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Abstract28

We use Wasserstein Generative Adversarial Networks to learn and integrate multi-scale29

features in segmented three-dimensional images of porous materials, enabling the depend-30

able generation of large-scale representations of complex porous media. A Laplacian pyra-31

mid generator is introduced which creates pore-space features with a hierarchy of spa-32

tial scales. Feature statistics mixing regularization enhances the ability of the model gen-33

eration to reliably maintain multi-scale pore-space features of images by increasing di-34

versity. The method is tested on a variety of X-ray images of porous rocks. The gener-35

ated images can be of any size – cm-scale ten-billion-cell images are generated to demon-36

strate the power of the approach – which have two-point correlation functions, poros-37

ity, permeability, Euler characteristic, curvature, and specific surface area close to the38

training datasets. The images demonstrate a considerable improvement over previously-39

published studies using generative adversarial networks.40

Plain Language Summary41

High-resolution three-dimensional X-ray microscopy can be used to image the pore42

space of porous materials. Machine learning algorithms trained on billion-voxel datasets43

can generate a statistical ensemble of representative images of arbitrary size, for rock char-44

acterization, modelling and analysis. However, current methods cannot easily capture45

the features at different spatial scales seen in many heterogeneous rocks. We develop an46

improved multi-scale neural network that automatically reproduces features of the pore47

space of different size. By testing on five sandstone and carbonate samples we show that48

the generated images accurately capture geometric and flow properties and are superior49

to those produced using existing machine learning techniques. Finally we demonstrate50

the power of the method by generating ten-billion voxel images, representing a cm-sized51

sample with almost micron resolution.52

1 Introduction53

Three-dimensional imaging, typically using X-rays, has revolutionized our under-54

standing of flow in porous media, since both the pore structure and the fluids within can55

be seen in otherwise opaque materials. This technology has been applied to study wa-56

ter resources, fuel cells, carbon dioxide sequestration, hydrogen storage, and the recov-57

ery of oil and natural gas (Chai et al., 2022; Wang et al., 2022; Jiang et al., 2023; Wang58

et al., 2023; Li et al., 2023). In imaging there is an inevitable trade-off between resolu-59

tion which has to be sufficiently high to resolve the pore space accurately, and field of60

view to capture a representative volume of the medium on which macroscopic proper-61

ties can be observed or calculated (Saxena et al., 2018; Wang et al., 2021; Sadeghnejad62

et al., 2023).63

The statistical generation of pore-space images through various numerical meth-64

ods, can potentially achieve both high resolution and the required field of view (FoV)65

(Liu & Mukerji, 2022). Traditional solutions capture spatial statistical information, or66

simulate sedimentary processes to create random porous media. Until recently the state-67

of-the-art was multiple point statistics that had been successfully applied to generate three-68

dimensional pore-space images (Okabe & Blunt, 2004).69

In recent years, the rapid development of machine learning, especially generative70

models, combined with the wide availability of good-quality three-dimensional data for71

training, has transformed our ability to generate images. Mosser et al. (2017, 2018) were72

the first to reconstruct random porous media, including a sandstone, a carbonate and73

beadpacks, based on Generative Adversarial Networks (GANs). Zha et al. (2020) em-74

ployed Wasserstein GANs with a gradient penalty to generate images of shale. Liu et75

al. (2019) combined data augmentation techniques with Deep Convolution GANs (DC-76
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GANs). Shams et al. (2020) integrated GANs with autoencoders to generate sandstones77

with intra-granular pores. Zhao et al. (2021) applied a DCGAN for the three-dimensional78

reconstruction of tight sandstones. Zhang et al. (2022) incorporated convolutional neu-79

ral networks (CNNs) into a traditional GAN, forming a method to quickly and accurately80

produce large-scale three-dimensional porous media. However, adversarial learning meth-81

ods such as DCGAN find it challenging to train networks to generate complex random82

porous media with features over a range of length scales.83

Current challenges in pore-space generation are: 1○ how to ensure that multi-scale84

heterogeneous pore features are learnt during the training phase; and 2○ after obtain-85

ing a plethora of multi-scale features, how to enhance control over the training process.86

