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Abstract19

Global and coastal ocean surface water elevation prediction skill has advanced consid-20

erably with improved algorithms, more refined discretizations and high-performance par-21

allel computing. Model skill is tied to mesh resolution, the accuracy of specified bathymetry/topography,22

dissipation parameterizations, air-sea drag formulations, and the fidelity of forcing func-23

tions. Wind forcing skill can be particularly prone to errors, especially at the land-ocean24

interface. The resulting biases and errors can be addressed holistically with a machine-25

learning (ML) approach. Herein, we weakly couple the Temporal Fusion Transformer to26

the National Oceanic and Atmospheric Administration’s (NOAA) Storm and Tide Op-27

erational Forecast System (STOFS 2D Global) to improve its forecasting skill through-28

out a 7-day horizon. We demonstrate the transformer’s ability to enrich the hydrody-29

namic model’s output at 228 observed water level stations operated by NOAA’s National30

Ocean Service. We conclude that the transformer is a rapid way to correct STOFS 2D31

Global forecasted water levels provided that sufficient covariates are supplied. For sta-32

tions in wind-dominant areas, we demonstrate that including past and future wind-speed33

covariates make for a more skillful forecast. In general, while the transformer renders con-34

sistent corrections at both tidally and wind-dominant stations, it does so most aggres-35

sively at tidally-dominant stations. We show notable improvements in Alaska and the36

Atlantic and Pacific seaboards of the United States. We evaluate several transformers37

instantiated with different hyperparameters, covariates, and training data to provide guid-38

ance on how to enhance performance.39

Plain Language Summary40

Forecasted water levels in coastal regions are used to predict flooding risk, currents41

that impact navigation, the transport of nutrients and pollutants, and the conditions that42

make coastal waters favorable for fisheries. Computational models are typically exercised43

to render water-level forecasts as far as seven days into the future. While the physics un-44

derlying these models is relatively well understood, the data flowing into the models can45

be subject to uncertainty. For example, water depth is a sensitive model parameter, yet46

even the best LiDar-derived data sets may have significant errors. Model and meteoro-47

logical wind speed data is another parameter prone to bias and uncertainty. In some cases,48

these models lack the ability to resolve oceanic and hydrological processes, phenomena49

that contribute to coastal water levels. Herein, we propose a fairly simple machine-learning-50

based strategy to improve the predictive capacity of these models in the presence of these51

limitations. In particular, we couple the ocean hydrodynamic model ADCIRC to a trans-52

former to improve ADCIRC’s predictions. We show that the two models individually have53

larger error bands than when the are combined.54

1 Introduction55

Water levels in the coastal ocean and its adjacent floodplain impact navigation, wa-56

ter quality, fisheries, and livelihoods in coastal communities. Water motion is driven by57

highly predictable gravitational forces of the moon and sun acting on the earth’s ocean58

water; by more chaotic forces induced by wind, atmospheric pressure, wind waves, rain-59

fall and regional hydrology; and forces derived from the ocean’s thermohaline structure60

with corresponding ocean current systems and ice packs. The governing physics was pi-61

oneered by Laplace (1776) and later expanded by Barré de Saint Venant and Boussinesq62

(Hager et al., 2019) leading to the depth integrated shallow water equations (Hervouet,63

2007). More detailed three dimensional forms of the conservation laws were derived from64

the Navier-Stokes equations, and are typically subject to the assumption of a hydrostatic65

pressure approximation and the Boussinesq approximation for density (Roelvink & van66

Banning, 1995; Haidvogel et al., 2000; Hervouet, 2007). Given sufficient resolution of the67

geometric and bathymetric intricacies of the coastal ocean and especially of the adjacent68
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floodplain with its narrow tidal inlets, estuaries, and dendritic channel networks and rivers,69

the two dimensional shallow water equations generally simulate coastal water levels re-70

markably well. This has especially been the case as open water boundary condition spec-71

ification uncertainty has been eliminated by evolving from regional to global domain mod-72

els, as was initially envisioned by Laplace. Additionally, closure relationships focus on73

parameterizing bottom boundary layer dissipation, internal tide generation and subse-74

quent dissipation, viscous turbulent dissipation, and air-sea and air-ice-sea momentum75

transfer, which are all largely empirically derived from observed data.76

Global total water level models include Deltares’ Delft3D based Global Tide and77

Surge Model (GTSM) (Verlaan et al., 2015; De Kleermaeker et al., 2017), Environment78

and Climate Change Canada’s NEMO-based model (Wang et al., 2021; Wang & Bernier,79

2023), and NOAA’s ADCIRC-based unstructured mesh Storm and Tide Operational Fore-80

cast System 2D Global (STOFS 2D Global) model (Seroka et al., 2023). STOFS 2D Global,81

the model applied in this study, is a barotropic implementation of the shallow water equa-82

tions with resolution ranging from 80 m within intricate inlets to 25 km across the abyssal83

plains of the deep ocean (Pringle et al., 2021; Blakely et al., 2022). The model leads to84

excellent predictability of tides with the global observed-to-modeled M2 tide compared85

at 236 deep water stations resulting in a coefficient of determination, R2, equal to .985,86

a mean amplitude error of 2.4 cm, and a normalized root mean square error (NRMSE)87

equal to 0.075. At 449 shelf stations, the model yields an R2 equal to .984, a mean am-88

plitude error of 4.3 cm, and a NRMSE equal to 0.084. STOFS 2D Global is to date the89

most accurate published non-data assimilated model with respect to tides (Stammer et90

al., 2014; Blakely et al., 2022). A multiyear hindcast (see Section 2) indicates that sur-91

face water elevation can be predicted at 213 U.S. NOAA National Ocean Service (NOS)92

water level stations with an R2 equal to 0.94, an average absolute error equal to 7.3 cm,93

and a NRMSE equal to 0.21.94

Model accuracy is influenced by factors such as geometric representation and mesh95

resolution, topo-bathymetry, and specified values for the parameterized dissipation terms.96

Additionally, the underlying physical processes that are incorporated into STOFS 2D97

