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S1. Details of probabilistic diffusion model

The theory and practice of probabilistic diffusion models can be math-heavy and convo-

luted. We provide mathematical and implementation details of the deployed probabilistic

diffusion model. For a friendly tutorial, see Luo (2022). For more information and useful

learning materials, see Sohl-Dickstein et al. (2015), Ho et al. (2020), Kingma et al. (2021),

and Song et al. (2020).

S1.1 Decomposition of log p(y) using latent z0:1

Diffusion model is an explicit likelihood based generative model. Its learning objec-

tive function is a factorization of data likelihood defined over latent variables z0:1 =

{zt0=0, zt1 , zt2 , ..., ztT=1}. This factorization stands at the core of variational view of dif-

fusion models. A step-by-step derivation is given below.

First, for a pre-defined p(z0:1|y), we have:

log p(y) = Ep(z0:1|y)

[
log p(y)

]
= Ep(z0:1|y)

[
log

p(z0:1,y)

p(z0:1|y)

]
(1)

Given p(zt|y) := N (αty, σ
2
t I), 0 = t0 < t1 < t2 < ... < tT = 1, we have:

p(z0:1,y) = p(y|z0:1)p(zt0|zt1:tT )p(zt1|zt2:tT )...p(ztT−1
|ztT )p(ztT )

= p(y|zt0)p(zt0 |zt1)p(zt1|zt2)...p(ztT−1
|ztT )p(ztT )

= p(y|zt0)p(ztT )
T∏
i=1

p(zti−1
|zti)

(2)

and
p(z0:1|y) = p(zt0|y)p(zt1|zt0 ,y)p(zt2 |zt0:t1 ,y)...p(ztT |zt0:tT−1

,y)

= p(zt0|y)p(zt1|zt0)p(zt2|zt1)...p(ztT |ztT−1
)

= p(zt0|y)
T∏
i=1

p(zti |zti−1
)

(3)

Plug Eq. 2 and Eq. 3 into Eq. 1, we have:
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log p(y) =Ep(z0:1|y)

[
log

p(z0:1,y)

p(z0:1|y)

]
=Ep(z0:1|y)

[
log

p(y|zt0)p(ztT )
∏T

i=1 p(zti−1
|zti)

p(zt0|y)
∏T

i=1 p(zti |zti−1
)

]
=Ep(z0:1|y)

[
log

p(y|zt0)p(ztT )
p(zt0|y)

+
T∑
i=1

log
p(zti−1

|zti)
p(zti |zti−1

)

] (4)

While Eq. 4 can be decomposed into differentiable terms, it involves estimating expecta-

tion over two random variables: {zti−1
, zti}, which may have high variance (Luo, 2022).

To achieve a robust estimate, we re-write p(zti |zti−1
) as:

p(zti |zti−1
) = p(zti |zti−1

,y) =
p(zti−1

|zti ,y)p(zti |y)
p(zti−1

|y)
(5)

Plug Eq. 5 into Eq. 4, we have:

log p(y) =Ep(z0:1|y)

[
log

p(y|zt0)p(ztT )
p(zt0|y)

+
T∑
i=1

log
p(zti−1

|zti)
p(zti |zti−1

)

]
=Ep(z0:1|y)

[
log

p(y|zt0)p(ztT )
p(zt0|y)

+
T∑
i=1

log
p(zti−1

|zti)
p(zti−1 |zti ,y)p(zti |y)

p(zti−1 |y)

]

=Ep(z0:1|y)

[
log

p(y|zt0)p(ztT )
p(zt0|y)

+
T∑
i=1

log
p(zti−1

|zti)
p(zti−1

|zti ,y)
+

T∑
i=1

log
p(zti−1

|y)
p(zti |y)

]
=Ep(z0:1|y)

[
log

p(y|zt0)p(ztT )
p(zt0|y)

+
T∑
i=1

log
p(zti−1

|zti)
p(zti−1

|zti ,y)
+ log

p(zt0|y)
p(ztT |y)

]
=Ep(z0:1|y)

[
log p(y|zt0) +

T∑
i=1

log
p(zti−1

|zti)
p(zti−1

|zti ,y)
+ log

p(ztT )

p(ztT |y)

