry 4.0” concept by a Ger-
man government initiative. This revolution signifies the deep
integration of transformative technologies, such as artificial
intelligence, robotics, and the Internet of Things (IoT), into
modern manufacturing paradigms [1]]. As this shift gathers
momentum globally, it heralds unparalleled efficiencies and
innovation. Yet, it simultaneously unveils intricate cybersecu-
rity challenges, primarily arising from the melding of physical,
digital, and biological domains [2]].

Central to Industry 4.0 is the IoT, an extensive network of
interconnected devices operating in synchrony. Its omnipres-
ence, coupled with a vast device ecosystem, unfortunately,
makes it a prime target for cyber adversaries [3|]. These malev-
olent entities exploit vulnerabilities within the IoT, leading to
an array of threats, from unauthorized data breaches to major
operational disruptions. The repercussions of such breaches

can be severe, threatening production, financial stability, and
even human safety.

To address these escalating threats, Intrusion Detection
Systems (IDS) have been pivotal. Traditional IDS primarily
rely on known attack signatures, providing a line of defense
based on previously identified threats. However, the ever-
evolving landscape of cyber threats demands a more adaptive
and proactive approach. This need has given rise to Machine
Learning-based Intrusion Detection Systems (ML-based IDS)
[4]. Unlike their traditional counterparts, ML-based IDS lever-
age machine learning to evolve with changing network pat-
terns, enabling them to identify both established and emerging
threats efficiently. Their prowess in handling vast datasets and
discerning nuanced threat indicators makes them indispensable
in safeguarding the multifaceted infrastructures of Industry 4.0
151, (60,[7].

However, the efficacy of ML-based IDS is deeply rooted in
the caliber of their training data. These systems flourish when
trained on comprehensive datasets that encompass diverse
network behaviors. Yet, sourcing such datasets, especially in
niche sectors like the Industrial Internet of Things (IIoT),
poses challenges, often attributed to data scarcity or inherent
imbalances [8]].

In summation, as the globe increasingly aligns with the
Industry 4.0 paradigm, the urgency to bolster its foundational
elements, especially the IoT, escalates. The imperative for
advanced IDS that can adeptly navigate contemporary cyber
threats becomes paramount. The subsequent sections of this
paper embark on a deeper exploration of this domain: Section
II offers a literature review, Section III details our datasets and
research methodologies, Section IV unveils our experimental
insights, and Section V summarizes our core findings.

II. LITERATURE REVIEW

The rise of Industry 4.0 and the proliferation of IoT devices
have necessitated robust intrusion detection systems (IDS)
to safeguard computer networks. Machine learning (ML) has
emerged as a pivotal tool in this endeavor, with its adaptability
allowing it to identify and counter evolving cyber threats [9].

Over the years, a multitude of research has been carried
out using well-established datasets like KDDCUP99, NSL-
KDD [10], UNSW-NBI15 [11f], CICID2017 [12], and the
recent addition of ToN IoT [[13]-[19]]. The latter, being the
most recent and diverse, encompasses multiple OS through

several virtual machines and reflects a more realistic network
environment.

Anomaly detection, a core component of IDS, seeks to flag
deviations from standard patterns, indicating potential mali-
cious activities. ML-based anomaly detection models these
patterns using statistical measures of system features, provid-
ing an edge in identifying previously unknown threats [20].
Techniques ranging from neural networks to support vector
machines have been developed as classifiers to discern whether
incoming network traffic is benign or malicious [9].

Supervised anomaly detection remains at the forefront of
this domain. By training on labeled datasets, it captures
typical behavior patterns, facilitating the classification of new
instances as normal or anomalous. This approach has been
extensively explored using algorithms like k-nearest neighbor
(KNN), neural networks (NN), and support vector machines
(SVM). For instance, using the NSL-KDD dataset, the K-
NN algorithm was found to be a top performer with an
accuracy of 99.403% over Decision trees (DT), Naive Bayes
(NB), Attificial neural network (ANN), k-NN algorithm, and
Support vector machines (SVM) [21]. However, despite their
robust performance on labeled datasets [22] [23]], supervised
techniques can face challenges when confronted with novel
anomalies.

Contrastingly, unsupervised anomaly detection zeroes in on
inherent data patterns without the need for labeled training.
While methods like point anomaly detection have shown
proficiency in detecting novel anomalies [24], they sometimes
yield false positives or negatives. Studies such as Lazarevic et
al. [25] have provided valuable insights into the comparative
performance of supervised and unsupervised techniques.

The ToN IoT datasets, being the latest in this lineage, have
served as an invaluable resource for researchers. For instance,
in a study [26], seven supervised models and a deep learning
method were employed to understand the impact of dataset
heterogeneity on detection performance. The findings empha-
sized the prowess of RF and CART in intrusion detection
across varied sensor data. Another study [27] delved into the
predictive power of distinct feature sets for attack detection
across datasets, including ToN IoT. Further, research [27]
utilizing ten different learning methods on the ToN IoT dataset
underscored the superior accuracy of the CatBoost algorithm.

Despite the strides made in the field, challenges remain. For
example, the optimal application of supervised and unsuper-
vised algorithms to specific ToN IoT data (Windows 7, 10, and
Linux) remains an area of exploration. This research aims to
address such challenges, drawing inspiration from prior works
[26]1[28]1[29].

In conclusion, the literature underscores the intricate land-
scape of ML algorithms for intrusion detection, enriched by
systematic reviews and comparative studies. The continuous
evolution of cyber threats mandates ongoing research to refine
and perfect IDS mechanisms.

III. THE SIGNIFICANCE OF THE TON 10T DATASET

The choice of dataset is paramount in intrusion detection
research, as it greatly influences the study’s applicability and
relevance. Among the datasets available, the ToN IoT dataset
emerges as a superior choice for several compelling reasons:

1) Comprehensiveness and Diversity: The ToN IoT dataset
offers a holistic view, encompassing a myriad of data
sources, including telemetry data from IoT/IIoT services,
operating system logs, and network traffic [30]. This
dataset stands out with its heterogeneous data sources,
addressing a gap found in other datasets [30]. It further
enhances its relevance with a vast collection of over
5 million samples, amalgamating both malicious and
benign data [31]].

2) Rich Feature Set: A limitation evident in prior datasets
is the paucity of features, especially in IoT-based IDS
datasets [32]]. The ToN IoT dataset bridges this gap with
a comprehensive set of features, making it an optimal
choice for evaluating Al-driven security applications [33].
Its focus on daily home usage devices provides a fresh
perspective, differing from datasets that lean heavily
towards academic network traffic [32].

3) Scalability and Heterogeneity: Many existing datasets
falter when it comes to scalability and heterogeneity
([34]. However, the ToN IoT dataset shines in this aspect
by integrating distributed data sources from varied IoT
services, operating systems, and network traffic [33]]. This
diversity is essential for encapsulating the multifaceted
nature of IoT network intrusion data, thereby augmenting
the efficacy of intrusion detection systems [34].

4) Real-World Applicability: The ToN IoT dataset mirrors a
medium-scale network, enhancing its real-world applica-
bility ([30]. Its data, derived from a testbed architecture,
encompasses detailed audit traces from Linux operating
systems, including hard disk, memory, and process logs
[33]. Such granularity in data strengthens the dataset’s
utility for appraising intrusion detection mechanisms in
IoT settings [31].

In summation, the ToN IoT dataset surpasses its predeces-
sors by addressing their limitations and offering a plethora
of data sources, an enriched feature set, unmatched scala-
bility, and genuine real-world representations. Its attributes
underscore its significance, making it an indispensable tool for
scholars and professionals navigating the realms of intrusion
detection and IoT security

IV. OUR APPROACH

A. High-level Overview

As we have mentioned, the industry 4.0 data provided by
UNSW Canberra @ the ADFA [13]-[19] is a very robust
data set to carry out different ML algorithms and testing their
performance. Lots of active research is still ongoing and we
have not found any unique research in fitting supervised and

unsupervised models done on Windows 7 & 10 and Linux-
based OS data (Windows/Linux dataset-activities of desk, pro-
cess, processor, memory, and network activities) in intrusion
detection. Inspiring from this point of view, we have selected
two supervised models (DT, and SVM) and two unsupervised
models (SOM and K-means clustering). The most important
reason for selecting these unsupervised models is that they
can handle completely new types of attacks, although their
performance is not as good as supervised models, as we have
seen in [28]. Our research objective is to classify and cluster
the data into two categories: ”Attacked” and "Normal”.

B. Testbed Details

The testbed for the ToN_IoT data that was developed by
the University of New South Wales (UNSW) in Canberra is a
real-world and massively scalable network that was built at the
IoT Lab of UNSW Canberra Cyber. This testbed links multiple
physical systems, virtual machines, hacking platforms, cloud
platforms, fog platforms, and IoT sensors in order to simulate
the scalable and composite nature of IIoT environments [35].
The testbed components are mainly organized into three
layers: Edge, Fog, and Cloud. The Edge layer consists of
IoT sensors and physical network components, the Fog layer
includes virtual machines and hacking platforms, the Cloud
layer encompasses cloud platforms [36].

