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Abstract 13 

Distributed hydrological water quality models are increasingly being used to manage natural 14 

resources at the catchment scale but there are no calibration guidelines for selecting the most useful 15 

gauging stations. In this study, we investigated the influence of calibration schemes on the 16 

spatiotemporal performance of a fully distributed process-based hydrological water quality model 17 

(mHM-Nitrate) for discharge and nitrate simulations at Bode catchment in central Germany. We used 18 

a single- and two multi-site calibration schemes where the two multi-site schemes varied in number 19 

of gauging stations but each subcatchment represented different dominant land uses of the 20 

catchment. To extract a set of behavioral parameters for each calibration scheme, we chose a 21 

sequential multi-criteria method with 300.000 iterations. 22 

For discharge (Q), model performance was similar among the three schemes (NSE varied from 0.88 to 23 

0.92). However, for nitrate concentration, the multi-site schemes performed better than the single 24 

site scheme. This improvement may be attributed to that multi-site schemes incorporated a broader 25 

range of data, including low Q and NO3- values, thus provided a better representation of within-26 

catchment diversity. Conversely, adding more gauging stations in the multi-site approaches did not 27 

lead to further improvements in catchment representation but showed wider 95% uncertainty 28 

boundaries. Thus, adding observations that contained similar information on catchment 29 

characteristics did not seem to improve model performance and increased uncertainty. These results 30 

highlight the importance of strategically selecting gauging stations that reflect the full range of 31 

catchment heterogeneity rather than seeking to maximize station number, to optimize parameter 32 

calibration. 33 

Keywords 34 

Multi-Multi-site calibration, Spatiotemporal validation, Hydrological water quality model, Uncertainty, 35 

Parameter transferability  36 
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Highlights: 37 

 Single- and multi-site calibration approaches generally led to similar model performance for 38 

discharge (Q) at the catchment outlet. 39 

 Influence of calibration stations on the spatiotemporal performance of a fully distributed 40 

process-based hydrological water quality model. 41 

 The quality of the nitrate model simulation depends less on the number of calibration 42 

stations than on their representativeness of the catchment characteristics. 43 

  44 
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1. Introduction 45 

Distributed hydrological water quality models provide crucial support for water management 46 

decisions. The models include many parameters that represent spatial variability in hydrological and 47 

biogeochemical processes at the catchment scale that cannot be measured directly in the field (Li et 48 

al., 2010). Thus, parameters must be calibrated to optimize model performance (Engel et al., 2007; 49 

Moriasi et al., 2012; Saraswat et al., 2015).  50 

Most commonly, hydrological water quality models are calibrated using measurements made at the 51 

catchment outlet and may thus poorly simulate dynamics at sites within catchments, given spatial 52 

variability in conditions (Cao et al., 2006; Refsgaard et al., 2016, Refsgaard et al. 2022). As spatially 53 

structured discharge and water quality data become increasingly available, researchers are calling for 54 

multi-objective calibration strategies that allow for the inclusion of multiple sites, variables, and 55 

criteria (Daggupati et al., 2015; Efstratiadis and Koutsoyiannis, 2010; Khu et al., 2008).  56 

However, to date, findings are mixed regarding the performance of single- versus multi-site 57 

calibration techniques. Many studies have found that, for catchment outlets, multi-site calibration 58 

yields more accurate results than does single-site calibration (e.g., Ghaffar et al., 2021; Her and 59 

Chaubey, 2015; Jiang et al., 2015; Zhang et al., 2008). For example, Shrestha et al. (2016) found such 60 

to be the case for a SWAT model (Arnold et al., 2012; Arnold et al., 1998) simulating total nitrogen 61 

(TN) and total phosphorus (TP) loads. Ghaffar et al. (2021) reported the same for a HYPE model 62 

(Lindström et al., 2010) seeking to replicate nitrate (NO3
−) and TP concentrations across a suite of 63 

monitoring stations in central Germany’s Selke catchment.  64 

In contrast, several other studies have found that performance was largely equivalent for multi-site 65 

and single-site calibration techniques (e.g., Franco et al., 2020; Lerat et al., 2012; Wu et al., 2022a). 66 