These two aspects determine whether the model can provide reliable multi-scale gener-87

ation. In this letter, we propose a new method based on an improved generative adver-88

sarial network to address these issues. In terms of multi-scale feature learning, it intro-89

duces a pyramid structure into the generator. During the training process, it captures90

different scale features through cooperative training between layers of different sizes, gen-91

erating images in a coarse-to-fine manner. Subsequently, it incorporates feature statis-92

tics mixing regularization (FSMR) to strengthen the constraints of the discriminator,93

preventing the generative model from being sensitive to specific pore features, thereby94

enhancing the model’s generative diversity. Furthermore, to better integrate multi-scale95

features and improve model training stability to obtain a reliable model, the Wasserstein96

GAN- Lipschitz Penalty (LP) is added to the model. The new model is termed the Im-97

proved Pyramid Wasserstein GAN (IPWGAN). Leveraging these advantages, we offer98

a superior solution for the rapid and reliable generation of large-scale complex porous99

media, be it heterogeneous sandstones or carbonates.100

2 Methodology101

A GAN consists of two networks: a generator and a discriminator. The generator102

learns how to produce samples, while the discriminator aids the training of the gener-103

ator by determining the authenticity of the generated images. For the generator, we have104

incorporated a simplified pyramid structure to the conventional model, facilitating the105

extraction of multi-scale pore features and the connectivity between different types and106

sizes of pores. For the discriminator, we have employed the feature statistics mixing reg-107

ularization method to encourage diversity in the generated samples. This prevents the108

model from focusing solely on textures, which could lead to a singular pattern that fails109

to replicate the diverse and complex pore spaces found in real multi-scale heterogeneous110

porous media. Additionally, we opted to use the WGAN-LP loss function in place of the111

traditional GAN loss function to enhance training stability, diversify the images gener-112

ated, and prevent gradient vanishing and explosion issues. The proposed workflow is il-113

lustrated in Figure 1.114

2.1 Pyramid generator structure115

In GANs, the generator’s performance directly determines the quality of image gen-116

eration. For image generation tasks, traditional generators typically upscale a random117

noise vector through multiple deconvolution operations until it matches the size of the118

training samples. Throughout the training process, the generator is trained as a contin-119

uous, integrated network. In contrast, the pyramid-style generator adopts a hierarchi-120

cal structure. In this design, each layer of the network is connected in series, with each121

layer specifically handling data of a certain resolution. For instance, the bottom layer122

mainly processes high-resolution data, while the top layer deals with low-resolution data.123

This layered approach allows the pyramid GAN to capture the multi-scale characteris-124

tics of the data more accurately, resulting in higher quality image generation. Currently,125

there are various pyramid-style generators available, such as the Laplacian pyramid (Denton126

et al., 2015) and the dual pyramid (Li et al., 2022). In this study, we chose the Lapla-127
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Figure 1. Proposed workflow for generating artificial images of porous media, which includes

the incorporation of a Laplacian pyramid structure in the generator. a. Architecture and training

method of the generator. The pyramid generator is generated layer by layer and can be regarded

as multiple independent modules. It extracts from the latent high-dimensional vector z, com-

posed of Gaussian random noise, and approaches the features of real three-dimensional digital

rock data through layer-by-layer training to obtain the fake images. b. Architecture and training

method of the discriminator with WGAN-LP loss and feature statistics mixing regularization. An

equal number of fake images and real images will be labelled and input into the discriminator.

Through training, it tries to distinguish between fake and real images. In addition to the error

of the WGAN that needs to be calculated, the results of the LP penalty term used to control

training smoothness and convergence, and the FSMR regularization term used to control sample

diversity are added to the total error. Based on the error, the difference between fake and real is

judged, and the error is fed back to the generator to guide the error backpropagation training.