This testbed was used to create the ToN_IoT Telemetry
dataset, which contains data from heterogeneous sources gath-
ered from IoT and IIoT sensors, OS data, and network traffic
datasets [35]]. We can show the layers by the following figure
as used in [26]:

C. Dataset Overview

According to the study, the ToN IoT datasets [26] include
heterogeneous data sources from IoT/IIoT service telemetry
data, OS logs, and network traffic from a realistic representa-
tion of a medium-scale network designed at the Cyber Range
and IoT Labs at UNSW Canberra. The primary focus of this
study is the proposed dataset of IoT/IIoT service Teleme-
try data and their characteristics. The ToN_IoT repository
[37] provides access to the ToN_IoT datasets. The proposed
datasets also had label and type features to indicate whether
an observation is normal or an attack and the subclasses of
attacks for multi-class classification tasks. Various IoT and
IIoT sensors across the IIoT network were subjected to nine
(9) varieties of cyber-attacks, including Scanning, Denial of
service (DoS), DDoS, ransomware, backdoor, data injection,
Cross-site Scripting (XSS), password cracking attack, and
Man-In-The-Middle (MITM). The dataset’s specifications can
be found in[37].

However, we are using the data which is mainly generated in
Fog layers from Windows 7, Windows 10, and Linux-based OS
[Disk activity, Process-scheduling activity, Memory activity].
As stated in [26]], the Node-RED utility was utilized to connect
sensors to their corresponding backend cloud server in order
to generate standard data. Multiple cyber-security incidents
were launched against IoT and IIoT sensors of varying types.

/7 HVe-MQTTbroker >y

~ Vulnerable PhP website
N Cloud Centers
. (DHCP)
Virtualization of Fog Layer
(=d
Windows 7
g IP: 192,168.1.193
Data Logger of >3
I:e‘l"‘ :::ls lloT Metaexploitable3 G e S
IP: 1921680194 yivioum 10 (Ubuntu 14.04 LTS) =,
@ IP:192.168.1.195 |p; 192.168.1.190 Hack
e DVWASemee @ Eg

IP: 192168.1.192 OWAS Shephered

IP: 192.168.1.184 =y

IP 192 168.1.180

NodeRed Server Offensive Systems
(Ubuntu 18.04 LTS)

IP: 192.168.1.180

KALI)
IPs: 192.168.1.30-39
vSwitch

e
P
= Edge Layer (Physical Devices)
vSphere NSX VMware
System Server
ﬁ loT/lloT sensors
Router

IP: 192.168.1.1 —-‘. %
@c«fnni]:
% LAN
% AN | loTileT
system

Fig. 1: Testbed environment overview.

The hacking scenarios were designed to exploit either the
IP address of Node-RED, public and local Message Queue
Telemetry Transport (MQTT) brokers, or the WiFi connections
of physical IoT sensors. They used the timestamp field of each
well-known attack to designate each vector as normal or the
attack. After labeling all the attacks and their categories (attack
sub-classes), they added the remaining vectors as either normal
or local MQTT brokers. Also, the offensive Kali systems used
10 Kali Linux VMs with static IP addresses and different bash
and python scripts to attack vulnerable IIoT network systems
and launch attacks against IoT/IIoT services [26].

D. Methodology

1) Missing value handling: To determine the threshold for
deleting entries based on the percentage of missing data by
column, different studies have used various thresholds. For ex-
ample, [38]] conducted a complete case analysis with pairwise
deletion when the percentage of missing data was less than
1.5%. Similarly, [39] applied list-wise deletion and excluded
records from analysis if any single value was missing.

On the other hand, [40]] proposed ignoring incomplete data
when the percentage of missing entries exceeded a certain
threshold, while [41] focused their analysis on models without
variables that had a substantial amount of missing data.

Furthermore, [42] deleted cases with missing values, re-
sulting in no variables with more than 3% missing values.

Similarly, [43]] used listwise deletion due to the relatively small
amount of missing data.

In contrast, [44] substituted the 15% missing data with
the corresponding column mean, a procedure that preserves
information without bias. [45]] deleted variables with severe
data missing (more than 20% of the total data) and imputed
missing data for variables with less than 20% missing values.

Therefore, the threshold for deleting entries based on the
percentage of missing data varies across studies, with values
ranging from 1.5% to 20%, depending on the specific research
context and data analysis approach.

Imputation of missing data is a crucial step in data analysis
and ML, as it involves estimating or filling in missing values in
a dataset [46]. Ignoring or deleting records with missing values
can result in the loss of important information and introduce
bias into the analysis [46].

There are various methods for imputing missing data, de-
pending on the characteristics of the dataset and the nature of
the missing values.

1) Mean/median imputation: One common approach is to
use the mean or median value of the variable to fill in the
missing data [46]. This method assumes that the missing
values are comparable to the observed values.

2) Hot deck imputation: Another approach is hot deck im-
putation, where missing values are filled in by borrowing
values from other similar cases in the dataset [46]. This
approach aims to preserve the distribution of the original
data.

3) Multiple imputations: Multiple imputations is a tech-
nique that generates multiple plausible imputed datasets
and combines the findings from each dataset to obtain
accurate estimations [[46]. This method takes into account
the uncertainty of the imputed values.

4) Regression imputation: Regression imputation, on the
other hand, involves using regression models to fill in
missing data by determining the relationship between the
variable with missing values and other variables in the
dataset [46]. This approach utilizes the information from
related variables to impute the missing values.

The imputation of missing data is a critical step in data
analysis and ML. It is important to handle missing data
appropriately to avoid loss of information and introducing bias
into the analysis [46]]. Imputation methods such as mean or
median imputation, hot deck imputation, multiple imputations,
and regression imputation can help to preserve the integrity of
the dataset and obtain accurate estimations [46].

2) Data balancing: Data balancing is a crucial step in ML,
particularly when dealing with imbalanced datasets. Imbal-
anced datasets occur when the distribution of classes in the
dataset is highly skewed, with one class being significantly
more prevalent than the other(s). This is a common issue
in various domains, including bioinformatics [47]], healthcare
[48]], speech signal analysis [49], tourism [50], cybersecurity
[51]], and many others sectors.

The importance of data balancing in ML is mainly attributed
to two key reasons: to address the problem of data imbalance
and to mitigate the bias towards the majority class.

Firstly, data balancing techniques aim to address the prob-
lem of data imbalance. Classifiers tend to favor the majority
class when ML models are trained on imbalanced datasets,
leading to unsatisfactory outcomes for the minority class.
This imbalance can lead to several issues, such as reduced
accuracy, poor sensitivity, and overfitting to the majority
class. By balancing the dataset, the models can achieve better
performance by adequately considering the minority class and
avoiding skewed predictions.

Secondly, data balancing helps alleviate the bias towards
the majority class. ML models’ performance may suffer as
a result of the bias that the imbalance causes. By balancing
the dataset, the models can learn from both classes more
effectively, enabling them to generalize better and make more
accurate predictions for both the majority and minority classes.

Various approaches and techniques have been proposed to
balance imbalanced datasets in ML. These techniques can
be broadly categorized into oversampling, undersampling and
hybrid methods.

1) Oversampling: Oversampling is a technique that in-
creases the number of samples in the minority class. The
simplest form of oversampling is random oversampling,
which involves repeating randomly selected minority
class samples to balance the distribution of classes [52]. A
variation of random oversampling is Synthetic Minority
Over-sampling Technique (SMOTE), which creates syn-
thetic samples from the minority class by interpolating
between existing minority class samples [53].

2) Undersampling: Undersampling is a technique that re-
duces the number of samples in the majority class. The
simplest form of undersampling is random undersam-
pling, which involves randomly removing the majority of
class samples to balance the distribution of classes [52].
Another variation of random undersampling is Tomek
links, which involves removing samples from the majority
class that is nearest to the minority class samples [54].

3) Hybrid Techniques: Hybrid techniques combine both
oversampling and undersampling to balance the distribu-
tion of classes. A common hybrid technique is SMOTE-
Tomek links, which involves applying SMOTE followed
by Tomek links to balance the distribution of classes [55]].

Penalty-based techniques are an additional strategy for ad-
dressing the imbalance problem in ML. These methods assign
higher penalties or costs to misclassifications of the minority
class to encourage the classifier to pay more attention to the
minority class during training 10.1371/journal.pone.0067863.
By adjusting the misclassification costs, the models can pri-
oritize the minority class and make predictions that are more
balanced.