They explained the unimproved model performance with high degree of similarity between flow data 67 

used to evaluate the model performance (Lerat et al., 2012), errors in boundary conditions as well as 68 

in representations of spatially structured hydrogeological properties (Wang et al., 2012) and 69 

hydrological processes (Wu et al., 2022a). However, it is important to note that previous studies have 70 
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largely utilized semi-distributed hydrological and water quality models (e.g., SWAT: (Leta et al., 2017; 71 

Zhang et al., 2008) and HYPE: (Ghaffar et al., 2021; Jiang et al., 2015) and that station choice has 72 

frequently been driven by availability. Guidance is lacking when it comes to selecting the most useful 73 

gauging stations when calibrating fully distributed hydrological water quality models.  74 

Compared to their lumped and semi-distributed counterparts, fully distributed hydrological water 75 

quality models incorporate detailed spatial information for sites within catchments while also 76 

including a broader range of parameters (Khu et al., 2008; Refsgaard, 1997). The applicability of 77 

parameters across spatial and temporal scales (i.e., parameter transferability) presents a major 78 

challenge for the construction of distributed hydrological water quality models (Beven, 2001; 79 

Samaniego et al., 2010). Parameters defined using information from calibration locations can be 80 

applied to other locations using a process called regionalization, as per Bloschl and Sivapalan (1995). 81 

Regionalization can be based on spatial proximity (Oudin et al., 2008a; Parajka et al., 2005), similarity 82 

in climatic and catchment characteristics (Beck et al., 2016; Merz and Blöschl, 2004; Oudin et al., 83 

2008b; Parajka et al., 2005), and non-linear transfer functions that relate the parameters to 84 

catchment characteristics (e.g., land use, soil type, and geological type) (Hundecha and Bárdossy, 85 

2004; Pokhrel et al., 2008; Wagener and Wheater, 2006). Samaniego et al. (2010) specifically 86 

developed a multi-scale parameter regionalization (MPR) method, whose appeal stems from the fact 87 

that only the coefficients in the transfer functions (i.e., the global parameters) need calibration, and 88 

not the parameters for each grid, substantially reducing the dimensionality of the calibrated 89 

parameters (Parajka et al., 2013; Singh et al., 2014). When model parameters are tied to catchment 90 

characteristics, calibration data drawn from diverse gauging stations are assumed to better represent 91 

within-catchment heterogeneity and to enhance model performance at spatial scales. However, little 92 

is known about the impact of different calibration schemes on the spatial and temporal performance 93 

of fully distributed hydrological water quality models. 94 

Hydrological water quality models are typically developed using current knowledge about the physical 95 

and chemical processes taking place in the focal catchment, an endeavor that inherently involves 96 
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simplifications and assumptions (Beven, 2007; Gupta et al., 2005). Uncertainty in model simulations is 97 

rooted in uncertainty from the measurement data, used as input and for calibration, as well as from 98 

model structure and parameterization (Vrugt et al., 2005; Wagener and Gupta, 2005). Such is 99 

especially true for spatially distributed hydrological water quality models, which contain more 100 

parameters than those of a lumped or semi-distributed model. While the hydrological modelling 101 

community has spent considerable time and effort designing uncertainty analysis techniques, the 102 

latter are rarely applied to distributed process-based hydrological water quality models, perhaps due 103 

to model complexity (Wellen et al., 2015). In addition, contrasting estimates of model simulation 104 

uncertainty have been obtained with single- versus multi-site calibration techniques. Jiang et al. 105 

(2015) found that, compared to single-site calibration, multi-site calibration reduced the uncertainty 106 

around estimates of Q and NO3
− concentrations in the HYPE model. In contrast, Her and Chaubey 107 

(2015) found the opposite effect for Q estimates from a SWAT model: better performance was 108 

obtained using single-site than multi-site calibration. Finally, Shrestha et al. (2016) reported mixed 109 

results: for a SWAT model, single-site calibration resulted in less uncertainty for simulated Q values, 110 

while multi-site calibration accomplished the same for simulated TN and TP loading values. Thus, 111 

there is a pressing need to explore the impact of multi-calibration techniques on the uncertainty 112 

associated with fully distributed models.   113 

Recently, Yang et al. (2018) developed a fully distributed hydrological water quality model (mHM-114 