The generation phase is similar to the generator training phase, but it does not perform error

backpropagation. It only takes vectors as input to obtain realistic fake images. The size of the

fake images is determined by the size of the input vector z.

cian pyramid as the foundation and simplified it by omitting the step of calculating losses128

separately for each layer to accelerate training. This simplification ensures the model’s129

lightweight nature, allowing it to be trained on a single GPU.130

The Laplacian pyramid is composed of a set of generator networks. Each gener-131

ator, when constructed, not only utilizes random noise but also receives feedback from132

the downsampled output of the previous generator. This approach is used to stack and133

learn multi-scale features. Assuming there is a set of generator models G0, . . . ,GK , the134

input for any generator model (1<k≤K) is:135

Ĩk = d(Õk−1) + z̃k = d(G̃k−1(Ĩk−1)) + z̃k (1)

In the formula, Ĩk represents the input for the kth generator model Gk. The func-136

tion d(·) refers to the downsampling operation. Õk−1 is the output of the k−1th gen-137
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erator model G̃k−1, and z̃k is the corresponding random noise vector for G̃k. Therefore,138

the Laplacian pyramid generator consists of networks that are trained independently but139

share information with adjacent layers. This approach ensures the targeted acquisition140

of multi-scale information from images. Changes in the generator do not affect the train-141

ing process of the discriminator. In other words, the discriminator still uses the fake im-142

ages output by the last generator as its input.143

2.2 Mixing and regularization of feature statistics144

Unlike the generator, considering memory usage during training and ensuring the145

diversity of generated samples (which is crucial for complex porous media, as strong het-146

erogeneity leads to diverse pore structure features with multiple scales), we chose the fea-147

ture statistics mixing regularization (FSMR) discriminator (Kim et al., 2022). Typically,148

discriminators are highly sensitive to the texture of images (for digital rock core images,149

this refers to features such as pore shapes), which to some extent reduces the diversity150

of image generation. FSMR encourages the discriminator’s predictions to remain invari-151

ant to the style of the input image. This is achieved by using the mean and standard de-152

viation of intermediate feature maps mixed from another training sample within the dis-153

criminator and penalizing the difference between the original and mixed outputs.154

The specific operation involves generating mixed features of the original image and155

the reference image in the discriminator’s feature space. Feature statistics mixing (FSM)156

is defined for feature maps x with respect to feature maps y as AdaIN followed by lin-157

ear interpolation:158

FSM(x, y) = αx+ (1− α)AdaIN(x, y) = αx+
σ(y)(x− µ(x))

σ(x)
+ µ(y) (2)

where α ∼ Uniform(0, 1) controls the intensity of feature perturbation. AdaIN is adap-159

tive instance normalization, x, y ∈ RC×D×H×W are features obtained by a pretrained160

encoder, and µ(·) and σ(·) denote their mean and standard deviation, calculated for each161

channel, respectively. Assuming the ith layer of the discriminator is fi, the content fea-162

ture image is represented as c, and the style feature image is represented as s (randomly163

selected from the current training batch samples), the mixed feature maps x̃ and ỹ are:164 
x̃1 = f1(c)
ỹ1 = f1(s)
x̃i+1 = fi+1(FSM(x̃i, ỹi))
ỹi+1 = fi+1(FSM(ỹi, x̃i))

(3)

The calculation method for FSM is presented in Kim et al. (2022). The corresponding165

penalty term is computed based on the loss:166

LFSMR = Ec,s∼pdata

[
(D(c)−DFSM(c, s))2

]
= Ec,s∼pdata

[
(D(c)− Linear(x̃n))

2
]

(4)

where n refers to the nth layer of the discriminator, original output is represented by D(c),167

and mixed output is represented by DFSM(c, s).168

2.3 WGAN-LP169

The use of the JS divergence in the original objective function of DCGAN can lead170

to various problems, such as a vanishing gradient, and poses very high requirements for171

control during the training process (Mosser et al., 2017). WGAN was proposed to ad-172

dress the instability in the training of the original GAN. It offers a solution from the per-173

spective of optimizing the objective function. However, the training of WGAN requires174

the function to be within the space of 1-Lipschitz functions. There are many schemes175

to achieve this condition, such as weight clipping, spectral normalization, gradient penalty,176