So, data balancing is essential in ML to address the problem
of data imbalance and mitigate bias towards the majority class.
Undersampling, oversampling, hybrid methods, and penalty-
based methods are commonly used techniques for data bal-

ancing. The selection of the appropriate technique depends on
the specific characteristics of the dataset and the goals of the
ML task.

3) Sample Correlation coefficient: The sample correlation
coefficient [56] measures the linear relationship between two
variables. Pearson’s correlation coefficient, which quantifies
linear relationships between continuous variables, is the most
popular sample correlation coefficient. Pearson’s correlation
formula:

o ILw-90i—Y)
VI (=82 (i —)
where x; and y; are the i'" observation for two variables X
and Y, respectively, and ¥ and j are the means of X and Y,
respectively. The value of r varies between -1 and 1, with 1
signifying a perfect positive linear relationship, -1 a perfect
negative one, and O no linear relationship.
4) Predictive Models:
« Support Vector Machine (SVM):
The SVM is a supervised ML technique utilized both
for classification and regression. It is a well-grounded
technique in a theoretical sense as well as being used
successfully in many real-world problems [57]. For a
classification problem, in order to place new data points
into the suitable class,the SVM creates a decision bound-
ary called hyperplane which maps the training observa-
tions to higher dimension space through some mapping
techniques [58], [59]. It is to be mentioned that in a P
dimension space, a hyperplane is an affine subspace of
P — 1 dimension. The SVM takes the extreme vectors or
points called support vectors which are used to create
the hyperplane. Among infinite possible hyperplanes, the
most useful choice is to take the optimal separating
hyperplane in order to classify data in the best possible
way.The SVM is an algorithm that finds a linear model
that maximizes the margin of the hyperplane which
provides maximum separation [60]]. In fact, the main goal
is to create a classifier that can work well on unseen
data [60]. In a p-dimensional space, we can define the
hyperplane by the following equation according to [61]:

Bo+B1X1+B2X2+...+B,,Xp:0. (D)

Where Bo, Bi,..., B, are the parameters and X =
(X1,Xa, ...,X,,)T is a vector of length p. If equation (3.1)
holds, we say that X = (X;,Xa,...,X,)” is a point on the
hyperplane. If X does not satisfy the equation and either

Bo + B1Xi JrBzXer...JerXp > 0.

or
Bo+BiXi +B2Xz + ... +B,X, <0.

A separating hyperplane has the characteristic that [61]]
yi(Bo + Bixit + Baxiz 4 .. + Bpxip) >0

foralli=1,2,....,n

The observations can be categorized into two distinct
classes of y =y1,y2,...,yn € {—1,1}, where -1 and 1 rep-
resents two different classes. Where we are considering
n taring observations in p dimensional subspace. It can
easily be said that X lies on which side of the hyperplane
[57].

If Bo + Bixit + Poxio + ... + Bpxip > 0, then a test obser-
vation will be assigned to the class 1 and if By + Bxi; +
Baxi2 4 ...+ Bpxip < 0 then any test observation should be
categorized in the class -1 [|62].

It was mentioned earlier that based on the training obser-
vation x1,X2,...,X,, SVM tries to maximize the margin of
the hyperplane. The maximal margin hyperplane for the
linear classifier is the solution to the following optimiza-
tion problem [61],

max M 2)
Bo.Brs.sfp.M
p
Sub ject to Z B? =1, 3)
=1

J

yi(Bo+ Brxit +Boxio + ... +Bpxip) > M, Vi=1,2,....n
“)
Here, M is the margin of the hyperplane which needs to
be maximized.

In many cases, there is no separating hyperplane and
hence, it is not possible to find a maximal margin
classifier. In that case, for the linear classifier, a linear
hyperplane is developed to somehow separate the classes.
The support vector classifier determines the classification
of a test observation based on its position relative to
a hyperplane. This hyperplane is carefully selected to
effectively divide the majority of training observations
into two classes, although it may occasionally misclassify
a small number of observations. The selection of the
hyperplane is the outcome of the following optimization
problem [61]:

max M)
Bo.B1,-.Bp.M
P
Subject to Y B5 =1, (6)
j=1

yi(BO+leil +[32x,-2+...+[3pxip ZM(] 78l‘), Vi= 1,2,...,n
(7N

n
sZQZe,gC ®)
=1

where C is a tuning parameter with non-negative values
and the slack variables €1,¢;,...,€, permits each obser-
vation to lie on the wrong side of the hyperplane. A
test observation x* = (x7,x3,...,x,) will be classified by
simply determining the sign of B+ Bix], ..., B,x),.

Support vector machines can be used for both separable

and non-separable cases with non-linear decision bound-
aries [61]]. For non-linear decision boundaries, nowadays,
kernel tricks are being used in many learning systems.
These functions are used mainly to facilitate the com-
putation power of SVM [60]. Kernelizations are well
established methods to ease the complexity of parameters
[63]. SVM can choose different types of kernels like
radial basis function (Gaussian), radial basis function
(exponential), linear kernel, Fourier series, polynomial
kernel, multi-layer perceptron etc. [60].

We know that the linear support vector classifier can be
expressed as,

f(x) = Bo+ 0o x, x;)

where o are the n parameters, i = 1,2,..,n, one repre-
sentation per training observation.

For the estimation purpose of ., ..., o, and Po, we need
to have the inner products (x;,x}) among all pairs

of the training observations. When representing the linear

classifier f(x) and calculating its coefficients, the only

requirement is to utilize the inner product [57]. The inner

product can be expressed in some general form as follows,
K (xi,x})

Where K represents a function referred to as a kernel.
A kernel is a specific type of function that measures the
similarity between two observations.

If ,
K(xi,x;) = Z x,-jxi/j
j=1

it is called linear kernel.

It is possible to substitute each occurrence of 25:1)51' Xit
by the quantity

P
K(x;,x}) = (1+ injx,-/j)d
j=1

Then it is referred to as the polynomial kernel where d
is the degree of the polynomial.

Another commonly used option is the radial kernel, which
is expressed as follows:

K (xi,xj) = exp(—y

1

2
1(Xij*x§j))

J

where 7 is a positive constant.

For some imaginary data, we can show Support Vectors
and hyperplane for separating cases with linear bound-
aries by the following figure The solid line in the above

Fig. 2: Support Vectors and Hyperplane.

figure represents a hyperplane. Support vectors are the
blue and purple dots on the dashed lines, and the distance
of those dots to the hyperplane is shown by arrows. The
purple and blue grid defines the decision boundary made
by a classifier based on this hyperplane which separates
the two classes.

Random Forest (RF) Algorithm: The RF is an ensemble
learning algorithm that creates multiple decision trees
using random subsets of training observations [[64]. It
was introduced by Breiman in 2001 and since then RF
became a popular machine-learning method. It reduces
overfitting, increases the accuracy and stability of the
model as well as tolerates noise and outliers [65]. RF
is mainly comprised of a set of tree bases classifiers
{h(x,0r),k=1,2,...} where ¢ are some random vectors
which are independent and identically distributed. Each
tree within the forest contributes a unit vote towards
determining the most prevalent class for a given input
x. The basic steps involved in the RF algorithm are as
follows:

1) Select a random subset of data and features
2) Train a DT on the selected data and features
3) Repeat steps 1 and 2 multiple times, creating multiple
decision trees
4) Combine the predictions from each DT to produce a
final prediction
After repeating steps 2 and 3 a total of k times, the
sequence of classifier
hy(x),h2(x),...,h(x) is obtained. The ultimate outcome
of this system is determined through majority votes [66]
and the decision function is,

H(x) = argmaxy

k
2 I(hi(x) =Y)

i=1

where H(x) represents the combination of multiple de-
cision trees, h;(x) is the single tree, Y is the response
variable, and I(.) serves as the indicator function. In the
case of RF, the margin function is employed to quantify
the degree to which the average number of at X,Y for
the correct class surpasses that for the incorrect class.
The margin function can be defined as follows:

mg(X,Y) = avil (h(X) = Y) — maxjzyavi (b (X) = j)

As the margin increases, the accuracy of the classification
prediction improves, instilling greater confidence in the
classification outcome.

In the construction of an RF, the tree is established on a
fresh training set through the utilization of random feature
selection. The new training set is obtained from the
original training set using bagging methods. The reason
for using bagging is that it helps to increase accuracy as
bagging is related to random features. When an original
training set 7 is given which consists of N samples, the
kth training set is obtained by the bagging method from
T, which involves drawing N samples with replacement.
Each training set 7 contains N samples. As N becomes
larger, the probability of a sample not being included
in T; is approximately (1—1/N)¥, which converges to
e~!. The technique used to estimate the performance of
classification using these data is referred to as OOB (Out
of Bag) estimation.