Nitrate) that is based on both the mesoscale hydrological model (mHM) (Samaniego et al., 2010) and 115 

the HYPE model (Lindström et al., 2010). The mHM-Nitrate model appears to successfully handle 116 

different catchment characteristics (Wu et al., 2022b; Yang et al., 2019a), but it is unknown how well 117 

it deals with parameter transferability across space. Our study’s overarching aim was to evaluate the 118 

effects of different calibration schemes on the spatiotemporal performance of the mHM-Nitrate 119 

model. The specific objectives were as follows: (i) to evaluate and compare three calibration schemes 120 

that differed in gauging station number and representation of within-catchment diversity (e.g., land 121 

use and stream order); (ii) to assess parameter transferability across space under the three calibration 122 
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schemes using NO3
− data from a large number of sampling locations; and (iii) to examine the effects of 123 

the three calibration schemes on the degree of uncertainty associated with simulated NO3
− 124 

concentrations. Ideally, the study’s results should help guide the choice of effective calibration 125 

schemes, depending on the availability of Q and water quality data. 126 

2. Study area and methods 127 

2.1 Study area 128 

The Bode catchment has a area of 3,200 km2 and is located in central Germany (Figure 1). It is part of 129 

the Harz/Central German Lowland Observatory, within the broader TERENO Earth observation 130 

network focused on integrated, multi-scale monitoring and intensive research (Wollschläger et al., 131 

2016). There is dramatic spatial heterogeneity across the catchment, which extends from the Harz 132 

Mountains in the southwest to the lowlands of central Germany in the northeast. There is also a 133 

marked elevational gradient, ranging from 1,142 m above sea level (a.s.l.) at Brocken, the highest 134 

peak in the Harz Mountains, to 70 m a.s.l. in the central lowlands. These extremes are reflected in 135 

dramatic differences in mean annual precipitation at these two locations, equal to 1,500 mm and 500 136 

mm, respectively (climatic data: 1990–2019). In the mountains, mean monthly temperature ranges 137 

from -0.4℃ in January to 16.6℃; for the lowlands, these figures are 1.3℃ and 18.9℃, respectively. In 138 

the mountains, land surfaces are dominated by forests, with some pastures (10%), agricultural fields 139 

(8%), and urban areas and lakes (7%). In the lowlands, land surfaces are largely dedicated to 140 

cultivating crops (81%), primarily winter wheat, winter barley, rapeseed, and sugar beet. There is 141 

much less representation of other land use categories: forests (7%), pastures (3%), and urban areas 142 

and small lakes (9%) (Figure 1a). The predominant soil types in the mountains and lowlands are 143 

cambisols and chernozems, respectively. 144 
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145 
  146 

Figure 1. Maps of the Bode catchment showing (a) land use, the gauging stations, and the spatially 147 
distributed sampling locations as well as (b) elevation and the meteorological stations and (c) location 148 
of 6 internal stations presented in section 3.2. 149 

We gathered observations of daily precipitation, daily temperature (maximum, mean, and minimum), 150 

and potential evapotranspiration to use as model input. These measurements spanned the period 151 

between 1993–2019 and were provided by the German Weather Service (DWD); they came from 78 152 

rain gauges and 13 climate stations within the study area. To create the meteorological forcing 153 

dataset for the model, the daily precipitation and temperature data were spatially interpolated to 1 154 

km × 1 km grid data using the External Drift Kriging method. This interpolation approach uses 155 
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elevation, an external variable, to predict orographic effects on precipitation and temperature 156 

(Hundecha and Bárdossy, 2004). The daily potential evapotranspiration values were calculated using 157 

the Hargreaves and Samani (1985) method and interpolated at the same scale of spatial resolution. 158 

To set up the mHM-Nitrate model, several sources of geographical data were used. Elevation 159 

measurements (spatial resolution: 90 m × 90 m) were obtained from the Shuttle Radar Topography 160 