Global are subject to formulations errors. Some salient processes may be missing alto-98

gether. The biggest source of epistemic uncertainty associated with STOFS 2D Global99

is its meteorological forcing. Available wind fields, which are essential to forecasting ac-100

curate water levels, are typically spatially and temporally coarse, often leading to sig-101

nificant wind and associated water level prediction errors over shallow inland waterbod-102

ies. Moreover, model winds tend to be muted for intense tropical cyclones which result103

in muted storm surge forecasts. Collectively, these varied sources of model discrepancy104

motivate an improvement capability that scrutinizes simultaneously STOFS 2D Global105

output, its input (e.g. forcings), and past observations.106

Generally, Bayesian methods have been adopted to improve model accuracy amidst107

quantifiable uncertainty. Typically, for spatially and/or temporally invariant applications,108

algorithms like the Extended Kalman filter (Holland, 2020) and Particle filter (Ristic et109

al., 2003; Li et al., 2017; Elfring et al., 2021) have been leveraged to render these improve-110

ments. While they have been adopted for spatiotemporal domains (Butler et al., 2012,111

2015; Rougier et al., 2023) and will invariably be scaled for operations in the future, due112

to computational complexity and expense, they cannot be deployed today for rapid hy-113

drodynamic model improvement. We propose to carry out model improvement by means114

of machine learning with a transformer model. Rather than operating on the model di-115

rectly, as is commonly done in a Bayesian framework, the transformer would enrich the116

model outputs themselves (see schematic diagrams in Figure 1). By moving to this machine-117

learning-based approach, although we lose some accuracy that would come from a tight118

coupling required by a traditional Bayesian scheme, we gain processing speed. We de-119

velop and demonstrate this approach in computing corrected water levels for the STOFS120

2D Global model.121
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Figure 1. Process maps incorporating a Bayesian scheme (left) and ML (right) for model

improvement.

The machine learning (ML) model considered herein is the temporal fusion trans-122

former (TFT) (Lim et al., 2021). The TFT is a transformer-based model (Vaswani et123

al., 2017) that uses self-attention to learn long-term dependencies. The transformer is124

a compelling option for hydrodynamic applications because some coastal regions expe-125

rience predictable, yet “longer term” water elevation patterns that recurrent neural net-126

works (RNNs) or long short term memory (LSTM) cells alone could not otherwise cap-127

ture. Granted, in the present application, the transformer would be compelled to scru-128

tinize patterns in model error space, but like the surface water elevations themselves, these129

error signals are also expected to be repeated. Moreover, the TFT can accommodate static,130

past, and future covariates. These covariates enable the TFT to consider simultaneously131

the relationship between observed and predicted water levels and other relevant quan-132

tities including wind speed and location. In essence, referring back to Figure 1, these co-133

variates are the data proceeding from model inputs and outputs. Consequently, as the134

transformer scrutinizes patterns in model error space, it also attends to model inputs and135

outputs, drawing parallels to a traditional Bayesian scheme.136

ML models have featured quite extensively in coastal water level modeling. For ex-137

ample, in an early application, de Oliveira et al. (2009) considered a multilayer percep-138

tron (MLP) to predict storm surge at a single station in Southeast Brazil and demon-139

strated reasonable performance out to 24-hour forecast horizons. Later, Ayyad et al. (2022)140

assessed seven ML models to predict peak storm surge height caused by tropical cyclones141

in the New York Metropolitan Area. They trained their models against output from the142

model considered in this study, ADCIRC. They determined that of the seven ML mod-143

els, a support vector regressor (SVR) and an ensemble of decision trees with adaptive144

boosting were the most performant. Xie et al. (2023) used a convolutional neural net-145

work (CNN) to ingest two-dimensional wind forcing for single-site water level elevation146

forecasting in Southeast China. They demonstrated strong performance out to three-147

day forecasting horizons provided that a 24-hour water-level input is supplied. Tiggeloven148

et al. (2021) considered an ensemble of different models which included the coupled CNN149

and LSTM (ConvLSTM) to predict surge levels globally at more than 700 tidal stations.150

They also provided meteorological data as covariates. They demonstrated that the LSTM151

outperformed the other models, but that the CNN, provided that it was instantiated with152

a sufficient number of hidden layers, had the potential to outperform the lot despite its153

increased compute time. Additionally, they showed that their models generally performed154

better for higher-latitude tidal stations. Most recently, Pachev et al. (2023) demonstrated155

a two-tiered location-agnostic approach to predict peak storm surge from tropical cy-156

clones. First, they exercised a classifier to identify inundated points. Thereafter, they157

ran a neural network (trained with boosting) to predict the level of inundation.158

In this paper, we deviate our approach from these coastal water level studies. While159

we predict observed water levels, we do so by weakly coupling a numerical model (viz.160
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STOFS 2D Global solved by ADCIRC) to the TFT. We show that compared to ADCIRC161

alone, this coupling results in improved station-based water level forecasts out to 7-days.162

This type of coupling is not without precedent, especially in atmospheric modeling. For163

example, Bonavita and Laloyaux (2020) demonstrated that a MLP can extend the ca-164

pability of the weak-constraint formulation of the 4D-Var data assimilation framework165

to the troposphere. Zampieri et al. (2023) used a fully-connected MLP trained on ob-166

servations to reduce a temperature bias over Arctic sea ice in reanalysis products. In ocean167

modeling, Bolton and Zanna (2019) trained CNNs on output from a quasi-geostrophic168

ocean model to predict eddy momentum forcing and determined that training on tur-169

bulent regions leads to enhanced CNN extendability. More relevant to the present dis-170

cussion, they conjecture that CNNs can be coupled to sparse interpolated observational171

data to render accurate predictions of large-scale flow in the presence of turbulence.172

In this study, we train the TFT to correct surface water elevation, η, predictions173

made by ADCIRC-based STOFS 2D Global at 228 NOAA water level stations in the north-174

ern half of the Western Hemisphere. We use a three-year STOFS 2D Global hindcast175

and 6-minute resolution NOAA water level observations to instantiate the TFTs con-176

sidered herein. In Section 2, we summarize STOFS 2D Global and the aforementioned177

three-year hindcast. Additionally, we detail the ML framework considered herein includ-178

ing model architecture, data processing, and training. Thereafter, in Section 3, we de-179

tail its performance and probe its sensitivity to training set size, various hyperparam-180

eters, covariates, and regionality. Finally, in Section 4, we discuss how this framework181

could be extended to accommodate extreme weather events and be adapted for both prob-182

abilistic and off-station STOFS 2D Global correction.183

2 Materials and Methods184

2.1 STOFS 2D Global185

2.1.1 Overview186

STOFS 2D Global, NOAA’s operational global water level model, is based on an187

optimized unstructured mesh of the global ocean with the highest resolution focused on188