]
=Ep(zt0 |y) log p(y|zt0) + Ep(zT |y) log

p(ztT )

p(ztT |y)
+

T∑
i=1

Ep(zi|y) log
p(zti−1

|zti)
p(zti−1

|zti ,y)

=Ep(zt0 |y) log p(y|zt0) + Ep(zT |y) log
p(ztT )

p(ztT |y)
+

T∑
i=1

Ep(zi|y) log
p(zti−1

|zti)
p(zti−1

|zti ,y)

=Ep(zt0 |y) log p(y|zt0)−DKL

(
p(ztT |y)||p(ztT )

)
−

T∑
i=1

Ep(zti |y)DKL

(
p(zti−1

|zti ,y)||p(zti−1
|zti)

)
=Ep(z0|y) log p(y|z0)−DKL

(
p(z1|y)||p(z1)

)
−

T∑
i=1

Ep(zti |y)DKL

(
p(zti−1

|zti ,y)||p(zti−1
|zti)

)

(6)

We now take a close examination of the three terms on the right side of Eq. 6:

• Ep(z0|y) log p(y|z0):] given that α0 := 1, σ0 := 0, we have p(z0|y) =

{
δ, z0 = y

0, else
, and

p(y|z0) =

{
δ, y = z0
0, else

, δ is Dirac function. Thus, we have Ep(z0|y) log p(y|z0) = 0.
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• DKL

(
p(z1|y)||p(z1)

)
: given that α1 := 0, σ1 := 1, we have p(z1|y) ∼ N (0, I), which

is agnostic of y, this leads to p(z1) ∼ N (0, I), therefore, DKL

(
p(z1|y)||p(z1)

)
= 0.

•
T∑
i=1

Ep(zti |y)DKL

(
p(zti−1

|zti ,y)||p(zti−1
|zti): for any i, we can derive an analytical Gaus-

sian form of p(zti−1
|zti ,y) (see below). For fine enough discretization of time, p(zti−1

|zti) is

also Gaussian, which is represented as a variational distribution parameterized by neural

networks. Thus, we obtain an analytical form of DKL

(
p(zti−1

|zti ,y)||p(zti−1
|zti), suitable

for stochastic gradient optimization.

Given the analysis above, to maximize log p(y) is approximately equivalent to minimiz-

ing the following time averaging Kullback–Leibler divergence term:

log p(y) ≈ −
T∑
i=1

Ep(zti |y)DKL

(
p(zti−1

|zti ,y)||p(zti−1
|zti)

)
(7)

Below we derive analytical form of p(zti−1
|zti ,y) and relate it with score estimate of

p(zti |y), which enables robust optimization and high-quality generative modeling.

S1.2 Analytical/parameterized form of p(zti−1
|zti, y)/p(zti|zti−1

)

To derive the analytical form of p(zti−1
|zti ,y), we have:

p(zti−1
|zti ,y) =p(zti |zti−1

,y)
p(zti−1

|y)
p(zti |y)

= p(zti |zti−1
)
p(zti−1

|y)
p(zti |y)

∝ exp
(
− 1

2

((zti − αti

αti−1
zti−1

)2

σ2
ti −

α2
ti

α2
ti−1

σ2
ti−1

+
(zti−1

− αti−1
y)2

σ2
ti−1

− (zti − αtiy)
2

σ2
ti

))

=exp
(
− 1

2

( 1

σ2
ti−1

(1−
α2
ti
σ2
ti−1

α2
ti−1

σ2
ti

)
z2ti−1

− 2(

αti

αti−1
zti

σ2
ti −

α2
ti

α2
ti−1

σ2
ti−1

+
αti−1

y

σ2
ti−1

)zti−1
+ C(zti ,y)

))
(8)

Hence p(zti−1
|zti ,y) = N (µ̃ti , Σ̃ti), where:

µ̃ti =
αti−1

αti
zti −

αti−1

αti
(σ2

ti
−

α2
ti

α2
ti−1

σ2
ti−1

)
zti − αtiy

σ2
ti

=
αti−1

αti
zti +

αti−1

αti
(σ2

ti
−

α2
ti

α2
ti−1

σ2
ti−1

)∇ log p(zti |y)
(9)

and

Σ̃ti = σ2
ti−1

(1−
σ2
ti−1

σ2
ti

α2
ti

α2
ti−1

)I (10)
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Given fine enough discretization of time, p(zti−1
|zti) is also Gaussian, i.e. p(zti−1

|zti) =

N (µti ,Σti). We parameterize µti in accordance with the analytical form of µ̃ti :