The figure below is an example of a RF for classification
[165]):

Voting
for

the

1]
traming randomized result
set T

-

Fig. 3: RF Classifier

K-Means Clustering:K-means clustering is an iterative
numerical method that falls under unsupervised ML. It is
non-deterministic in nature but known for its simplicity
and high speed. Due to these advantages, K-means has
proven to be highly effective in practical applications
[67]. The K-means clustering algorithm is popular for
grouping similar data points into clusters [57]. The al-
gorithm starts with a predefined number of clusters, K,
and randomly assigns each data point to one of the K
clusters [57]. Let the sets C,C»,...,Ck refer to clusters
and contain the indices of the corresponding observations.
These two sets possess two characteristics:

— Every observation is assigned to a minimum of
one of the K clusters. That is, C{iUC U...UCg =
{1,2,...,n}

— The clusters do not overlap with each other. That is,
CiNCy =0

The concept underlying K-means clustering is that effec-
tive clustering is characterized by minimizing the within-
cluster variation [57]]. The objective function for the K-
means clustering algorithm can be expressed as:

K
min w(C
C17C2-,~-»7CK{](;1 (K)}

where W(Cy) is the within cluster variation for the kth
cluster.

The within-cluster variation can be best described by
Euclidean distance which is described below:

P
W(Ci) = = YY (i —xi)?
Cil ii'eCy j=1

Where |Cy| represents the count of observations within
the kth cluster. To put it differently, the within-cluster
variation of the kth cluster is calculated by summing the
squared Euclidean distances between all the observations
within that cluster and then dividing the sum by the
total number of observations in the kth cluster. Then the
optimization problem for K-means clustering becomes,

K 1 P
. 2
min _ { (xij —xpj)"}
GG Ck k;l |Ci| zgigckj:zl
There is an algorithm to divide the data into K clusters
so that the objective function can be minimized.

Solving this problem is exceedingly challenging due to
the vast number of possible ways to partition n obser-
vations into K clusters unless K and n are very small.
However, there is a ray of hope as a straightforward
algorithm can yield a local optimum, which serves as
a fairly satisfactory solution to the K-means optimization
problem. The algorithm is described below:

1) Assign the initial cluster to the observations by ran-
domly selecting a number between 1 and K for each
observation.

2) Continue iterating until the cluster assignments no
longer undergo any changes.

— Calculate the cluster centroid for each of the K
clusters. The centroid of the kth cluster is obtained
by calculating the mean vector of the p features for
the observations within that cluster.

— Assign each observation to the cluster whose cen-
troid is nearest, with proximity determined using
Euclidean distance.

The above algorithm is guaranteed to decrease the objec-

tive function value at each step.

o Self Organizing Map (SOM): The SOM is a form of ar-

tificial neural network utilized for unsupervised learning.
It is a non-linear mapping network designed to compute
similarities between data in the input layer and represent
them in an output layer of interconnected neurons ac-
cording to spatial constraints. [29]. In contrast to other
Artificial Neural Networks, the Kohonen SOM network
can be trained through unsupervised learning. The SOM
network employs competitive learning to identify data
similarities, aggregating them into distinct data classes; it
has a feed-forward structure with a single computational
layer [29].

The SOM algorithm compares each vector of input data
to the codebook vectors of the neurons in order to identify
the Best Matching Unit (BMU) [29]. The BMU then
modifies its codebook vectors by calculating a weighted
average, which brings the vector closer to the input vector.
As a training parameter of the model, the learning rate
determines the attractiveness between the BMU and the
input data vector [29]]. To ensure model convergence, this
learning rate decreases over time during the training pro-
cedure. Additionally, neighboring neurons modify their
codebook vectors to better match the input vector, thereby
preserving spatial constraints and preserving the topology
of the map [29].

Manhattan, Tanimoto, Bray Curtis, Canberra, and Cheby-
shev distance can be used as the measure of similarity.
The most common and effective distance measure is the
Euclidean distance [29] as follows:

If X; with i =1,...,n the input data vector and codebook
vector W; with j=1,...,m associated to each neuron. At
epoch ¢,

dj(r) = [1Xi(r) =W;)],)

The neuron associated with the codebook vector W; with
the smallest distance to X; is the winning neuron for that
BMU [29]. The distance to the BMU at each epoch ¢ is
denoted by:

dc(t):minjdj(t), (10)

The whole architecture of SOM can be represented by
the following graph as used in [29]:

The SOM algorithm can be mathematically described as
follows in updating the spatial neighbors and neurons
after founding the BMU [29]:

Wit +1) = W;(e) + hje (1) [Xi(1) — W;(1)], (1D

where, hj. is the neighborhood function. In our study,
we used two different types of neighborhood functions:
Gaussian and triangular. Gaussian is the most used func-
tion in practice [29]:

[l = rel?

O (12)

hje = alt)exp(

Kohonen layer

Input layer
k-dimensional k-dimesional
CAN message X1 codebook vector

vector

X1a
Xl:

Wiy

w,,
w, = |

X = Wik

X

d = minimum distance

/ 2-dimesional
n-dimensional

Fig. 4: Kohonen SOM Neural network

where, oi(t) is the learning rate, and r; is the position of
the j-th neuron [29].
The SOM algorithm can be broken down into several
steps:
1) Initialize the weight vectors of neurons randomly.
2) For each iteration, choose a random input vector x(¢)
and find the BMU using the Euclidean distance.
3) Update the weight vectors of the BMU and its neigh-
bors using equation [T1]
4) Repeat steps 2 and 3 until a stopping criterion is met.

Class Predicted Positive | Predicted Negative
Class of Attack Predicted Attack Predicted Attacks

(Positive) as attacks (TP) as Normal (FN)
Class of Normal Predicted Normal Predicted normal
(Negative) as Attacks (FP) (TN) as Normal

TABLE I: Model evaluation metrics

5) Performance Measures Used:
« Accuracy

Accuracy evaluates a model’s predictions. Divide the
number of accurately predicted cases by the total number
of instances. Accuracy shows how well the model pre-
dicts. In skewed datasets, it may not work. Accuracy can
be deceiving when the model predicts the majority class.
Thus, accuracy and recall are key evaluation metrics,
especially in imbalanced datasets, to better understand
the model’s performance [26].
TP+TN

Accuracy = (13)
TP+TN+FP+FN

Precision

Precision measures a model’s positive prediction accu-
racy. Divide the number of accurately predicted posi-
tive instances by the total number of positive instances
predicted. High precision means the model has a low
false positive rate. It assesses the model’s false posi-
tive avoidance. In ML and classification tasks, precision

shows the model’s positive predictions’ dependability and
effectiveness [26].

TP

Precision = ———
TP+FP

(14)

« Recall

Recall, sometimes called sensitivity or true positive rate,
measures how well a model captures positive cases.
The number of accurately predicted positive cases is
divided by the dataset’s actual positive instances and
false negative instances. High recall means the model
rarely predicts unpleasant events. It measures the model’s
positive instance detection accuracy. Recall helps ML and
classification models collect all relevant positive instances
[26].

TP

Recall = ———
= TPYFN

15)

o F1-Score
The F-score, commonly known as the Fl-score, is a per-
formance metric that combines precision and recall. It’s
the harmonic mean of precision and memory. The F-score
balances a model’s precision (avoiding false positives)
and recall (capturing positive cases). False positives and
negatives are taken into consideration, making it useful
when the dataset has an imbalance. The F-score goes from
0 to 1, with higher values signifying better performance.
Practitioners can use the F-score to assess a model’s
overall performance by evaluating the precision and recall
[26].

F1 Score — 2 Recall * Precision

16
Recall + Precision (16)

V. EXPERIMENTAL RESULTS

A. Exploratory Data Analysis and Data Preparation

This study utilizes five distinct data sets (Windows 7,
Windows 10, Linux Disk, Linux Process, and Linux Memory).
In every data set, the response variable is a binary value. As
our research objective is to apply the best predictive model to
each data set, we must first cleanse and process the data. The
summary of the original data can be found in the table below.

If a missing value was less than or equal to 1.5%, we
discarded the data. We also examined whether there is a
column in any of the datasets with zero variability. This
column is also eliminated from the dataset. Also for Linux
Process data we removed some id columns and created dummy
variables for some categorical columns. After creating the
dummy variable we deleted the original categorical column
from the data (Linux Process Data). After deletion data shape
looks like the below:

Data Number of rows | Number of columns
Windows 7 28,097 79
Windows 10 35,214 106
Linux Disk 160,112 5

Linux Process 158, 707 17
Linux Memory 140,112 9

Data Number of rows | Number of columns
Windows 7 28,367 135
Windows 10 35,975 127
Linux Disk 160,112 9
Linux Process 160,112 17
Linux Memory 140,112 13

TABLE II: Dataset Information

Before feeding this raw data into the model, this data must
be cleansed. We must deal with the data’s missing values,
redundant variables, data balancing, normalization, and train-
test divide.