U.S. coastal waters and floodplains. The model applies 25-km resolution across deep ocean189

abyssal plains, down to 2.5-km resolution across steep ocean topography, and refines coasts190

down to 2.5 km globally (Blakely et al., 2022). U.S. inland waters and coastal features191

are resolved down to 80 to 125 m. This includes a large extent of the floodplains, coastal192

estuaries, inland channels, and levee systems of the contiguous United States, Puerto Rico,193

Alaska, Hawaii, and Micronesia. Figures 2 and 3 depict mesh resolution and bathymetry194

in the global model. It is noteworthy that smaller elements discretize mid-ocean ridges,195

shelf breaks, and submerged mountain chains in order to improve internal tide dissipa-196

tion models (Pringle et al., 2021; Blakely et al., 2022). Global and regional bathymet-197

ric datasets were applied including GEBCO2020 (IHO-UNESCO, 2020), RTopo-2 (Schaffer198

et al., 2016), Canadian CHS-NONNA100 (Fisheries & Canada, 2023), nthaus100 Grid199

(Beaman, 2018), and the Allen Coral Atlas (Lyons et al., 2022). In US water, various200

regional bathymetric data sources were used from the United States Geological Survey201

(USGS), NOAA, U.S. Army Corps of Engineers, and Northeast Ocean Data. The melded202

bathymetry is mesh scale averaged at nodes, Figure 3.203

The modeling system is forced with tidal potential functions, associated self attrac-204

tion and load terms (via FES2014), winds, atmospheric pressure, and sea ice from NOAA’s205

Global Forecast System (NOAA-EMC, 2023). Friction force parameterizations for bot-206

tom boundary layer dissipation, internal tide generation/dissipation, air-sea wind drag,207

and air-ice-sea drag are based on previous regional studies and were optimized for STOFS208

2D Global (Dietrich et al., 2011; Chen et al., 2013; Hope et al., 2013; Kerr, Donahue,209

et al., 2013; Kerr, Martyr, et al., 2013; Pringle et al., 2018, 2021; Blakely et al., 2022).210
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Figure 2. STOFS 2D Global mesh resolution. This mesh consists of 12,784,991 nodes and

24,875,313 elements.

Figure 3. STOFS 2D Global bathymetry melded from various global and regional sources.
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NOAA’s National Centers for Environmental Prediction (NCEP) and National Ocean211

Service (NOS) Coast Survey and Development Laboratory (CSDL) jointly operate the212

model to produce four-times daily 180-hour water level forecasts (NOAA-OPC, 2023; NOAA-213

NOS, 2023). The University of Notre Dame Computational Hydraulics Laboratory also214

runs a “shadow” model 168-hour once-daily forecast (Wood, 2023) to compare to ongo-215

ing development versions. The model has undergone a suite of improvements, for exam-216

ple, by including more levee systems, increasing spatial resolution, refining bottom fric-217

tion parameterizations, and increasing both temporal and spatial resolution of atmospheric218

forcing (Pe’eri, 2023).219

STOFS 2D Global is driven by ADCIRC, a community finite-element 2D and 3D220

hydrodynamics solver (ADCIRC , 2023) used for modeling tides and coastal storm surge221

flooding at local and regional scales (Westerink et al., 2008; Bunya et al., 2010; Hope et222

al., 2013). STOFS 2D Global applies ADCIRC’s two-dimensional barotropic solver. To223

facilitate solutions on the global domain, the model was updated to include a general-224

ized cylindrical mapping system for transforming spherical coordinates to a rectilinear225

system. Since the spherical coordinate system has a singularity at the poles, and the cylin-226

drical mapping system likewise does not permit elements spanning over the poles, a co-227

ordinate rotation is added that places both poles overland and likewise rotates the Cori-228

olis, surface wind, and internal wave drag terms (Pringle et al., 2021).229

The operational implementation is not currently forced with hydrology or with the230

ocean’s thermohaline circulation, both of which can impact water levels on longer-term231

periods (Pringle et al., 2018). To accommodate these slower time-scale fluctuations, the232

modeling system computes the mean water level for the five days prior to the start of233

any forecast for both the model and the NOS station measurement, and levels the fore-234

cast water levels accordingly. Fast time scale fluctuations associated with hydrology (e.g.235

a high intensity local rainfall event in a small scale channel) or with the ocean’s ther-236

mohaline system (e.g. the changes in the vertical density structure caused by a passing237

hurricane) will appear as additional errors in the forecast. Furthermore, the global model238

is not presently coupled to wind wave models and therefore is not forced with wave ra-239

diation induced stresses associated with wind wave transformation and breaking. The240

wind wave model coupling is typically incorporated into regional models and boosts wa-241

ter levels along coasts by between 5 cm and up to 0.5 m in limited regions (Dietrich et242

al., 2011; Hope et al., 2013; Joyce, Gonzalez-Lopez, et al., 2019; Joyce, Pringle, et al.,243

2019). Again, this will appear as a missing physics bias in the model, although typically244

this bias will be highly correlated to the specific coastal geometry and bathymetry and245

wind intensity and direction. We apply the five-day prior water level adjustment to the246

seven day forecast horizon in this study.247

2.1.2 Three-Year Hindcast248

A three-year STOFS 2D Global hindcast was run for the period of September 2016249

- September 2019 with one month spin-up and a 6-second time step. As discussed in Sec-250

tion 3, the hindcast was used to train and validate the ML framework. We exercised AD-251

CIRC version 55. The internal tide dissipation and boundary layer dissipation param-252

eters were adopted from Blakely et al. (2022). The following options were indicated: ICS=-253

22 (Mercator projection with pole rotation), IM=511113 (implicit mode), A00=0.8, B00=0.2,254

C00=0.0 (time weighting factors), H0=0.1 (minimum water depth), TAU0=0.05 (Gen-255

eralized Wave-Continuity Equation, GWCE, weighting factor that weights the relative256

contribution of the primitive and wave portions of the GWCE), NTIP=2 (tidal poten-257

tial and self attraction / load tide forcings are used), and DT=6 (simulation time step258

in seconds). Eight dominant astronomical tidal harmonic constituents (M2, N2, S2, K2,259