Mission (SRTM) (Jarvis, 2008). The digitized geological map and the soil map (scale: 1:1,000,000) were 161 

provided by the German Federal Institute for Geosciences and Natural Resources (BGR) 162 

(https://produktcenter.bgr.de; last accessed 1 June 2020). The land cover data came from CORINE 163 

Land Cover 2012, which contains information on land cover/land use in the year 2012 164 

(https://gdz.bkg.bund.de/index.php/default/open-data.html; last accessed 1 June 2020). These 165 

datasets were resampled to generate model input (spatial resolution: 100 m × 100 m). 166 

For model calibration and validation, we used measurements of Q and NO3
− concentrations from 167 

eight gauging stations. Daily measurements of Q at these stations were provided by the State Agency 168 

for Flood Protection and Water Management of Saxony-Anhalt (LHW) (http://gldweb.dhi-169 

wasy.com/gld-portal/; last accessed 10 April 2020). High-frequency (15 minutes) NO3
− concentrations 170 

for four stations (Meisdorf, Hausneindorf, Hadmersleben, and Stassfurt) between 2010 and 2019 171 

were obtained from the Helmholtz Center for Environmental Research—UFZ; we aggregated these 172 

high-frequency measurements to daily values. For the other four stations (Ditfurt, Wegeleben, 173 

Nienhagen, and Peseckendorf), the NO3
− data were low-frequency measurements collected every two 174 

weeks to every two months from 1994 to 2019 by LHW (http://gldweb.dhi-wasy.com/gld-portal/; last 175 

accessed 10 April 2020). Finally, we also gathered low-frequency NO3
−  measurements from 94 176 

sampling locations to spatially validate the mHM-Nitrate model. The catchment characteristics at 177 

these sites are described in the Supplementary Materials (Table S1). 178 
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2.2 mHM-Nitrate model 179 

The mHM-Nitrate model takes a grid-based approach and seeks to reliably represent complex 180 

processes (Yang et al., 2018). It includes the following hydrological processes: canopy interception, 181 

snow accumulation and melt, evapotranspiration, infiltration, soil moisture dynamics, runoff 182 

generation, percolation, and flood routing along the river network. The model incorporates nitrate 183 

processes described in the HYPE model (Lindström et al., 2010) as well as others: NO3
− retention in 184 

deep groundwater, NO3
− dynamics associated with spatially distributed crop rotations, and temporally 185 

variable point-source inputs of NO3
−. These processes are fully integrated into hydrological cycling. 186 

Major N inputs include wet atmospheric deposition via precipitation, fertilizer and manure 187 

application, and plant/crop residues. For each soil layer, four N pools are defined—active solid organic 188 

N, inactive solid organic N, dissolved organic N, and dissolved inorganic N, along with soil N processes, 189 

namely denitrification, plant/crop uptake, and transformations among the four N pools. In-stream N 190 

transformations include denitrification, primary production, and mineralization. A more detailed 191 

description of the mHM-Nitrate model can be found in Yang et al. (2018), and the source code can be 192 

found in Yang and Rode (2020). 193 

2.3 Model set-up 194 

The mHM-Nitrate model was set up using available hydrometeorological and geographical data for 195 

1993–2019 and was run at a daily time step (Table 1). To exclude the effects of a reservoir in the Harz 196 

Mountains, we used daily Q and NO3
− concentrations measured at a downstream gauging station 197 

(Thale) as input. 198 

Table 1. Description of the spatiotemporal data from the Bode catchment used as input for mHM-199 
Nitrate model set-up. 200 

General data type Specific data type Resolution Source 

Geographical 

Digital elevation model 

100 m × 100 m 

 

SRTM 

Land use 
CORINE Land Cover 
2012 

Geological history BGR 
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Soil type 

Meteorological 
Daily precipitation and 
mean air temperature 

1km×1 km DWD 

Agricultural 
practices 

Manure and inorganic 
fertiliser application, 
timing and amount of 
fertilization, sowing and 
harvesting 