Lp normalization (Lp-norm), and so on. Due to the small and relatively stable penalty177
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weight required by (Lp-norm) normalization, it is used in this paper, resulting in WGAN-178

LP (Zhou et al., 2018).179

The combination of WGAN-LP and FSMR loss forms the final loss function:180

L = minG

{
max∥D∥L≤1

[
Ex∼p(x)[D(x)]− Ez∼q(z)[D(G(z))]

]
+ λ1Ex̂∼p(x̂)

[
(∥∇x̂D(x̂)∥2 − 1)

2
]
+ λ2LFSMR

}
(5)

Ex∼p(x)[D(x)] represents the expected output of the real sample x on the discriminator181

Ez∼q(z)[D(G(z))] represents the expected output of the fake sample produced by the gen-182

erator G on the discriminator D. λ1 is the weight coefficient for Lp-norm normalization,183

which is used to control the importance of the penalty term. In this study, it is recom-184

mended to be set to 5. x̂ is an interpolation between the real and the generated sam-185

ple to ensure that the discriminator is Lipschitz continuous throughout the entire data186

space. λ2 is the weight coefficient for FSMR. In this study, it is recommended to be set187

to 10. A loss function with multiple constraints can achieve more reliable results, mak-188

ing it suitable for adapting to the complexity of the pore space in heterogeneous rock189

images faced in the reconstruction task. In addition, some other means to improve the190

training effect are used, such as the generator being updated once after 5 discriminator191

updates to ensure that the discriminator is effective each time the generator is updated.192

3 Data and results193

3.1 Data preparation and training194

We selected dry images of three sandstones and two heterogeneous carbonate rocks195

as test data, Figure 2. The sandstones are Berea sandstone (12003 voxels, voxel size: 2.0196

µm) (Garfi et al., 2020), Bentheimer sandstone (10002×3000 voxels, voxel size: 3.58 µm)197

(Lin et al., 2018), and Mt. Simon sandstone (12003 voxels, voxel size: 2.8 µm) (Fan et198

al., 2020). The carbonates are Estaillades (10003 voxels, voxel size: 3.58 µm) (Muljadi199

et al., 2016) and Savonnières (10003 voxels, voxel size: 3.8 µm) (Bultreys et al., 2016).200

We conducted the training on a workstation equipped with a single NVIDIA Quadro201

RTX 5000 graphics card, a dual Intel(R) Xeon(R) Gold 5222 @ 3.80GHz CPU, and 64GB202

of memory. Prior to training, the rock samples need to be cut into sub-samples for use.203

Due to memory limitations, we recommend a size of 643 for the training data as a first204

choice. However, for highly heterogeneous rocks, larger sizes are needed for the algorithm205

to learn multi-scale features. The two-point correlation function was used to determine206

size of the training data (further detail is provided in the Supplementary Information).207

For the 643 size training samples, the learning rate is 0.0002, the maximum number of208

training iterations is 800, and size of the random noise vector z input into the genera-209

tor is 100. For the 1283 size training samples, the learning rate is 0.0003, the maximum210

number of training iterations is 800, and size of the random noise vector z input into the211

generator is 512. For the choice of the network structure for the discriminator and gen-212

erator, we followed the scheme proposed by Mosser et al. (2017) which can automati-213

cally select the appropriate network structure according to the size of the training sam-214

ples. For sizes 643 and 1283, the generator network structure consists of 14 and 16 lay-215

ers respectively, and the discriminator network structure consists of 16 and 18 layers re-216

spectively. The specific feature parameters, training parameters, and network hyperpa-217

rameters for the generator and discriminator for the five samples are shown in Table 1.218