K1, Q1, O1, P1) were forced using the tidal potential function as well as self-attraction260

and loading. Additionally, atmospheric forcing was sourced from the NCEP Coupled Fore-261
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cast System Model version 2 (CFSv2), a reanalysis product with 0.25-deg spatial res-262

olution.263

The hindcast was run on the Texas Advanced Computing Center’s Frontera super-264

computer (Intel Xeon Platinum 8280, clock rate 2.7Ghz, Peak node performance 4.8TF,265

double precision).266

2.2 ML Framework267

2.2.1 General TFT Operation268

The TFT models exercised herein were based on the formulation given by Lim et269

al. (2021). We used the Python library Darts (Herzen et al., 2022) to train and evalu-270

ate them. The TFT architecture possesses multiple desirable components for spatiotem-271

poral forecasting tasks. TFTs employ variable selection networks to ensure that relevant272

input is considered at a given time step. Meanwhile, LSTM layers learn short-term tem-273

poral dependencies and allow for heterogeneous data sources to be encoded as static and274

dynamic covariates. Gating mechanisms let the model ignore architecture components275

where appropriate, while multi-head attention layers provide the model the ability to learn276

interpretable long-range time dependencies. While the original TFT implementation uses277

quantile regression to output probabilistic forecasts, we primarily used a loss function278

in place of likelihood to make deterministic predictions. The hidden layer size, which is279

shared across both LSTM and self-attention layers, the number of attention heads, the280

number of LSTM layers, and the learning rate for our model were tuned in a hyperpa-281

rameteric sweep discussed later in this section.282

The target of each TFT was the signed difference between the observed surface wa-283

ter elevation (from NOAA observed station time histories) and the predicted surface wa-284

ter elevation (from the three-year hindcast). Each TFT forecasted (i.e. decoded) this tar-285

get seven days (168 hours) into the future with 1-hour temporal resolution. It made this286

forecast in a “single shot” as opposed to autoregressively. We considered a 120-length287

(120 hour = 5 days) input or encoding region. To facilitate each TFT making this fore-288

cast, we supplied user-defined covariates. We supplied them for a period prior to the fore-289

casting horizon (i.e. past covariates), within the forecasting horizon (i.e. future covari-290

ates), and also invariantly of time (i.e. static covariates), Table 1. It is noteworthy that291

three time covariates (hour of the day, day of the week, and month of the year) were in-292

cluded to facilitate the model learning seasonal, diurnal, and semi-diurnal trends. The293

static covariates, in turn, were provided to suggest spatial coherence. The physics-based294

covariates, finally, were considered to facilitate predictions at wind-dominant stations.295

In a post-processing step extrinsic to each TFT, the TFT’s output was added to AD-296

CIRC’s raw prediction to render a “ML-Corrected” ADCIRC prediction.297

It is noteworthy that the hindcast-centric treatment of the TFT provided herein298

deviates slightly from how this methodology could be applied operationally for forecast-299

ing, Figure 4. Here, we used hindcasted ADCIRC predicted water levels and hindcasted300

meteorology in place of the forecasted future covariates. Leveraging these hindcasted co-301

variates enabled us to bypass the late-horizon uncertainty stemming from our meteoro-302

logical forcing. Consequently, the results provided herein indicate intrinsic TFT perfor-303

mance unblemished by spurious meteorological forcing; however, in forecasting mode,304

this uncertainty would likely lead to degraded late-horizon performance.305

2.2.2 Data Processing306

The study considered surface water elevations from a three-year ADCIRC-driven307

STOFS 2D Global hindcast (Section 2.2) and observed surface water elevations at NOAA308

stations. Both products maintain a 6-minute temporal resolution. The 228 stations, plot-309

ted and characterized with regard to tidal or wind dominance in Figure 5, were distributed310
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Table 1. Past, future, and static covariates considered by the TFT model.

Covariate Type Kind Description

Hour of the Day Past & Future Time Integer from 1-24
Day of the Week Past & Future Time Integer from 1-7
Month of the Year Past & Future Time Integer from 1-12
10-m U Wind Speed (CFSv2) Past & Future Dynamic Physics Float
10-m V Wind Speed (CFSv2) Past & Future Dynamic Physics Float
Tide Resynthesis Past & Future Dynamic Physics Float
η Prediction (ADCIRC) Past & Future Dynamic Physics Float
Latitude Static Location Float
Longitude Static Location Float

Figure 4. Diagram of transformer in an operational forecasting scheme.

in four regions: (1) Alaska, (2) West: US Pacific Seaboard, Hawaii, Midway Atoll, (3)311

Gulf: Gulf of Mexico, and (4) East: US Atlantic Seaboard, Puerto Rico, Bermuda. Most312

of the stations are tidally-dominant (i.e. the tidal potential energy was on the order of313

the total potential energy at these locations); however, some are situated in strongly wind-314

dominated locations (i.e. shallow locations wherein water levels are sensitive to the pre-315

vailing winds). The Gulf region is composed almost exclusively of wind-dominant sta-316

tions while the East region includes several in the shallow Chesapeake and Delaware Bays.317

When we evaluate performance in Section 3, we will discriminate tidally-dominant from318

wind-dominant stations.319

We mapped meteorological forcing (from CFSv2) and model surface water eleva-320

tion predictions to these stations during the hindcast simulation. These data were then321

extracted at the top of each hour. The corresponding NOAA observed surface water el-322

evations at the top of each hour were then matched to these data. Model and observed323

water levels were with respect to the mean sea level (MSL) vertical datum. Due to miss-324

ing NOAA observed levels for some stations, this matching was incomplete. Given that325

we did not fill in missing data, the entirety of the hindcast period for some stations could326

not be used for training / testing. Rather, we segregated the matched data into time-327

contiguous chunks.328

We trained each TFT on a series of time-contiguous chunks. The chunking was ac-329

complished by first segregating the matched data into time-contiguous spans that were330

at least longer than the desired chunk size (i.e. number of hours). For example, the 5-331

day encoding region and 7-day decoding region considered herein constituted a chunk332

size of 288. Thereafter, for each span, a window with length equal to the chunk size tra-333

versed the span incrementally. For each increment, the chunk within the window was ex-334

tracted either for training, validation, or testing. It moved chronologically along the span335

with a predefined shift length. A shift length equal to the chunk size would result in no336

chunk overlap; a shift length less than the chunk size would result in chunk overlap and337

more extracted chunks. We adopted a 1-day shift length to guarantee some overlap.338
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Figure 5. NOAA observed surface water elevation stations considered in study. Stations

were grouped into the following regions to facilitate evaluation: (1) Alaska, (2) the US Pacific

Seaboard, Hawaii, and Midway Atoll denoted “West”, (3) the Gulf of Mexico denoted “Gulf”,

and (4) the US Atlantic Seaboard, Puerto Rico, and Bermuda denoted “East”. Colors reference

the ratio between a given station’s total potential energy to its tidal potential energy. Values

close to 1 indicate tidal dominance. Higher values suggest wind-dominance.
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Figure 6. Validation loss plotted as a function of epoch for various batch sizes. Here, valida-

tion loss is the average mean squared error over the validation set. Only stations in the Northeast

are considered.