Land-use 
dependent 

Field survey and 
scientific literature 

Soil nitrogen 
content 

Initial N storage  Scientific literature 

Sewage 
treatment plants 

N load Daily time step 
Operating reports 
from sewage 
treatment plants 

2.4 Calibration schemes 201 

The parameters of the mHM-nitrate model were related to catchment characteristics. Based on 202 

catchment characteristics, land use, mean NO3
− concentration, and stream order, three calibration 203 

schemes were designed. In scheme. Scheme 1 used only data from the catchment outlet station 204 

(Stassfurt). Scheme 2 used data from Stassfurt and two gauging stations upstream (Meisdorf and 205 

Hausneindorf) (Table 1 and Figure 2). Scheme 3 used data from Stassfurt and seven gauging stations 206 

upstream (Figures 1a and 2).  207 

 208 
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Figure 2. Relationship between nitrate concentration and share of arable land use with information on 209 

stream order of the sub-catchments represented by the eight gauging stations and the 94 spatially 210 

distributed sampling locations. Station inclusion within the calibration schemes is indicated (with 211 

higher-level schemes including the stations found in lower-level schemes). 212 

The eight gauging stations used in scheme 3 reflect different combinations of land use and 213 

meteorological conditions found in the Bode catchment (Table 2). Compared to scheme 2, scheme 3 214 

includes data from five additional gauging stations that are associated with larger streams (stream 215 

order: 4–6) (Krabbenhoft et al., 2022). There are four main gauging stations along the Bode River: 216 

Ditfurt (upstream), Wegeleben (intermediate stream), Hadmersleben (downstream), and Stassfurt 217 

(catchment outlet). Ditfurt and Wegeleben are in a forest-dominated subcatchment, while 218 

Hadmersleben and Stassfurt locate in an area dominated by farmlands. The headwaters of the Selke 219 

and Holtemme Rivers are located in the mountains, a region with extensive forests (71.9%) and low 220 

NO3
−  concentrations. In contrast, the lowlands are covered by agricultural fields, and NO3

− 221 

concentrations are high. The Meisdorf station is located in the mountainous Upper Selke, while the 222 

Hausneindorf station is the Selke’s outlet, an area with a mixture of forests and farms. The Nienhagen 223 

station is the Holtemme outlet, whose upstream and downstream areas are dominated by forest and 224 

agricultural surfaces (Ehrhardt et al., 2019), respectively. At Nienhagen, Q values are heavily affected 225 

by the presence of weirs (Kunz et al., 2017). The Peseckendorf station is the outlet of the Geesgraben 226 

stream, which merges into the Bode after Hadmersleben; the surrounding area is predominantly 227 

covered by crops (88.8%).  228 

Table 2. Subcatchment characteristics for the eight gauging stations. Abbreviations: Subcatch = 229 
subcatchment; Precip = precipitation; Q = discharge; and NO3

−  = nitrate concentration range (mean). 230 

Station Subcatch Area  

(km2) 

Elevation 

(m) 

Precip 

(mm y-1) 

% 
Forest 

% 
Farm 
land 

Stream 
order 

Q 

(mm y-1) 

NO3
−  

(mg N L-1) 

Meisdorf Selke 180 199–597 690 73.1 12.8 3 186 0.01–5.14 
(1.57) 

Hausneind. Selke 458 106–597 590 37.8 48.5 5 99 0.44–8.55 
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(2.73) 

Ditfurt Bode 714 107–1072 783 56.4 25.3 4 211 1.30–2.90 
(1.93) 

Wegeleben Bode 1230 94–1072 698 46.9 36.9 5 166 1.10–4.75 
(2.24) 

Nienhagen Holtemme 260 94–931 678 31.6 54.2 4 162 1.22–10.4 
(4.59) 

Peseckend. Geesgrab
en 

137 76–200 546 3.0 88.8 4 58 0.77–17.0 
(8.80) 

Hadmersl. Bode 2620 76–1072 639 29.2 56.6 6 132 0.47–11.0 
(2.51) 

Stassfurt Bode 3179 66–1072 617 24.7 61.6 6 114 0.46–8.10 
(2.68) 