µti =
αti−1

αti
zti +

αti−1

αti
(σ2

ti
−

α2
ti

α2
ti−1

σ2
ti−1

)ϵNN(zti) (11)

where ϵNN(zti) is neural network parameterization of ∇ log p(zti |y). Following Ho & Sali-

mans (2022), we consider the following simplied representation of Σti :

Σti =
σ
2vti
ti

σ
2vti
ti−1

Σ̃ti (12)

where vti := 0.5 for all time steps.

Given the analytical/parameterized form of p(zti−1
|zti ,y)/p(zti |zti−1

), we have:

ϵ∗NN(zti) = argmax
ϵNN(zti )

log p(y)

≈ argmin
ϵNN(zti )

Ep(zti |y)DKL

(
p(zti−1

|zti ,y)||p(zti−1
|zti)

)
= argmin

ϵNN(zti )

Ep(zti |y)
[
(µ̃ti − µti)

TΣ−1
ti
(µ̃ti − µti)

]
= argmin

ϵNN(zti )

Ep(zti |y)
[
Σ̃ti

σ
2(1−vti )
ti

σ
2(1−vti )
ti−1

∥∥∇ log p(zti |y)− ϵNN(zti)
∥∥
2

]
≈ argmin

ϵNN(zti )

Ep(zti |y)
∥∥∇ log p(zti |y)− ϵNN(zti)

∥∥
2

(13)

We apply standard stochastic gradient descent to obtain ϵ∗NN(zti). Thereafter, we can

approximate {µti ,Σti} using Eq. 11 and 12. Based on pθ(zti−1
|zti), we carry out iterative

ancestral sampling: note that p(z1) = N (0, I) given the forward Gaussian Process setup.

Therefore, starting from standard Gaussian samples, we iteratively generate samples of

ztT−1
, ztT−2

, ..., zt0 , using the learned distributions of p(zti−1
|zti), i = T, T−1, ..., 1. Finally,

p(y|z0) =

{
δ, y = z0
0, else

.

S1.3 {αt, σt}: noise schedule

In diffusion model, we define a Gaussian process to map target distribution to a standard

Gaussian. {αt, σt} specifies the noise schedule, quantifying how fast the target distribu-

tion is diminished through the diffusion process. A better noise schedule allows efficient
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optimization and improved model likelihood, which may be achieved via optimization

(Kingma et al., 2021). Here, for simplicity, we adopt a pre-defined noise schedule, follow-

ing Ho & Salimans (2022) and Nichol & Dhariwal (2021). Specifically, we parameterize

{αt, σt} as a function of λt:

α2
t = 1− σ2

t =
1

1 + e−λt
(14)

where:

λt = −2 log tan(at+ b) (15)

Here b = arctan(e−
λmax

2 ), a = arctan(e−
λmin

2 ) − b, t is uniformly sampled from [0, 1].

{λmin = −20, λmax = 20} are hyper-parameters. This noise schedule represents a hyper-

bolic secant distribution modified to be supported on a bounded interval (Ho & Salimans,

2022).

S1.4 Encoding of diffusion time step

Diffusion model is an iterative generative model, involving a hierarchy of neural net-

work models ϵNN(zt) to approximate score functions ∇ log p(zt|y) at multiple noise levels.

While this hierarchy of neural network models can be learned separately, in practice, we

often adopt a time-dependent neural network, using an vector embedding of t to account

for the impact of learning objective difference for different noise levels. Following Song

et al. (2020), we incorporate the time information via Gaussian random features, i.e.:

embedding(t) = [sin(2πωt); cos(2πωt)], where ω ∼ N (0, sI), s = 1 is a pre-defined scaling

parameter.