3.2 Results219

Figure 3 displays two-dimesnional cross-sections of the original heterogeneous pore220

images, the images reconstructed using the IPWGAN method proposed in this paper,221

and the images reconstructed using the commonly used DCGAN method (Salimans et222

al., 2016; Mosser et al., 2017). Examining the generated results at a size larger than the223
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a. Berea sandstone b. Bentheimer sandstone c. Mt. Simon sandstone

d. Estaillades carbonate e. Savonnières carbonate

Figure 2. Visualization of the five heterogeneous rock samples studied in this paper. The

pore space is shown in red and the solid in grey. a. The heterogeneity of Berea sandstone pri-

marily originates from secondary processes, with its pore spaces being affected by clay and

calcite cementation. This also means that the porosity of the selected Berea sandstone sample is

very low, not exceeding 10%. The heterogeneity of b. Bentheimer sandstone and c. Mt. Simon

sandstone both arise from the varying sizes and non-uniform distribution of grains. d. Estail-

lades carbonate exhibits extreme heterogeneity in pore size distribution, which greatly impacts

pore connectivity. e. The pore heterogeneity in Savonnières carbonate is due to multiple pore

types: intergranular and microconnected macroporosity (hollow ooids), next to intergranular,

and intraooidic microporosity. The hollow ooids are only connected to the other macropores by

microporosity in the ooid shells. The generation of Savonnières carbonate is the most challenging

of these five samples.
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Table 1. Properties of the training data and parameters during training. ϕ refers to the con-

nected porosity, K refers to the absolute permeability, Euler denotes the Euler characteristic per

unit volume of the void space. Curv refers to the average curvature of the solid/void interface,

TSS refers to the training sample size, NTS refers to the number of training samples, LRVS refers

to the latent random vector size, TGS refers to the time to generate a sample of 3003 with a

single NVIDIA Quadro RTX 5000 graphics card, SSA stands for specific surface area.

Parameters
Berea

sandstone
Bentheimer
sandstone

Mt. Simon
sandstone

Estaillades
carbonate

Savonnières
carbonate

Volume 12003 10002 × 3000 12003 10003 10003

Voxel size (µm) 2.0 3.58 2.8 3.58 3.8
ϕ (-) 0.07 0.22 0.27 0.10 0.14
Euler (mm−3) −3.02× 104 −1.98× 104 −2.04× 104 −2.26× 103 −8.75× 103

Curv (mm−1) 5.2× 10−5 1.29× 10−5 8.2× 10−6 1.33× 10−5 1.22× 10−5

SSA (mm−1) 19.4 71.0 78.2 70.1 51.5

TSS 1283 643 643 1283 1283

NTS 7.29× 102 1.035× 104 5.832× 103 1.372× 103 1.0× 103

LRVS 512 100 100 512 512
TGS (s) 5.34 2.79 2.47 5.62 5.59

training sample size is critical for heterogeneous porous rocks, and also tests the model’s224

upscaling capability. IPWGAN captures pore shapes and connectivity more similar to225

the real images. Visually, the proportion of pores of different size is captured, and the226

pore shapes match the real images closely, indicating that diverse multi-scale visual de-227

tails are captured.228

In contrast, the results from DCGAN seem quite uniform, and even after multi-229

ple training attempts, it still cannot achieve good results in reconstructing Savonnières230

carbonate. 6003 images have also been created to further assess the model’s upscaling231

capability, and the results are shown in Figure S3. Details about the hyperparameter se-232

lection are also provided in the Supplementary Information.233

To quantitatively evaluate the quality of the generated images, we calculated poros-234

ity, absolute permeability (computed by Porefoam1f, Raeini et al. (2012); Bijeljic et al.235

(2013)), curvature, specific surface area, and Euler characteristic for generated 3003 and236

6003 images. Additionally, we analyzed their respective two-point correlation functions.237

The results for the artificial 3003 images of Berea sandstone, Estaillades carbonate, and238