TABLE III: Transformed Dataset Information

Then, we examined the response variable label counts, or
in other words, the number of cyber attack data and non-
attack data counts. We can present the subsequent count and
percentages using the following pie chart:

Windows 10 Linux Disk

Windows 7

Normal

Normal

160112)

Under Attack

Linux Process Linux Memory

Normal

37.0%
(56707)

Under Attack

Fig. 5: Pie chart by the attack and normal data.

It is evident from the pie chart that the attack category is
much smaller than the normal category. To construct a robust
predictive model, it is sufficient to balance the data between
these categories; otherwise, the model could be deceptive.
Therefore, we utilized the under-sampling technique or another
random selection method to select approximately the same
number of observations as the under-attack category.

On top of the balance data set, we employed the correlation
coefficient procedure among all the predictor variables to
identify the perfectly correlated columns and eliminate one of
them to get rid of redundant features. Otherwise, it could lead
to overfitting, increase the needless complexity of the analysis,
and turn the model unreliable overall. Below is displayed the
heatmap for all predictors for each data set.

For this analysis, we have detected 4 variables pair that
perfectly correlated with each other for Windows 7 data.

Correlation between independent variables

Pracessor(_Total) DPC Rate =] 10
Processor(_Total) pct_ C1 Time
Pracessor(_Total) pct_ Priviiéged Time 7
Process|_Tofal) 10 Read Operations sec
Process(_Total) Page File Bytes ¢ - 08
Pracess(_Total) 10 Other Bytes sec
Process(_Total) pct_ Processor Time
Process(_Total) 10 Other Operations sec
Process(_Total) IO Data Bytes sec
Network I{intel R _Proc 1000MT) Bytes Sent sec
Network I{intelR_Pro_1000MT) Packets sec
Memory Fiee & Zero Page List Bytes

Memory Commit Limit E - 04
Memory Demand Zero Faults sec &
Memory Pool Nonpaged Bytes L)
Memory Standby Cache Reserve Bytes - 4 - B

Memory System Driver Resident Bytes
Memory pct_ Committed Bytes In Use -

Temory Cache Faults sec

Memory Pool Paged Resident Bytes

P
-
1
o
-
o
2

Processor(_Total) Ec(Privileged Time

Processor(_Total) pct_ C1 Time

Process(_Total) |0 Other Operations sec

Process(_Total) 10 Read Operations sec
Memory Commit Limit -

Memory Demand Zero Faults sec

Process|_Total) 10 Other Bytes sec

Memory Free & Zero Page List Bytes _|
Memory Cache Faults sec

Memory Pool Paged Resident Bytes

Network_I{Intel R PruleDDMT] Bytes Sent sec
MNetwork_I{intel R _Pro_1000MT) Packets sec

Process(Total) pct_ Processor Time -,

Processor(_Total) DPC Rate

Process(_Total) Page File Bytes

Memory Pool Nonpaged Bytes
Memory Standby Cache Reserve Bytes

Pracess(_Total) 10 Data Bytes sec

Memory System Driver Resident Bytes R

Memory pct_ Committed Bytes In Use

Fig. 6: In search for perfectly correlated variables (Windows
7).

FEATURE_1 FEATURE_2 CORRELATION

1 Process(_Total) Private Bytes Process(_Total) Page File Bytes 1.0
3 Network_l(intel R _Pro_1000MT) Packets Received sec Network_I(Intel R _Pro_1000MT) Packets Received Unicast sec 1.0
5 Network_(Intel R _Pro_1000MT) Packets Received Unicast sec Network_(intel R _Pro_1000MT) Packets Received sec 1.0
7 Memory Available KBytes Memory Available Bytes 1.0

Fig. 7: Perfectly correlated variables (Windows 7).

So, Process(_Total) Private Bytes, Network_I(Intel R
_Pro_1000MT) Packets Received sec, Network_I(Intel R
_Pro_1000MT) Packets Received Unicast sec, Memory Avail-
able KBytes variables deleted from the data.

Using a similar approach we can detect the perfectly corre-
lated for Windows 10 data as well.

For Windows 10 data these variables were removed because
of perfect correlation: Network_I(Intel R _82574L._GNC)
Packets Received Unicast sec, Processor_pct_ C1_Time, Net-
work_I(Intel R _82574L._GNC) Packets Received sec, Mem-
ory Available KBytes, Process_Private_Bytes.

For the Linux Disk and memory data, none of the indepen-
dent variables are precisely correlated, but we have nonetheless
balanced the data. Although, we removed 3 columns for Linux
Process data because of perfect correlation.

The table [IV] represents the total number of rows and
columns for each data set after cleaning and applying different
statistical methods. We normalized each column and sliced the
clean data into train and test sets using an 80%-20% split in
order to implement the selected machine-learning models.

Correlation between independent variables
Processor_DPC_Rate = 5 10
Processor_C1_ransitions_sec
Process_|O Read_Operations_sec
Process_Virtual_Bytes Peak < . 08
Pracess_pct_ Processor_Time
Pracess_Thread Count

5 Network_l{Intel R _82574L_GMNC) Bytes Received sec

Network_I{intel R _82574L GNC) Packets sec - 06
Memory Cache Bytes Peak
Memory Page Reads sec
Memaory Page Faults sec <
Memory System Code Total Bytes
Memory pct_ Committed Bytes In Use
Memory System Driver Total Bytes 4
LogicalDisk{_Total) Disk Reads sec =t
LogicalDisk(_Total} Split 10 Sec o
LogicalDisk(_Total) Avg Disk Bytes Read
LogicalDisk(_Total) Avg Disk Bytes Transfer

-04

.
b
=
pa
g

l I
[T RV e] [R WS T BT VRS TR
z g

BEHSYCELysuy Ul tsEy
“‘hz'gm'mﬁu'gﬁmggaamu:&g';m
PERSLpoE s luSSEnREwn e
oo e sl rEaffsLSouEaa
R EES ot o g e B iy
cREEEeFSepnfesioy, =yt
feos8 s tindfgd= g B oS
By ftogiiiReZesIBEE Y
wi & u =] =] = 2 =
Sl S EEEEEEEEERaSERD
5 — o =1 g
Geodu CorAsEE25 0%
geligs =071 2TEEREE
§ §£p 9% 8§ 52895
g ys& Ege £ EEE g0z
£32 TSZ8
13 ==0 I SEETBE
[EIEZ = Emg‘ 3_
g“\"al = g

o
=3 g

=3

Eool

==

L

ZE

25

#

5

]

g

-4

Fig. 8: In search for perfectly correlated variables (Windows
10).

FEATURE_1 FEATURE_2 CORRELATION

1 Processor_pct_C1_Time Processor_pct_Idle_Time 1.0
3 Process_Private_Bytes Process_Page_File Bytes 1.0
5 Network_(intel R _82574L_GNC) Packets Received sec Network_I(Intel R _82574L_GNC) Packets Received Unicast sec 1.0
7 Network_l(intel R _82574L_GNC) Packets Received Unicast sec Network_(intel R _82574L_GNC) Packets Received sec 1.0
9 Memory Available KBytes Memory Available Bytes 1.0

Fig. 9: Perfectly correlated variables (Windows 10).

Correlation between independent variables

10
k4
a8

2 0.8
[=

in -0
g

-04

0.2

DSK WCANCL

RDDSK

WRDSK WCANCL D5K

Fig. 10: In search for perfectly correlated variables (Linux
Disk).

Data Number of rows | Number of columns
Windows 7 11,909 75
Windows 10 21,858 101
Linux Disk 120,222 5

Linux Process 117,417 14
Linux Memory 80,222 9

TABLE 1IV: Cleaned data Information

Correlation between independent variables

TRUN Lo
T5LPI
TSLPU
NICE 08
PR
CPUNR
EXC -08
CPU -
D
E - 04
[
R
5 02
z
D I
norm .
ZE:IUJE:I: = O W — g W S
FEELEE-E :
[

Fig. 11: In search for perfectly correlated variables (Linux
Process).

Correlation between independent variables

10
MINFLT
MAJFLT 08
VSTEXT
VSIZE 06
RSIZE 04

VGROW

RGROW

MEM

I

Fig. 12: In search for perfectly correlated variables (Linux
Memory).

VSIZE -

RSIZE -

RGROW -
MEM

] L]
[T ™
= =
= =

VSTEXT
VGROW

B. Model Performance Evaluation

GridSearchCV, a method for methodically searching a pa-
rameter grid to identify the best hyperparameters for a model,
was used to discover the best model for our classification
problem.

We tested alternative regularization parameter C values
and kernel types (rbf, poly, sigmoid, linear) for the SVM
model. The GridSearchCV algorithm evaluated each parameter
combination with 10 folds of cross-validation. The models
were scored on accuracy.

The RF model’s hyperparameters included the number of
trees (n_estimators), the maximum number of features consid-
ered for each split (max_features), the maximum tree depth
(max_depth), and the split quality criterion (gini, entropy).
Again, accuracy was used to score each hyperparameter com-
bination in a 10-fold cross-validation.