S1.5 Model architecture and training details

The neural networks we apply for unconditional/conditional score estimates are time-

dependent UNets with structures illustrated in Fig. S1 and Fig. S2. For now we do not

include attention mechanism for computation efficiency. Both models take into input of

noisified precipitation field and nosification scale, and outputs the score estimate. We
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embed the time information, and stack the time embedding as extra channel to all UNet

blocks. Each contract block consists of a long chain of {C3×3 +N+ReLU}3, and a short

chain of {C1×1}1, concatenated as a residual block, Cn×n is convolution layer with kernel

receptive field of size n×n, N is group normalization, ReLU is rectified linear unit function.

Each expand block consists of a long chain of {R2+C3×3+N+ReLU}3, and a short chain of

{R2,C1×1}1, concatenating as a residual block, Rn resize the data by n times using linear

interpolation. We start with channel size of 128, and double/shrink the channel size by 2

along each contract/expand block. For the conditional score estimating neural network,

we includes the conditioning information. This conditioning information is deterministic

precipitation estimation, offered by a separate UNnet that takes into input of dynamical

field information. In this sense, the conditional score estimating neural network tries to

recover and add details of the precipitation information discarded by the deterministic

precipitation estimator.

We use data from 1979-2016/2017-2018/2019-2022 for training/validation/test. We

keep same data splitting strategy for all data-driven models considered in this study. To

train the unconditional model, we randomly crop precipitation field data of size 80 × 80

(8◦ × 8◦), add random scale noise to the data, and use the unconditional diffusion model

to estimate the score. We use ADAM optimizer and an initial learning rate of 10−3. We

halve the learning rate if validation loss is not decreasing for 10 epochs. To train the

conditional model, we include conditioning information from a UNet based deterministic

precipitation estimate, the rest settings are same as the unconditional case.
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S2. Baseline models

S2.1 UNet

We consider UNet as 1) a deterministic baseline and 2) the conditioning information

extractor for all the generative models. UNet a unique convolutional neural network ar-

chitecture suited for image-relevant tasks. Here, the model takes into input of resolved

dynamical field information and static elevation information, and outputs a determinis-

tic precipitation field estimate. The dynamical field information is provided by a 9-hour

(including 3 previous/current/future hours), 8◦ × 8◦ circulation field data, with 19 chan-

nels representing 19 dynamical variables, including key primitive variables (meridional and

zonal wind velocity, temperature, specific humidity, and geopotential height) at 3 pressure

levels (1000/850/500 hPa), and crucial surface level variables (sea level pressure, surface

pressure, surface temperature, and total column precipitable water). This dynamical field

information is first pre-processed through 3D convolution blocks, and concatenated with

preprocessed elevation information, before feeding into a 2D UNet. The UNet applies

a convolution based contracting path to capture precipitation relevant dynamical field

information, and a symmetric transposed convolution based expanding path to gradually

refine precipitation field estimates. Skip connections between symmetrical convolution

and transposed convolution blocks are applied to force deeper neural network layers to

learn meaningful representations that are not well captured by shallower layers. The

learning objective is to minimize the squared error between estimated and observed pre-

cipitation. Underlying this objective function is the assumption that p(y|x) is Gaussian,

with identical error covariance for any x and any grid point. See Fig. S3 for UNet model

architecture.

S2.2 Conditional variational autoencoder (CVAE)
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Conditional variational autoencoder (CVAE) is deep neural network powered probabilis-

tic graphical model. To learn a non-linear latent variable model for the target conditional

distribution p(y|x), CVAE constructs a bijective mapping between p(y|x) and a tractable

latent distribution p(z|x), using an encoder-decoder neural network architecture. The

encoder qϕ approximates p(z|x,y) as a variational Gaussian distribution; the decoder pψ

approximates p(y|x, z) using the conditioning information x and the learned latent vec-

tor z. To approximate the target conditional distribution, {qϕ, pψ} are jointly trained to

maximize the following evidence lower bound (ELBO) of the data log likelihood:

ELBO = Ez∼qϕ log pψ − βDKL

(
qϕ∥p(z|x)

)
(16)

Here p(z|x) is assumed to be standard Gaussian; β is a parameter balancing sample diver-

sity and sample accordance to the conditioning information, similar to the functionality

of ω in diffusion model. To train CVAE, we run mini-batches of {x,y} samples through

{qϕ, pψ}, and update their parameters to maximize the ELBO, using stochastic gradient

ascent. To generate novel samples of p(y|x), we draw z samples from p(z|x) and pass

them together with x through the optimal p∗ψ. See Fig. S4 for model architecture details.