Savonnières carbonate are shown in Figure 4.239

The DCGAN does not consider targeted learning and the maintenance of multi-240

scale features during the training process. Besides the functional value variations with241

size differing from the base-case images, it can be observed that at larger sizes, it can-242

not maintain pore features, giving poor predictons in many cases. In contrast, the IP-243

WGAN can maintain functional regularity well within the displayed size range. This is244

because IPWGAN captures both global and local image features. It is evident that it245

provides good predictions of statistical parameters, especially for Berea and Estaillades.246

Savonnières is more complex, and the IPWGAN does not fully learn all features of the247

images, resulting in a parameter range smaller than real images, even though we have248

used pyramid structures and FSMR. However, the results are still significantly better249

than DCGAN.250

To prove the cross-scale upscaling capability of the proposed model, we generated251

cm-scale 2,2003 (ten-billion-cell) images (Figure 5). This represents the size on which252
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Type Berea sandstone Estaillades carbonate Savonnières carbonate

Real images

IPWGAN

DCGAN

Figure 3. Two-dimensional cross-sections of three-dimensional images of Berea, Estaillades,

and Savonnières, which have pronounced heterogeneity. Each type of three-dimensional image is

presented with two distinct two-dimensional cross-sections images to show different characteris-

tics. Visualizations for Bentheimer and Mt. Simon are shown in the Supplementary Information.

traditonal measurements of average flow properties are acquired. We can generate im-253

ages of this size while maintaining high resolution. The reconstructed images show sta-254

bility in both visualization with porosity, permeability, surface area, curvature and Eu-255

ler characteristic values that fall within the range of the training data. This confirms that256

IPWGAN can truly achieve cross-scale upscaling, which is crucial for petrophysics and257

porous media flow studies.258

Table 2 lists the error statistics for all results, further revealing the difference in259

results between IPWGAN and the representative machine learning reconstruction method260

DCGAN. Particularly for parameters such as Euler characteristic, that quantifies con-261

nectivity, IPWGAN showcases better results.262
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a. Berea sandstone b. Estaillades carbonate c. Savonnières carbonate
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Figure 4. The upper plots display the porosity, permeability, average curvature range, spe-

cific surface area, and Euler characteristic per unit volume for the actual images (represented in

red) in comparison to predictions made using IPWGAN (in blue) and the previously-published

DCGAN (in green) (Mosser et al., 2017) for Berea, Estaillades, and Savonnières.This box plot

provides a detailed representation of the statistical distribution of the dataset. The bottom of

the box (the lower quartile) and the top of the box (the upper quartile) delineate the range for

the middle 50% of the data, while the line within the box represents the median, indicating the

central point of the data. The ”whiskers” of the box plot extend to the minimum and maximum

values, illustrating the range of the data excluding outliers. Additionally, the plot includes out-

lier and inner points. The statistics are based on 21 randomly selected 3003 samples from the

entire image, with corresponding IPWGAN and DCGAN each randomly generating the same

size and number of synthetic images. The lower plots illustrate the two-point correlation function

for the three aforementioned samples, derived from the statistics of 21 images. The red dashed

line represents the results from the real images, the blue solid line represents the results from

IPWGAN-generated images, and the green dashed line represents the results from DCGAN. The

shaded areas show the range of the real images plus or minus one standard deviation from the

mean. The blue stars represent the average of the results from three 3003 randomly-selected

sections of the 2, 2003 generated images.

a. Berea 2,2003 b. Estaillades 2,2003 c. Savonnières 2,2003

Figure 5. Generated images for Berea sandstone, Estaillades carbonate, and Savonnières car-

bonate of size 2,2003 at the centimetre scale, where red indicates porosity and grey represents the

solid. The generated images retain the visual characteristics of the original images and exhibit

distinct heterogeneity, consistent with that of the original samples.
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Table 2. Parameters and two-point correlation function results of Berea, Estaillades, and

Savonnières with 3003 voxel statistics: mean relative error, MRE, Eqs. (S2), ϕ refers to the

connected porosity, K refers to the absolute permeability, Curv refers to the curvature, Euler

denotes the Euler characteristic per unit volume, SSA stands for specific surface area, and TE

indicates the average relative difference in the two-point correlation function between real and

fake images for each two-point distance, Eq. (S3). The improvement of IPWGAN over DCGAN

is significant, with the mean relative errors for all items mostly below 0.1.