2.2.3 TFT Training and Hyperparametric Sweep339

Unless otherwise noted, for each station, we selected the first 70% of the chunks340

in the hindcast period for training. The remaining chunks were randomly shuffled into341

validation and test sets (20% validation, 10% testing). This ensured that all of the sta-342

tions had representation in both training, validation, and testing; however, depending343

on NOAA data coverage, some stations had more training / validation / testing chunks344

than others. We trained each TFT on all of the designated training chunks station-by-345

station in chronological order.346

During preliminary studies, we found TFT performance to be largely invariant to347

batch size (i.e. number of chunks passed to GPU for forward and back propagation at348

a time), but smaller batch sizes resulted in slightly enhanced performance over a reduced349

number of epochs (i.e. number of full passes through the training set), Figure 6. We hy-350

pothesize that the greater number of gradient updates from smaller batch sizes facili-351

tated optimization. However, smaller batches on performant GPUs required longer train-352

ing duration. Consequently, we settled on intermediate batch sizes as they yielded sim-353

ilar overall results with reduced wall-clock time. To facilitate the optimizer’s back prop-354

agation, we ensured that each batch was composed primarily of chunks from the same355

region (Figure 5). For example, if the majority of the chunks in a batch were from tidally-356

dominant stations, the few from less-predictable wind-dominant stations would likely not357

contribute to that batch’s loss in any significant manner. Batching with same-region chunks358

was conducted to mitigate this issue. We also interrogated several optimizers including359

stochastic gradient descent, Adadelta, Adagrad, and quasi-Newton methods, but Adam360

proved to be the most stable and performant.361

We adopted the mean squared error (MSE) loss function in place of mean abso-362

lute error (MAE) loss to aggressively minimize outliers. In exploratory studies, we ob-363

served that both MAE and MSE loss targeted intermediate errors equally effectively, but364

that MSE loss reduced the larger errors at some wind-dominant stations (e.g. Annapo-365
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lis, Baltimore) more reliably. We could have trained the TFTs with quantile regression366

to produce probabilistic forecasts; however, given that our focus herein was rendering367

deterministic predictions, we did not pursue this option.368

Upon settling on a batching strategy, optimizer, and loss function, automated Bayesian369

optimization was employed via a Tree-Structured Parzen Estimator (TPE) to efficiently370

minimize MSE loss over the following hyperparameters: number of LSTM layers, num-371

ber of attention heads, hidden layer dimension, and dropout rate. Our model proved rel-372

atively insensitive to these hyperparameters over a subset of stations in the Northeast;373

however, modest performance gains were obtained nonetheless. Based on this exercise,374

three LSTM layers, three attention heads, and a dropout rate of approximately 10% were375

adopted. Hidden layer size was ultimately capped at 110 to keep training time and com-376

putational costs manageable.377

After conducting the hyperparametric sweep, ten models were identified for com-378

prehensive training and evaluation. They are described below:379

1. Global - All - Baseline: This model inherited the tuned hyperparameters in ad-380

dition to all of the covariates listed in Table 1 (U, V, ADCIRC η, tidal resynthe-381

sis and time and spatial covariates). It was trained on the first 70% of each sta-382

tion’s chunks in the hindcast period. It was trained on all stations in the Alaska,383

West, Gulf, and East regions. In the model, the encoder attends to both past and384

future covariates, while the decoder attends only to future covariates.385

2. Global - No Physics: This model was identical to the Baseline model incorporat-386

ing the time and spatial covariates, but did not retain any of the physics-based387

dynamic covariates (U, V, ADCIRC η, tidal resynthesis).388

3. Global - No Tides: This model was identical to the Baseline model, but was not389

given access to the tidal covariates. Using this model, we wanted to assess if tidal-390

centric errors could be addressed by the transformer in the absence of a tidal resyn-391

thesis.392

4. Global - No Winds: This model was identical to the Baseline model, but lacked393

past and future wind covariates.394

5. Global - All - Full Attention: This model derived from the Baseline model, but395

adopted a slightly different architecture wherein the decoder was allowed to at-396

tend to previous, current, and forthcoming future covariates in the forecast hori-397

zon. Enabling the decoder to attend to current and forthcoming future wind data,398

and not simply previous covariates as is done in the baseline model, was hypoth-399

esized to increase performance in wind-dominant stations.400

6. Global - All - 30% Train: This model derived from the Baseline model, but was401

trained on only the first 30% of each station’s chunks in the hindcast period (as402

opposed to 70%).403

7. Alaska - All: This model derived from the Baseline model, but was trained exclu-404

sively on chunks in the Alaska region.405

8. West - All: This model derived from the Baseline model, but was trained exclu-406

sively on chunks in the West region.407

9. Gulf - All: This model derived from the Baseline model, but was trained exclu-408

sively on chunks in the Gulf region.409

10. East - All: This model derived from the Baseline model, but was trained exclu-410

sively on chunks in the East region.411

We leveraged Nvidia A6000 GPUs for training and inference. Training a “global” model412

required approximately 24-hours of wall-clock time. Evaluating a “global” model’s en-413

tire test set for all chunks therein required only a minute of wall-clock time.414
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3 Results415

3.1 Evaluation Metrics416

To quantify the performance of each TFT model, we considered four evaluation met-417

rics: normalized root-mean-squared error (NRMSE), maximum error (MAX), coefficient418

of determination (R2), and the Willmott skill score (WSS) (Willmott, 1981). They are419

given by:420

NRMSE =

√
1
n

∑
n
i=1(ηobs,i − ηpred,i)2√
1
n

∑
n
i=1(ηobs,i)

2
(1)

MAX = max(|ηobs,i − ηpred,i|) (2)

R2 = 1−
∑

n
i=1(ηobs,i − ηpred,i)

2∑
n
i=1(ηobs,i − ηobs,avg)2

(3)

WSS = 1−
∑

n
i=1(ηobs,i − ηpred,i)

2∑
n
i=1(|ηpred,i − ηobs,avg|+ |ηobs,i − ηobs,avg|)2

(4)

Note that ηobs and ηpred denote observed and predicted surface water elevations, respec-421

tively, and n denotes output chunk length (168). We consider two sets of predicted wa-422

ter levels: ADCIRC-predicted (i.e. raw ADCIRC) and ML-Corrected (i.e. ADCIRC+ML).423