In addition to the SVM and RF models, we used Grid-
SearchCV for the SOM and K-Means clustering.

We searched a parameter grid with the sigma value, learning
rate, and neighborhood function for the SOM model. The
learning rate determines the weight update step size, the
sigma value governs the neighborhood function width, and the
neighborhood function defines the influence of nearby neurons
during training. GridSearchCV used 10-fold cross-validation
to assess each parameter combination’s accuracy.

For the KMeans model, we examined the number of
initializations (n_init), the initialization method (k-means++,
random), and the clustering strategy (auto, full, elkan). The
GridSearchCV method again compared hyperparameter com-
binations using 10-fold cross-validation and the accuracy met-
ric.

We found the optimal hyperparameters and model after grid-
searching each model. We then trained the best model on
training data and tested it on test data. Grid search process
execution times were also recorded. This systematic grid
search allowed us to effectively investigate alternative hy-
perparameter combinations and find the optimal classification
model. To improve model accuracy and performance, we tuned
hyperparameters.

1) Windows 10: We measured split quality using an
entropy-based criterion and set the tree depth to 25 for the RF
model. We utilized 100 decision trees (n_estimators) to build
the forest and limited each split to the square root of the total
number of features. This hyperparameter combination detected
intrusions best.

We used a linear kernel and set C to 50 for the SVM model.
These SVM settings accurately identified intrusions.

The SOM model used a triangle neighborhood function with
a sigma value of 2 and a learning rate of 0.1. These parameters
enabled the SOM to map incoming data into a topological grid
and detect intrusions based on their spatial relationships.

Finally, we employed the ’auto’ algorithm for K-means
clustering. We used k-means++ to initialize centroids and ran
50 iterations (n_init) to determine the best clustering solution.
This combination produced the highest accurate intrusion
clustering findings.

The performance of the selected models on test data is
presented in the following table:

Model Accuracy | Precision | Recall | F-1 Score
RF 0.986 0.974 0.998 0.986
SVM 0.968 0.949 0.990 0.969
SOM 0.710 0.655 0.889 0.754
K-means 0.839 0.878 0.839 0.834

TABLE V: Model Performance Comparison (Windows 10)

As shown in Table 1, the results of our intrusion detection
analysis emphasize the performance of various models in terms
of accuracy, precision, recall, and F-1 score. RF and SVM had
the greatest accuracy scores among the evaluated models, at
0.986 and 0.968, respectively. The high precision values of
0.974 and 0.949 attained by these models indicate their ca-
pacity to correctly classify intrusions. Similarly, RF and SVM
achieved high recall scores of 0.998 and 0.990, respectively,
indicating their ability to detect intrusions accurately. As a

result, these models achieved remarkable F-1 scores of 0.986
and 0.969, indicating a performance that is balanced between
precision and recall.

It is essential to note, however, that the SOM and K-means
models performed less well than RF and SVM. The SOM
model achieved an accuracy rating of 0.710, with precision,
recall, and F-1 ratings of 0.655, 0.889, and 0.754, respectively.
Compared to the other models, the SOM model may have dif-
ficulty accurately classifying intrusions, as indicated by these
results. Likewise, the K-means model obtained an accuracy
score of 0.839, as well as precision, recall, and F-1 scores
of 0.878, 0.839, and 0.834, respectively. While the K-means
model performed better than the SOM model, its accuracy and
F-1 scores were lower than those of RF and SVM.

The results of this study indicate that RF and SVM are the
most effective intrusion detection models. In terms of accuracy,
precision, recall, and F-1 score, these models consistently
outperformed the SOM and K-means models. RF and SVM
are suitable candidates for real-world IDS due to their high
accuracy and balanced performance.

2) Windows 7: For Windows 7 data, the selected models
after the grid search are presented below:

o RF: criterion = entropy, max_depth = 15, max_features
= log2, n_estimators = 50

e SVM: C= 50, kernel= linear

¢ SOM: learning_rate = 0.05, neighborhood_function =
gaussian, sigma = 1

o K-means: algorithm = auto, init = k-means++, n_init =

50
Model Accuracy | Precision | Recall | F-1 Score
RF 0.994 0.994 0.993 0.994
SVM 0.954 0.968 0.939 0.953
SOM 0.623 0.589 0.797 0.677
K-means 0.540 0.551 0.539 0.510

TABLE VI: Model Performance Comparison (Windows 7)

The success of the four models, RF, SVM, SOM, and K-
means, was evaluated using various metrics, including preci-
sion, recall, F-1 score, and accuracy. With an accuracy, preci-
sion, recall, and F-1 score of 0.99, the RF model obtained the
highest result. This demonstrates that the RF model accurately
classified intrusion instances with a high degree of precision
and recall. With an accuracy of 0.954, a precision of 0.968, a
recall of 0.939, and an F-1 score of 0.953, the SVM model also
performed admirably. The performance of the SOM and K-
means models was inferior, with the SOM model achieving an
accuracy of 0.623, precision of 0.589, recall of 0.797, and F-1
score of 0.677, and the K-means model achieving an accuracy
of 0.540, precision of 0.551, recall of 0.539, and F-1 score
of 0.510. The RF and SVM models outperformed the SOM
and K-means models in accurately detecting and classifying
intrusions in the dataset, according to these results.

3) Linux Disk activity: Selected models after hyperparam-
eter tuning are:

o RF: criterion = gini, max_depth = 5, max_features = log2,
n_estimators = 50

e SVM: C= 50, kernel= linear

e SOM: learning rate = (.5, neighborhood_function
gaussian, sigma = 2

o K-means: algorithm = auto, init = k-means++, n_init

50
Model Accuracy | Precision | Recall | F-1 Score
RF 0.537 0.920 0.081 0.148
SVM 0.522 0.984 0.045 0.0873
SOM 0.520 0.553 0.210 0.305
K-means 0.504 0.751 0.504 0.343

TABLE VII: Model Performance Comparison (Linux Disk)

The RF model obtained the highest accuracy of 0.537,
indicating that 53.7% of instances were correctly classified.
However, its precision, recall, and F-1 score were compar-
atively low, indicating that it had difficulty detecting and
classifying intrusions accurately. The SVM model’s accuracy
was slightly lower at 0.522, but its precision was high at 0.984,
indicating a low rate of false positives. However, its recall
and F-1 scores were very low, indicating that it had difficulty
detecting true positives. The SOM and K-means models had
comparable accuracy rates of 0.520 and 0.504, respectively,
but their precision, recall, and F-1 scores were relatively
low, indicating inadequate intrusion detection performance.
Overall, the models demonstrated varying degrees of accuracy
in detecting and classifying intrusions, with the RF model
demonstrating the highest accuracy but the lowest precision,
and the SVM model demonstrating the highest precision but
the lowest recall.

4) Linux Process-scheduling activity: Selected models are:

« RF: criterion = gini, max_depth = 15, max_features
auto, n_estimators = 50

¢ SVM: C= 50, kernel= rbf

e SOM: learning_rate = 0.5, neighborhood_function
gaussian, sigma = 1

« K-means: algorithm = auto, init = k-means++, n_init
50

Model Accuracy | Precision | Recall | F-1 Score
RF 0.737 0.757 0.700 0.727
SVM 0.615 0.722 0.373 0.492
SOM 0.578 0.552 0.833 0.664
K-means 0.422 0.394 0.422 0.382

TABLE VIII: Model Performance Comparison (Linux Pro-
cess)

With an accuracy of 0.737, the RF model correctly classified
73.7% of instances. It also had the highest precision and F-
1 score, indicating that it accurately identified and classified
intrusions with a low false positive rate. The SVM model had
a lower accuracy of 0.615 but a comparatively high precision
of 0.722, suggesting a lower false-positive rate. However, its
recall and F-1 scores were comparatively low, indicating that

it had difficulty detecting true positives. With an accuracy of
0.578 and a recall of 0.833, the SOM model demonstrated a
strong ability to detect intrusions. However, its precision and
F-1 score were inferior to those of competing models. The
K-means model had the lowest overall performance, with an
accuracy of 0.422, as well as low precision, recall, and F-1
score. Overall, across all evaluation metrics, the RF model
demonstrated the highest performance.
5) Linux Memory activity: Selected models are:

« RF: criterion = entropy, max_depth = 25, max_features
= log2, n_estimators = 200

e SVM: C= 50, kernel= rbf

e SOM: learning_rate = 0.1, neighborhood_function = tri-
angle, sigma = 6

o K-means: algorithm = full, init = random, n_init = 100

Model Accuracy | Precision | Recall | F-1 Score
RF 0.979 0.965 0.994 0.979
SVM 0.611 0.602 0.653 0.637
SOM 0.598 0.613 0.532 0.570
K-means 0.534 0.595 0.534 0.446

TABLE IX: Model Performance Comparison (Linux Memory)

Among the four models, the RF model had the highest
performance, with an accuracy of 0.979, precision of 0.965,
recall of 0.994, and F-1 score of 0.979. This indicates that the
model classified the majority of instances accurately and had
a low rate of false positives and false negatives. The SVM
model’s accuracy was 0.611, while its precision, recall, and
F-1 score were moderate. The performance of the SOM and
K-means models was even worse, with accuracy, precision,
recall, and F-1 scores ranging from 0.534 to 0.598. Overall,
the RF model outperformed the competition, making it the
most dependable option for intrusion detection.