S2.3 Conditional generative adversarial net (CGAN)

Conditional generative adversarial net (CGAN) approximates a target conditional dis-

tribution p(y|x) by setting up a “game” between two neural networks. The generator

network G takes into input of the conditioning information x and random noise z to

create samples that are intended to come from the target distribution; the discriminator

network D is a binary classifier, optimized to differentiate between generated samples and

true samples:

LD = Ey

(
D(y)

)
− Ez

(
D
(
G(x, z)

))
(17)
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The generator network is optimized to 1) fool the discriminator network, and 2) draw the

mean of generated samples close to ground truth observations ():

LG = Ez

(
D
(
G(x, z)

))
− λE{y,z}||G(x, z)− y||2 (18)

Here λ is a parameter that balances sample diversity and sample accordance to the con-

ditioning information, similar to the functionality of ω/β in diffusion/CVAE model. To

train CGAN, we run mini-batches of {x,y, z} samples through {G,D}, and apply stochas-

tic gradient ascent to maximize LD and LG. We keep the optimal G∗ if it offers best skill

performance (measured by continuous ranked probabilistic skill score, as it is a proper

scoring rule, see below) for the validation set. To generate novel samples of p(y|x), we

draw z samples from random noise and pass them together with x through the optimal

G∗. See Fig. S5 for model architecture details.

S2.4 Dynamical downscaling using WRF

We include comparison to a dynamical simulation approach for numerical precipitation

estimation. Here the Advanced Research Version 4.2 of Weather Research and Forecast-

ing (WRF-ARW V4.2, Skamarock et al. 2019) is deployed for simulation of a Typhoon

precipitation case (Typhoon Lekima, 0000 UTC 04 August 2019 -0000 UTC 12 August

2019). WRF-ARW refines the coarsely resolved climate processes at regional scale, using

high-resolution numerical geophysical fluid dynamics solver and a suite of accompanying

parameterization schemes. We apply Global Forecast System reanalysis data to provide

the initial and boundary condition for the considered precipitation cases. We apply spec-

tral nudging of wind for the outer domain to ensure consistency between the simulated

large-scale circulations and the analysis fields. The simulated domains are delineated in

Fig. S6. The selected parameterization schemes as listed in Tab. S1.
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S3. Evaluation metrics

S3.1 Human eYe Perceptual Evaluation (HYPE)

We apply a simplified Human eYe Perceptual Evaluation (HYPE) to assess the sample

quality of models’ precipitation estimates, relying on human climate scientists’ and climate

model end-users’ perceptions. We measure human climate experts’ error rate in detecting

observations that are randomly mixed with model generated samples. We report the test

takers’ accuracy rate in five tests.

S3.2 Power spectral analysis

We inspect the spatial structure of precipitation estimates by computing their average

spectrum power as function of spatial frequencies and orientations. The computation

steps are as follows:

Step 1: Transform the precipitation field data to frequency domain, using Fast Fourier

Transform.

Step 2: Compute the power spectrum by taking the squared magnitude of the Fourier

Transform coefficients.

Next, for radial averaged power spectrum analysis:

Step 1: Define a set of concentric circles centered at the origin of the frequency domain,

along each radial line, calculate the average power by averaging the power spectrum values

corresponding to the points intersected by the line.

Step 2: Plot the average power values against the corresponding radial frequency.

For orientation averaged power spectrum analysis:

Step 1: Define a set of concentric circles centered at the origin of the frequency domain,

along each orientation angle, calculate the average power by averaging the power spectrum

values corresponding to the points through this orientation angle.

Step 2: Plot the average power values against the corresponding orientation angle.
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S3.3 Spread-Skill Correlation (SSC)

The spatial correlation coefficient between the standard deviation of model’s ensemble,

and the mean absolute error of model’s ensemble mean:

SSC =

∑n
i=1(σi − σ̄)(ϵi − ϵ̄)√∑n

i=1(σi − σ̄)2 ·
∑n

i=1(ϵi − ϵ̄)2
(19)

where σi is the standard deviation of model’s ensemble at grid i:

σi =

√√√√ 1

J − 1

J∑
j=1

(ŷji − ¯̂yi)2 (20)

ϵi is the mean absolute error of model’s ensemble mean at grid i:

σi = |¯̂yi − yi| (21)

J is ensemble size; ŷji is the jth ensemble estimate at grid i; ¯̂yi is ensemble mean estimate;

yi is observation.