NRMSE and MAX are error metrics. Smaller values denote superior model performance.424

R2 and WSS are regressive score metrics. For both, a value of 1 denotes perfect skill.425

These four metrics were used to evaluate individual chunks.426

3.2 Evaluated Performance427

In this section, we evaluate TFT region-based and station-based performance us-428

ing the test set of each station. This set was separate from training and validation. More-429

over, for each station, the test set period did not overlap with that of the training set.430

On average, each station had 100 test chunks. Each evaluation considered evaluation met-431

rics calculated for individual chunks, and then these metrics were averaged over regions432

(see region-based performance) or individual stations (see station-based performance).433

Figure 7 illustrates how ADIRC + ML improves the solution as compared to ADCIRC434

alone for one 7-day forecasting chunk at three sample stations.435

3.2.1 Region-Based Performance436

We calculated the four evaluation metrics for the 7-day forecast horizon in each of437

the chunks in our test set. Thereafter, we averaged these metrics over all of the chunks438

at each station. We then grouped these averaged metrics by region. The resulting dis-439

tributions are plotted in Figure 8. It is clear that all of the TFTs rendered relatively ag-440

gressive corrections in Alaska, the West (predominantly Pacific Seaboard), and the East441

(predominantly Atlantic Seaboard). This is likely because each of these regions have a442

majority of tidally-dominant stations wherein surface water elevations are determined443

by highly deterministic, cyclical tidal potential functions and not by lower fidelity, less444

certain meteorology. The performance of the TFT devoid of physics-based dynamic co-445

variates supports this hypothesis as it rendered relatively aggressive corrections corre-446

lating errors predominantly to time covariates.447
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Figure 7. Examples of 7-day output test chunks considered in the evaluation. ADCIRC-

predicted and ML-corrected error are considered here. Values closer to x-axis represent higher

skill. ML output was produced in a “single shot” for each chunk.
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In the Gulf of Mexico, however, the TFT-based corrections were less aggressive.448

The Gulf has a majority of wind-dominant stations which are difficult to predict, lead-449

ing to larger ADCIRC prediction uncertainty and weaker ML-based corrections. Adding450

tides and ADCIRC’s predictions (“Global - No Winds”) and thereafter adding wind (“Global451

- All - Baseline”) clearly made for more performant TFTs, especially in the Gulf. The452

TFT trained with full attention demonstrated roughly the same skill as its counterpart453

with limited attention, suggesting that allowing the decoder to attend to current and forth-454

coming future covariates does not enhance performance and that the encoder’s atten-455

tion to past and future covariates controls model skill. Excluding resynthesized tides but456

retaining all other covariates (“Global - No Tides”) rendered similar performance to the457

other TFTs supplied with physics-based covariates, suggesting that time covariates are458

facilitating tidal pattern recognition in ADCIRC’s error space and surface water eleva-459

tion prediction. The TFT with a reduced training set size exhibited approximately the460

same skill as the TFT devoid of physics-based dynamic covariates. Finally, the regional461

models demonstrated slightly worse performance compared to the “Baseline” model.462

From this high-level region-centric evaluation, we can assume that (1) the TFT is463

intrinsically capable of correcting tidally dominant stations without physics-based dy-464

namic covariates, but by adding additional physics-based covariates (viz. ADCIRC pre-465

diction), the TFT renders a more aggressive correction and (2) the physics-based covari-466

ates facilitate improved TFT performance at wind-dominated stations. We will confirm467

these assumptions in the following section wherein we conduct a station-based evalua-468

tion.469

3.2.2 Station-Based Performance470

The evaluation metrics were calculated for each station’s chunks in our test set. First,471

we considered TFT late-horizon performance. All time-series forecasting models suffer472

from degradation, and this is typically correlated to horizon length. The TFT is no ex-473

ception. As shown in Figure 9, TFT skill within the 6-7 day horizon was lower than its474

skill within the 0-1 day horizon. Moreover, more prominent drops in late-horizon skill475

generally occurred at wind-dominant stations. The “Global - No Physics” TFT exhib-476

ited the largest drops while the “Global - All - Baseline” model, with its dynamic wind477

covariates, exhibited the lowest. It is noteworthy that even at the most recalcitrant wind-478

dominant stations, the degradation of “Global - All - Baseline” was no more than 25%479

of the station chunk-averaged NRMSE. In other words, late-horizon degradation, while480

quantifiable, was relatively small. It is noteworthy that in a true forecast mode, in the481

absence of hindcasted meteorology, the TFT is expected to exhibit more significant late-482

horizon degradation since meteorological data for the future seven days will incorporate483

forecast uncertainty.484

To summarize these results, in Figure 10 we plot the range of the first-day and sixth-485

day NRMSE averaged over all available test chunks at each station for both ADCIRC486

and the “Global - All - Baseline” TFT. Referring to Alaska, it is clear that the TFT was487

able to render aggressive corrections with minimal long-horizon degradation at the tidally-488

dominant stations. At the region’s four wind-dominant stations, however, the corrections489

were comparatively weaker and exhibited more significant long-horizon degradation. This490

same trend was observed in the West and East regions. In the East region, some hybrid491

stations (tidally-dominant stations with water levels occasionally influenced by winds)492

exhibited weaker corrections and moderate late-horizon degradation. In the Gulf, while493

no station exhibited significant late-horizon degradation, no aggressive corrections were494

rendered save for at the Coast Guard Station in Mobile, Alabama (the TFT dropped the495

NRMSE from 0.67 to 0.32).496

We then considered chunk-averaged performance of the “Global - All - Baseline”497

TFT at all 228 stations. Here, we grouped chunks by station and then averaged. Refer-498
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Figure 8. Boxplots of station chunk-averaged evaluation metrics separated by region for AD-

CIRC and various TFTs. The ML-corrected ADCIRC prediction was considered for each TFT.
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Figure 9. Relationship between late-horizon degradation in ML performance as quantified by

NRMSE6−7 days−NRMSE0−1 days and tidal-wind dominance as quantified by the ratio between

total potential energy and tidal potential energy. In general, every ML model considered indi-

cated late-horizon degradation for both tidally-dominant and wind-dominant stations; however,

this degradation was more pronounced at wind-dominant stations. The lines are best-fits to sta-

tion chunk-averaged degradation for each ML model. All stations were considered.