Model Accuracy for Different Data Sets

10 Model

RF

SVM
s0M

08 K-means

06

Accuracy

04

0z

00

Windows 7 Windows 10 Linux_Disk

Data Set Used

Linux_Process Linux_Memory

Fig. 13: Model accuracy plot.

The above accuracy plot compares the detection accuracy of
various intrusion detection methods across platforms and data
types. Upon analyzing the results, it is clear that the RF model
consistently outperformed the other models in the majority of

instances. After looking over the data, it’s clear that the RF
model is superior to the others in the vast majority of cases.

An accuracy of 0.994 was reached by the RF model when
applied to Windows 7 data, demonstrating its superiority in
correctly labeling cases. Again confirming its robustness in
detecting intrusions, the RF model attained an accuracy of
0.986 when applied to data from Windows 10. The SVM
model, in comparison, demonstrated reduced accuracy (0.954
and 0.968, respectively, for Windows 7 and Windows 10 data).
Although the SVM model’s strength is in its capacity to deal
with complicated data with non-linear bounds, it nevertheless
did a respectable job.

All models performed poorly when evaluated on Linux data
compared to Windows data. When comparing accuracy on the
Linux Disk, Linux Process, and Linux Memory datasets, the
RF model was still the most successful.

The SOM and K-means models provide illustrative exam-
ples of the benefits of the unsupervised ML approach. While
their accuracy was lower than that of supervised models, un-
supervised models might perform intrusion detection without
the use of labeled data and so might be the most effective tool
for exposing new forms of attack. The SOM model had the
highest accuracy among unsupervised models for the Windows
7 and Linux Disk datasets, while the K-means model had the
highest accuracy for the Windows 10 data.

VI. CONCLUSIONS

Comparing the efficacy of supervised and unsupervised
models, supervised models typically perform better [68]], [69],
[70], [[71]. Therefore, a direct comparison between supervised
and unsupervised algorithms should not be possible in most
cases. However, out of pure curiosity, we applied both types
of algorithms to our data and discovered promising results for
the models.

Our research aimed to identify the best ML model for
intrusion detection in ToN_IoT data, specifically focusing
on Windows and Linux OS. Throughout our analysis, we
evaluated several models, including RF, SVM, SOM, and
K-means clustering. Based on our findings, RF emerged as
the overall best model for detecting intrusion in sensor data,
as supported by previous research [26]]. This finding was
consistent across various OS and data types, highlighting the
robustness and effectiveness of RF in intrusion detection tasks.

However, we also observed that unsupervised models like
SOM and K-means offer a viable alternative for intrusion
detection in scenarios where labeled data is limited or un-
available, or when facing novel attacks. These unsupervised
models leverage patterns and similarities within the data to
identify potential intrusions, making them particularly useful
in situations where prior knowledge about attack patterns may
be lacking.

Looking ahead, future research in this domain could ex-
plore other supervised and unsupervised methods, as well as
experiment with different hyperparameter settings to optimize
the performance of intrusion detection models. Additionally,

further investigations could be conducted to evaluate the per-
formance of these models in real-world deployment scenarios
and consider the scalability and computational requirements
of each approach.

In summary, our study contributes to the domain of intrusion
detection in ToN_IoT data by highlighting the strengths of
RF as the preferred model for detecting intrusions across
different OS. Furthermore, we recognize the importance of
unsupervised models like SOM and K-means in situations
where labeled data is scarce, offering a promising avenue
for upcoming research. Ultimately, the findings of this study
can guide the development of effective IDS for securing IoT
networks and protecting against potential threats.

REFERENCES

[1] Jensen K. Philipsen K. Haug A. Stentoft, J. Drivers and barriers for
industry 4.0 readiness and practice: A sme perspective with empirical
evidence. 2019.

Igbal H Sarker. Machine learning: Algorithms, real-world applications
and research directions. SN computer science, 2(3):160, 2021.

Xian Guo, Keyu Chen, An Yang, and Zhanhui Gang. Research on
industrial iot security based on deep learning. Journal of Internet
Technology, 24(3):727-744, 2023.

R. Chalapathy and S. Chawla. Deep learning for anomaly detection: a
survey. 2019.

Nelson B. Sears R. Joseph A. Tygar J. Barreno, M. Can machine learning
be secure? 2006.

Waoo A. Jain, J. An artificial neural network technique for prediction of
cyber-attack using intrusion detection system. JAIMLNN, pages 33-42,
2023.

Andrade R. Praga I. Sousa O. Maia E. Vitorino, J. A comparative
analysis of machine learning techniques for iot intrusion detection. pages
191-207, 2022.

C. Wang, B. Wang, H. Liu, and H. Qu. Anomaly detection for
industrial control system based on autoencoder neural network. Wireless
Communications and Mobile Computing, 2020:1-10, 2020.

Y. Shin and K. Kim. Comparison of anomaly detection accuracy of host-
based intrusion detection systems based on different machine learning
algorithms. International Journal of Advanced Computer Science and
Applications, 11, 2020.

Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani. Egl]
detailed analysis of the kdd cup 99 data set. In 2009 IEEE Symposium
on Computational Intelligence for Security and Defense Applications))
pages 1-6, 2009.

Nour Moustafa and Jill Slay. Unsw-nbl5: a comprehensive data set
for network intrusion detection systems (unsw-nb15 network data se{33]
In 2015 Military Communications and Information Systems Conference
(MilCIS), pages 1-6, 2015.

Ranjit Panigrahi and Samarjeet Borah. A detailed analysis of cicids20134)
dataset for designing intrusion detection systems. International Journal
of Engineering & Technology, 7(3.24):479-482, 2018.

Nour Moustafa. A new distributed architecture for evaluating ai-based
security systems at the edge: Network ton_iot datasets. Sustainabfas)
Cities and Society, 72:102994, 2021.

Tim M. Booij, Irina Chiscop, Erik Meeuwissen, Nour Moustafa, ajd6]
Frank T. H. den Hartog. Ton_iot: The role of heterogeneity and the need
for standardization of features and attack types in iot network intrusion
data sets. IEEE Internet of Things Journal, 9(1):485-496, 2022. [37]
Nour Moustafa, Marwa Keshky, Essam Debiez, and Helge Janicke.
Federated ton_iot windows datasets for evaluating ai-based securif$8]
applications. In 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom),
pages 848-855, 2020. [39]
Abdullah Alsaedi, Nour Moustafa, Zahir Tari, Abdun Mahmood, and
Adnan Anwar. Ton_iot telemetry dataset: A new generation dataset of
iot and iiot for data-driven intrusion detection systems. IEEE Access40]
8:165130-165150, 2020.

[2]
[3]

[4]
[5]
[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17] Javed Ashraf, Marwa Keshk, Nour Moustafa, Mohamed Abdel-Basset,
Hasnat Khurshid, Asim D. Bakhshi, and Reham R. Mostafa. Iotbot-
ids: A novel statistical learning-enabled botnet detection framework for
protecting networks of smart cities. Sustainable Cities and Society,
72:103041, 2021.

Nour Moustafa, Mohiuddin Ahmed, and Sherif Ahmed. Data analytics-
enabled intrusion detection: Evaluations of ton_iot linux datasets. In
2020 IEEE 19th International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom), pages 727-735, 2020.
Nour Moustafa. A systemic iot-fog-cloud architecture for big-data
analytics and cyber security systems: A review of fog computing, 2019.
M. Govindarajan. Hybrid intrusion detection using ensemble of clas-
sification methods. [International Journal of Computer Network and
Information Security, 6:45-53, 2014.

Adebowale Ajayi and Idowu S.A. Comparative study of selected data
mining algorithms used for intrusion detection. 07 2013.

S. Naseer and Y. Saleem. Enhanced network intrusion detection using
deep convolutional neural networks. Ksii Transactions on Internet and
Information Systems, 12, 2018.

M. Alsoufi, S. Razak, M. Siraj, I. Nafea, F. Ghaleb, F. Saeed, and
M. Nasser. Anomaly-based intrusion detection systems in iot using deep
learning: a systematic literature review. Applied Sciences, 11:8383, 2021.
M. Goldstein and S. Uchida. A comparative evaluation of unsuper-
vised anomaly detection algorithms for multivariate data. Plos One,
11:e0152173, 2016.

A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava. A
comparative study of anomaly detection schemes in network intrusion
detection. 2003.