S3.4 Coverage Ratio (CR)

The percentage that grid observation falls into the coverage of ensemble spread.

S3.5 Pearson correlation coefficient (r)

The Pearson correlation coefficient (r) between ensemble mean prediction ŷ and obser-

vation y is calculated as follows:

r =

∑n
i=1(ŷi − ¯̂y)(yi − ȳ)√∑n

i=1(ŷi − ¯̂y)2 ·
∑n

i=1(yi − ȳ)2
(22)

S3.6 Root mean squared error (RMSE)

The root mean square error (RMSE) between ensemble mean prediction ŷ and obser-

vation y is calculated as follows:

RMSE =

√∑n
i=1(yi − ŷi)2

n
(23)

S3.7 Continuous ranked probabilistic score (CRPS)
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The continuous ranked probability score (CRPS) is defined as:

CRPS(F, x) =

∫ ∞

−∞
[F (ŷ)− I(ŷ ≥ y)]2 dy (24)

where F (ŷ) is the cumulative distribution function (CDF) of the predictive distribution,

y is the observed value, and I(·) is the indicator function.
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Figure S1. Model architecture of the unconditional score estimating neural network.

We embed the time information, and stack the time embedding as extra channel to all

UNet blocks. Each contract block consists of a long chain of {C3×3 + N + ReLU}3, and

a short chain of {C1×1}1, concatenated as a residual block. Cn×n is convolution layer,

with kernel receptive field of size n × n, N is group normalization. Each expand block

consists of a long chain of {R2 + C3×3 + N + ReLU}3, and a short chain of {R2,C1×1}1,

concatenating as a residual block, Rn resize the data by n times using linear interpolation.

We start with channel size of 128, and double/shrink the channel size by 2 along each

contract/expand block.
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Figure S2. Model architecture of the conditional score estimating neural network,

similar to the unconditional score estimating neural network, but includes the conditioning

information from a UNet precipitation estimation using dynamical field as input.
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Figure S3. UNet architecture. The model takes into input of resolved dynamical field

information and static elevation information, and outputs a deterministic precipitation

field estimate. The dynamical field information is provided by a 9-hour (including 3 pre-

vious/current/future hours), 8◦ × 8◦ circulation field data, with 19 channels representing

19 dynamical variables. This dynamical field information is first pre-processed through 3D

convolution blocks (bottom), and concatenated with preprocessed elevation information,

before feeding into a 2D UNet. The UNet applies a convolution based contracting path to

capture precipitation relevant dynamical field information, and a symmetric transposed

convolution based expanding path to gradually refine precipitation field estimates. Skip

connections between symmetrical convolution and transposed convolution blocks are ap-

plied to force deeper neural network layers to learn meaningful representations that are

not well captured by shallower layers.
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Figure S4. CVAE architecture. The encoder approximates p(z|x,y) as a variational

Gaussian distribution; the decoder approximates p(y|x, z) using the conditioning infor-

mation x and the learned latent vector z. The dimension of z is 32.
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Figure S5. CGAN architecture. We replicate the generator network G for 10 times,

each receiving a different z and a same conditioning information x to create an ensemble

member. The generator network G is trained to fool the discriminator network D, while

drawing the ensemble mean close to the realized observation. The discriminator network

D is a binary classifier, optimized to differentiate between generated samples and true

samples.

Physical process Option

Cloud microphysics Lin (Purdue)

Cumulus Zhang and McFarlane

Radiation Rapid Radiative Transfer Model

Boundary layer Yonsei University (YSU) PBL scheme

Surface Noah Land Surface Mode

Table S1. Physics options for WRF simulation.
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Typhoon Lekima

0000 UTC 04 Aug 2019-0000 UTC 12 Aug 2019

>35302520151050

maximum precipitation rate (mm/3h)

Figure S6. WRF nested Domains (27km/9km/3km) for Typhoon Lekima simulation,

from 0000 UTC 04 August 2019 to 0000 UTC 12 August 2019. Color denotes maximum

precipitation rate (mm/3h) through the simulation period.
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