Figure 10. 45-deg plots of the range of ML-corrected vs. ADCIRC-predicted NRMSE for

each station. The Global - All - Baseline TFT was used to generate each plot. Each bar corre-

sponds to a station (test chunk-averaged data). The length of each bar indicates the degradation

in model skill over the horizon (bottom corresponds to 0-1 day horizon NRMSE, top corresponds

to 6-7 day horizon NRMSE). In general, tidally-dominant stations were associated with aggres-

sive corrections and low degradation in skill over the horizon. Wind-dominant stations were

associated with comparatively weaker corrections and higher degradation in skill over the hori-

zon.
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Figure 11. 45-deg plots of ML-corrected vs. ADCIRC-predicted evaluation metrics at the 228

stations throughout the test period. The evaluated ML model was Global - All - Baseline. Each

marker corresponds to a station with the metric averaged over all chunks for that station. Colors

reference the ratio between a given station’s total potential energy to its tidal potential energy,

an indication of tidal to wind dominance.

ring to Figure 11, the ML-corrected chunk-averaged station-specific evaluation metrics499

vs. the ADCIRC-predicted chunk-averaged station-specific evaluation metrics, it is ap-500

parent that the TFT was able to render corrections at all but one station (Copano Bay,501

Texas). The most aggressive corrections occurred at the tidally-dominant stations; 90%502

of tidal stations saw NRMSE decrease by at least 25% while 50% saw their NRMSE more503

than halved. The TFT was able to render corrections at wind-dominant stations; how-504

ever, they were unable to produce the skill observed at the tidally-dominant stations.505

Regardless, 40% of wind-dominant stations saw their NRMSE decrease by at least 25%506

while 65% of stations whose ADCIRC NRMSE was greater than 0.4 also saw their NRMSE507

more than halved.508

To clarify this trend further, we investigated six stations in detail: two tidally-dominant509

(Boston and Anchorage), two wind-dominant (Annapolis, Baltimore), and two riverine510

(Bridesburg, Pilottown). Figure12 shows 45-deg plots of predicted vs. observed hourly511

η values for all test chunks for each station for standalone ADCIRC and four TFT-enhanced512

forecasts with increasing levels of sophistication: the TFT without any physics-based dy-513

namic covariates (“Global - No Physics”), the TFT with all physics-based dynamic co-514

variates except for winds (“Global - No Winds”), the TFT with all covariates (“Global515

- All - Baseline”), and the region-centric TFTs with all covariates. It is clear that of these516

four TFTs, “Global - No Physics” was the least performant. It did make modest cor-517

rections at the tidally-dominant and riverine stations, suggesting that it picked up on518

cyclic patterns in the error space via the time covariates, but it was largely unrespon-519
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sive at wind-dominant stations. It is noteworthy that this model corrected a phasing is-520

sue at Bridesburg and partially corrected the anisotropic bias at Pilottown. Broadly, the521

TFTs appear to be capable of correcting over-damping and under-damping behavior and522

even phase lags without physics covariates. The “Global - No Winds” TFT was gener-523

ally more performant with the addition of tidal and ADCIRC covariates. Most notably,524

it corrected entirely the skewed bias produced by ADCIRC at Pilottown. Adding winds525

slightly deteriorated performance at the tidally-dominant stations, but significantly im-526

proved TFT skill at Annapolis, Baltimore, and Bridesburg. At the tidally-dominant sta-527

tions, this behavior was likely caused by the TFT attending to winds that were other-528

wise inconsequential. The inclusion of the tidal covariate was meant to help the TFTs529

discern the non-tidal contribution of surface water elevations at the stations, but this530

inclusion did not improve solutions at either tidally-dominant and wind-dominant sta-531

tions. Including winds in the “Global - All - Baseline” TFT rendered improved perfor-532

mance at Annapolis and Baltimore; however, at the riverine Pilottown station, the ad-533

dition of winds actually deteriorated performance. Except at the Annapolis station, the534

region-based models were generally less performant than their global counterpart. This535

suggests that the TFTs clearly benefited from training on a multitude of signals regard-536

less of region.537

To explore the entitlement of adding wind covariates, we plot test-chunk-based NRM-538

SEs for the six stations considered above in Figure 13. Here, we exercised only “Global539

- All - Baseline” and “Global - No Winds”. For the tidally-dominant stations (Boston540

and Anchorage), it is apparent that both transformers produced predictions of similar541

skill. Annapolis and Baltimore, both wind-dominant stations, saw marked improvements542

from adding wind covariates. Moreover, it is clear that large ADCIRC errors were gen-543

erally associated with high-wind events, suggesting that attending to winds results in544

enhanced transformer correction capacity. The riverine station Pilottown saw a marginal545

improvement in chunk-based NRMSE with the inclusion of wind covariates. Finally, the546

other riverine station, Bridesburg, exhibited an aggressive correction from both TFTs547

and demonstrated, for a few high-speed wind chunks, the utility of adding wind covari-548

ates.549

Based on these results, it is apparent that the addition of physics-based dynamic550

covariates yields enhanced performance at wind-dominant stations. The inclusion of time551

covariates alone produced considerable improvement at tidally-dominant stations, but552

failed to render desired performance at the wind-dominant stations. Adding tides did553

not enhance transformer performance; however, adding ADCIRC’s own prediction (“Global554

- No Winds”) further enhanced skill at both station types, but it was only after adding555

wind covariates that more consistent corrections were rendered at wind-dominant sta-556

tions (e.g. Annapolis, Baltimore).557

4 Conclusions and Discussion558

We have coupled the temporal fusion transformer to a high-fidelity global ocean559

hydrodynamics model, STOFS 2D Global, to render improved station-based predictions560

of surface water elevation seven days into the future. The STOFS 2D Global model by561

itself has generally exhibited high skill along US coastlines and adjacent inland coastal562

waters, but nevertheless, it has systemic model discrepancy stemming from inadequate563

geometric representation, coarse mesh resolution, incorrect bathymetry, uncertainty in564

the parameterization of dissipative processes, and meteorological error. Weakly coupling565

a transformer to this physics-based hydrodynamics model enables the identification of566

patterns in model error space and their subsequent reduction. We considered several trans-567

formers in this study, each supplied with different covariates to ascertain what param-568

eters lead to a skillful corrector. We trained and evaluated each transformer on a three-569

year ADCIRC STOFS 2D Global hindcast. The transformers produced 7-day predictions570

of ADCIRC error in a “single shot” with 1-hour temporal resolution, ingesting five days571
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Figure 12. 45-deg plots of predicted vs. observed surface water elevation for hourly data

for all test forecast periods. Values from the 6-7 day forecast horizon are used. Annapolis and