Samples Error of parameters
and function

MRE
IPWGAN DCGAN

Berea sandstone

ϕ 0.02 0.16
K 0.23 1.08

Euler 0.11 0.66
Curv 0.08 0.57
SSA 0.01 0.36
TE 10.0 17.3

Estaillades Carbonate

ϕ 0.22 0.32
K 0.24 0.37

Euler 0.45 2.10
Curv 0.12 0.21
SSA 0.002 0.25
TE 8.49 13.2

Savonnières carbonate

ϕ 0.23 0.41
K 0.61 0.90

Euler 0.01 3.08
Curv 0.01 0.03
SSA 0.001 0.43
TE 8.84 20.2

4 Discussion263

Previous work on three-dimensional image generation mainly focused on generat-264

ing small-scale samples of simple porous rocks, without giving sufficient attention to ef-265

fective training of multi-scale pore structure information (Yan et al., 2023). The method266

we propose integrates pyramid structure generators, FSMR, and other enhancement tech-267

niques. This allows the generated images to maintain both local and global features and268

can retain various properties of heterogeneous porous rocks even when expanding to nearly269

10 times the training sample size. Our method truly overcomes the trade-off between res-270

olution and field of view for heterogeneous digital rock data. Images with greater het-271

erogeneity and more complex pore spaces are harder to train perfectly, due to the insuf-272

ficient sample volume and low model complexity.273

The results using a single GPU are already satisfactory, but some more memory-274

intensive direct enhancement methods could be considered, such as the self-attention mod-275

ule, which focuses on long-range pore connectivity (Zhang et al., 2019). Furthermore,276

during modelling, it is essential to reinforce control of the topology. Savonnières is a good277

example; its topological features differ significantly from the other images studied. Dur-278

ing training, it was challenging to capture good topological characteristics. Approaches279

including TopoGan that add quantitative topological feature loss constraints are an ex-280

cellent direction for further improvement of the method (Wang et al., 2020). Specific con-281

volutions, such as dynamic serpentine convolution, are helpful in capturing the topolog-282

ical features of porous media. Additionally, multi-modal learning combined with graph283

neural networks is a potential solution, as graph neural networks are sensitive to topol-284
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ogy (Holzinger et al., 2021). Moreover, the main constraint in generating 10,0003 images285

(trillion-cells) or larger is neither the model (as the statistical features of images gener-286

ated are stable) nor the generation time (as it takes 5 hours using high performance com-287

puting with 2 cores and also 4TB memory for a single 2,2003 image), the main limita-288

tion is memory.289

5 Conclusions290

We have proposed an innovative method to generate heterogeneous three-dimensional291

pore space images from training samples by effectively capturing multi-scale features while292

preserving the inherent physical properties. Within the method, the pyramid generator293

structure integrates multi-scale digital rock images, effectively revealing the character-294

istics and relationship between large and small pores. Feature statistics mixing regular-295

ization enhances image diversity and improves the discernment of genuine local features,296

a common challenge in practice.297

The method was applied to five heterogeneous rock images: three sandstones and298

two carbonates. The IPWGAN produced good predictions of porosity, absolute perme-299

ability, specific surface area, curvature, Euler characteristic and the two-point corelation300

function with better results than obtained using the previously-published DCGAN.301

Finally, the IPWGAN was able to generate stable multi-billion-cell images, repre-302

senting cm-sized samples at micron resolution. This provides benchmark reconstructions303

for modeling and analysis of porous structures at different length scales.304

6 Open Research305

The data set in this paper can be accessed through figshare data (analysis):306
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