Abdullah Alsaedi, Nour Moustafa, Zahir Tari, Abdun Mahmood, and
Adnan Anwar. Ton_iot telemetry dataset: A new generation dataset of
iot and iiot for data-driven intrusion detection systems. [EEE Access,
8:165130-165150, 2020.

Mohanad Sarhan, Siamak Layeghy, and Marius Portmann. Feature
analysis for ml-based iiot intrusion detection. CoRR, abs/2108.12732,
2021.

Ziadoon Kamil, Y. Robiah, Nazrulazhar Bahaman, Salama Mostafa,
and Cik Feresa Mohd Foozy. Benchmarking of machine learning for
anomalybased intrusion detection systems in the cicids2017 dataset.
IEEE Access, 02 2021.

Vita Santa Barletta, Danilo Caivano, Antonella Nannavecchia, and
Michele Scalera. Intrusion detection for in-vehicle communication
networks: An unsupervised kohonen som approach. Future Internet,
12(7), 2020.

A. Alsaedi, N. Moustafa, Z. Tari, A. N. Mahmood, and A. Anwar.
Ton;ottelemetrydataset : anewgenerationdataseto fiotandiiot fordata —
drivenintrusiondetectionsystems. IEEFEAccess,8 165130 —
—165150,2020.

H. Karamollaoglu, I. Yiicedag, and I. A. Dogru. A hybrid pca-mao based
Istm model for intrusion detection in iot environments. 2022.

T. Le, H. Kim, H. Kang, and H. Kim. Classification and explanation for
intrusion detection system based on ensemble trees and shap method. Sensors,
22:1154, 2022.
N. Moustafa,
analytics-enabled

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

[28]

[29]

[30]

M. Ahmed,

intrusion

and S.
detection:

Ahmed.
evaluations

Data
of

ton;otlinuxdatasets.2020IEEE 19thinternationalCon ferenceonT rust, SecurityandPrivacyinC

T. M.
N. Moustafa,

Booij, 1.
and FE d.

Chiscop, E.
Hartog.

Meeuwissen,
Ton;ot

theroleo fheterogeneityandtheneed forstandardizationo f featuresandattackty pesiniotnetwor

485 — —496,2022.

Moustafa N. Ding W. Ding W. Abdel-Basset, M. Supervised deep learning
for secure internet of things. pages 131-166, 2021.

Essop 1. Mantas G. Porfyrakis K. Ribeiro J. Rodriguez J. Zachos, G. An
anomaly-based intrusion detection system for internet of medical things
networks. Electronics, 10:2562, 2021.

N. Mustafa. Ton-iot dataset [online]. https://cloudstor.aarnet.edu.au/plus/s/
ds5zW91vdgjEj9i, 2020.

Ledo T. Soares P. Severo M. Moniz M. Lucas R. ... Barros H. Leite, A.
A case-control study of contextual factors for sars-cov-2 transmission. Front.
Public Health, 9, 2021.

MacDonald R. Bronskill S. Schull M. Singh, J. Incidence and predictors
of critical events during urgent air-medical transport. Canadian Medical
Association Journal, 181:579-584, 2009.

Ma X. Qin, H. Data analysis approaches of interval-valued fuzzy soft sets
under incomplete information. IEEE Access, 7:3561-3571, 2019.

https://cloudstor.aarnet.edu.au/plus/s/ds5zW91vdgjEj9i
https://cloudstor.aarnet.edu.au/plus/s/ds5zW91vdgjEj9i

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]

[61]
[62]

[63]

[64]

[65]

[66]
[67]

Vedlitz A. Zahran S. Alston L. Lubell, M. Collective action, environmental
activism, and air quality policy. Political Research Quarterly, 59:149-160,
2006. [68]
Prati G. Cicognani E. Prati, G. Coping strategies and collective efficacy as
mediators between stress appraisal and quality of life among rescue workeil$9]
Sport, Exercise, and Performance Psychology, 1:84-93, 2011.

Bahr S. Hoffmann J. Harmon E. Dorius, C. Parenting practices as moderators
of the relationship between peers and adolescent marijuana use. Journal bf0]
Marriage and Family, 66:163-178, 2004.

AZPRA E. Zarraluqui V. GAY C. Bravo, J. Some variations of the rainfdfi1]
in mexico city from 1954 to 1988 and their statistical significance. ATM,
27:367-376, 2015.

Mei Z. Wang Y. Shou X. Zeng R. Chen Y. ... Liu Q. Chen, J. A nomogram to
predict in-hospital mortality in patients with post-cardiac arrest: a retrospective
cohort study. Polish Archives of Internal Medicine, 2022.

Seabloom E. Jones M. Schildhauer M. Borer, E. Some simple guidelines for
effective data management. Bulletin of the Ecological Society of America,
90:205-214, 2009.

Dunbrack R. L. Wei, Q. The role of balanced training and testing data sets
for binary classifiers in bioinformatics. PLoS ONE, 8:¢67863, 2013.

Fang Y. Wu, Y. Stroke prediction with machine learning methods among
older chinese. IJERPH, 17:1828, 2020.

Yaseen M. A. Aleesa A. Thanoun, M. Y. Development of intelligent
parkinson disease detection system based on machine learning techniques
using speech signal. International Journal on Advanced Science, Engineering
and Information Technology, 11:388, 2021.

Hornillos N. B. Val P. B. Marafia P. Cosio A. H. Castillo, S. B. Machine
learning to predict recommendation by tourists in a spanish province. Int. J.
Info. Tech. Dec. Mak., 21:1297-1320, 2022.

Ali R. H. Abideen Z. U. Khan T. A. Kouatly R. Hassan, I. U. Significance
of machine learning for detection of malicious websites on an unbalanced
dataset. Digital, 2:501-519, 2022.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer. Smote: synthetic minority over-sampling technique. Journal
of artificial intelligence research, 16:321-357, 2002.

Jiawei Han and Micheline Kamber. Data mining: concepts and techniques.
San Francisco: Morgan Kaufmann Publishers, 2006.

David R Wilson. Asymptotic properties of nearest neighbor rules using edited
data. [EEE transactions on Systems, Man, and Cybernetics, 2(3):408—421,
1972.

Gustavo Enrique da Silva Alves de Batista, Ronaldo Cristiano Prati, and
Maria Carolina Monard. A study of the behavior of several methods
for balancing machine learning training data. ACM Sigkdd Explorations
Newsletter, 6(1):20-29, 2004.

Karl Pearson. Contributions to the mathematical theory of evolution. Philo-
sophical Transactions of the Royal Society of London, 186:343-414, 1895.
Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Fried-
man. The elements of statistical learning: data mining, inference, and
prediction, volume 2. Springer, 2009.

Tom Howley and Michael G Madden. The genetic kernel support vector
machine: Description and evaluation. Artificial intelligence review, 24:379—
395, 2005.

Vladimir N Vapnik. Statistical learning theory hardcover, 1998.

Vahid Hooshmand Moghaddam and Javad Hamidzadeh. New hermite or-
thogonal polynomial kernel and combined kernels in support vector machine
classifier. Pattern Recognition, 60:921-935, 2016.

Gareth, Daniela James, Trevor Witten, Robert Hastie, and Tibshirani.
introduction to statistical learning with applications in r. ISLR, 2021.
Li Li et al. Selected applications of convex optimization, volume 103. Springer,
2015.

Hans L Bodlaender, Rodney G Downey, Michael R Fellows, and Danny
Hermelin. On problems without polynomial kernels. Journal of Computer
and System Sciences, 75(8):423-434, 2009.

Mariana Belgiu and Lucian Drigut. Random forest in remote sensing: A
review of applications and future directions. ISPRS journal of photogrammetry
and remote sensing, 114:24-31, 2016.

Baoxiang Liu, Maode Ma, and Jincai Chang. Information Computing and
Applications: Third International Conference, ICICA 2012, Chengde, China,
September 14-16, 2012, Revised Selected Papers, volume 7473. Springer,
2012.

Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

Shi Na, Liu Xumin, and Guan Yong. Research on k-means clustering algo-
rithm: An improved k-means clustering algorithm. In 2010 Third International

An

Symposium on intelligent information technology and security informatics,
pages 63-67. Ieee, 2010.

Tsai Y. Wang S. Yang M. Cheng, J. Segflow: Joint learning for video object
segmentation and optical flow. 2017.

Madhamshettiwar P. Davis M. Ragan M. Maetschke, S. Supervised, semi-
supervised and unsupervised inference of gene regulatory networks. Briefings
in Bioinformatics, 15:195-211, 2013.

Xiang T. Wang Y. Pontil M. Gong S. Huang T. ... Tian Y. Peng, P.
Unsupervised cross-dataset transfer learning for person re-identification. 2016.
Ma C. Liu W. Li H. Song, Y. Unsupervised deep tracking. 2019.