Baltimore are wind-dominant stations in the Chesapeake Bay (East), Bridesburg is a moderate

wind-dominant station located in the Delaware River (East), Anchorage is a tidally dominant

station in Alaska, and Pilottown is a wind-dominant station located in Louisiana (Gulf). The

ML-corrected ADCIRC prediction was considered for each TFT.
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Figure 13. 45-deg plots of ML-corrected vs. ADCIRC-predicted NRMSE averaged for each

test chunk at the station. The left column considers Global - All - Baseline, which was trained

on winds. The right column considers Global - No Winds, which was not trained on winds. Each

marker corresponds to a 7-day output test chunk. In general, the wind-trained transformer was

more performant at wind-dominant stations than the transformer trained without winds. Perfor-

mance at tidally-dominant stations was largely insensitive to winds.
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of data prior to the forecast horizon. Based on the evaluation of each transformer, we572

conclude the following:573

• In general, a single transformer exhibits sufficient skill to consistently correct sur-574

face water elevations at hundreds of stations along the US coastline.575

• Each transformer was particularly capable at tidally-dominant stations. Even in576

the absence of physics-based dynamic covariates, the TFT was able to render ag-577

gressive corrections. For the best-performing transformer, which incorporated AD-578

CIRC computed water levels and wind covariates throughout the 5-day hindcast579

and 7-day forecast, 50% of tidal stations saw their NRMSE (averaged over the test580

period) halved. In certain cases, the inclusion of wind covariates slightly deteri-581

orated performance at tidally-dominant stations. This suggests that the TFT was582

attending to winds, even in cases when ADCIRC error was wind-invariant.583

• At wind-dominant stations, adding more physics-based dynamic covariates led to584

enhanced skill. Including none of these resulted in little to no corrections. Adding585

ADCIRC’s predictions certainly improved performance at wind-dominant stations;586

however, wind covariates were necessary to correct recalcitrant test chunks, espe-587

cially those with high wind-speed events. With the full complement of physics-588

based covariates, 40% of wind-dominant stations saw their NRMSE reduced by589

at least 25%.590

• Transformers were either trained on all stations along US coastlines or on stations591

in specific regions. Region-centric transformers exhibited slightly diminished per-592

formance compared to their counterparts trained on all available stations. The wind-593

dominant Annapolis station was one exceptional station wherein the region-centric594

model out-performed the global transformers.595

• Of all the transformers considered, a TFT trained on 2-years of the hindcast with596

the full complement of past, future, and static covariates was, with a few excep-597

tions, the most performant. This TFT was denoted “Global - All - Baseline” herein.598

Exceptions include the aforementioned slight deterioration at tidally-dominant sta-599

tions (owing to needlessly attending to winds) and rare instances of region-based600

TFT superiority. The TFT trained with full attention, so that its decoder could601

attend to forthcoming future covariates, exhibited roughly similar performance with602

a larger training cost as compared to the same model whose decoder could only603

attend to previous future covariates. Both of these models had encoders that did604

attend to both past and future covariates.605

• The TFTs exhibited modest amounts of late-horizon degradation in skill. This degra-606

dation was measured, test chunk by test chunk, as the difference between the NRMSE607

for the 6-7 day horizon and the NRMSE for the 0-1 day horizon. This degrada-608

tion was noted to be the highest at some wind-dominant stations; however, it never609

exceeded 25% of a given station’s average NRMSE.610

The approach proposed herein is station-centric. Training and evaluation data was611

mapped to hundreds of stations situated along US coastlines, and improvements were612

rendered by the transformers at these specific locations. The extrapolative capability of613

the TFT was not assessed. While it could theoretically be used to extrapolate beyond614

the trained stations, it is likely that the training set size would need to include thousands615

(and not hundreds) of stations so that the TFT could draw correlations between the sup-616

plied location-based static covariates, the physics-based dynamic covariates, and the tar-617

get signal.618

The framework was challenged to attend to high wind-speed events. In the present619

work, the vast majority of chunks did not incorporate elevated wind levels and their as-620

sociated elevated surges. The few chunks that did were not accommodated in any par-621

ticular fashion. In fact, while MSE loss penalized outliers aggressively, it did so in batches.622

Consequently, the few chunks with fringe events were likely muted by the more frequent623
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quiescent chunks. There are potential pathways to circumvent this undesirable behav-624

ior. For example, in imbalanced classification problems, class weights make the optimizer625

more cognizant of under-represented classes. By tagging our fringe chunks and ampli-626

fying their loss, we hypothesize that the optimizer may become more sensitive to them.627

However, this does not address the shortcomings of the wind product. CFSv2 has 0.25628

deg spatial resolution. Consequently, it is not expected to perform well in regions with629

variable terrain and complex shallow inland water systems whose water levels are par-630

ticularly susceptible to strong winds. Additionally, this lack of resolution means that it631

cannot adequately resolve strong frontal systems and high-energy, low-pressure wind events632

such as tropical cyclones which tend to be muted in the product. Finally, it does not have633

skillful inland atmospheric boundary layer adjustments, further reducing its utility for634

the inland and near-shore stations considered herein.635

Finally, maturing the proposed framework for operational forecasting will require636

adopting forecasted meteorology and water level predictions in place of hindcasted val-637

ues. This will introduce a greater level of epistemic uncertainty. Herein, we trained our638

TFTs using a deterministic loss function. This deterministic model could be used to fa-639

cilitate forward propagation in an ensemble uncertainty quantification scheme. For ex-640

ample, each member of NOAA’s Global Ensemble Forecast System (GEFS) could be forced641

independently through the transformer. Thereafter, probabilities of exceedance could be642

calculated at each station. Additionally, leveraging quantile regression in place of a de-643

terministic loss function could help quantify confidence of each correction in time. Col-644

lectively, this strategy offers a compelling pathway to operations which are becomingly645

increasingly stochastic in nature.646

Open Research Section647

Results from the three-year ADCIRC STOFS 2D Global hindcast used to train the648

transformers considered herein can be downloaded from the “Improving Storm Surge Fore-649

casts with Transformers” project (Cerrone et al., 2023) on DesignSafe (NSF-NHERI, 2023).650

Moreover, output from each transformer can be found under the same DesignSafe project.651

This project can be accessed here: https://doi.org/10.17603/ds2-t5mf-3757652
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