2.5 Model calibration and validation 231 

Parameter sensitivity analysis was performed using the Morris method (Morris, 1991). We  calculated 232 

the elementary effect (EE) of each parameter using the Sensitivity Analysis For Everybody toolbox 233 

(SAFE; (Pianosi et al., 2015). We identified the eight most sensitive hydrological parameters and the 234 

six most sensitive water quality parameters (Table S1) based on the ranked values of the sensitivity 235 

indices (absolute mean and standard deviation of EE). This suite of parameters was then used in 236 

mHM-Nitrate model calibration. A more detailed description of the parameter sensitivity analysis is 237 

available in Zhou et al. (2022).  238 

Instead of using an optimization algorithm, like a dynamically dimensioned search (DDS) (Tolson and 239 

Shoemaker, 2007), we opted for a sequential multi-criteria method (Wu et al., 2021) to filter out sets 240 

of behavioral parameters for each calibration scheme. This process involved two steps. During the 241 

first step, 300,000 parameter sets were created for the eight sensitive hydrological parameters. Next, 242 

the best 100 parameter sets were selected for each calibration scheme, a decision guided by the 243 

ranks of both the Nash-Sutcliffe coefficient (NSE) and percent bias (PBIAS) values for Q at the relevant 244 

gauging stations. During the second step, 300,000 parameter sets were generated for the six sensitive 245 

water quality parameters, which were combined with the 100 best Q parameter sets. For each 246 

calibration scheme, we selected the best 100 parameter sets from this second step based on the 247 
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ranks of the NSE and PBIAS values for Q and NO3
− concentrations for the relevant gauging stations. 248 

The preliminary calibration results revealed that 300,000 iterations allowed the objective function 249 

values to converge upon minimum values. This procedure made it possible to compare the three 250 

calibration schemes, as this allows each calibration scheme to achieve its own best performance from 251 

the same parameter space.  252 

Following the split-sample test, this calibration procedure was applied to the mHM-Nitrate model 253 

incorporating Q and  NO3
−  concentrations from 2011 to 2014. Each calibration scheme was validated 254 

(time period: 2015–2019) at all eight gauging stations for both Q and NO3
− concentrations (Table 3). 255 

NSE and PBIAS were used as performance evaluation criteria. However, it is difficult to draw 256 

conclusions about the relative performance of calibration schemes when sample size is small. 257 

Therefore, we carried out spatiotemporal validation of the model using NO3
− data from the 94 258 

spatially distributed sampling locations (i.e., low-frequency measurements for 1994–2019). In this 259 

case, only PBIAS was used to evaluate model performance, which is satisfactory when values are less 260 

than 35%, according to Moriasi et al. (2015). 261 

Table 3. Discharge (Q) and nitrate (NO3
−) concentration data used in model calibration and validation 262 

for the three calibration schemes. 263 

Scheme Calibration Validation 

2011–2014 Q and NO3
− (2015–2019) NO3

− (1994–2019) 

1 Q and NO3
− at Stassfurt  

Q and NO3
− at Stassfurt, 

Meisdorf, Hausneindorf, 
Nienhagen, Peseckendorf, 
Ditfurt, Wegeleben, 
Hadmersleben    
 

NO3
− at 94 

sampling locations 

  

2 
Q and NO3

− at Stassfurt, 
Meisdorf, Hausneindorf  

  

3 

Q and NO3
− at Stassfurt, 

Meisdorf, Hausneindorf, 
Nienhagen, Peseckendorf, 
Ditfurt, Wegeleben, 
Hadmersleben  

2.6 The value of added calibration stations on parameter distributions and model performance    264 

To assess the value of additional calibration stations on the identification of the model, the 265 

cumulative parameter distributions were computed for all calibration schemes utilizing the top 100 266 
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model runs from the second calibration phase of calibration schemes. To the extent that additional 267 

calibration stations change the cumulative distribution function of the individual model parameters 268 

defined due to model calibration. Significant differences in these cumulative distribution functions 269 

can be tested statistically and should allow an assessment of the added value of a modified data set 270 

for model identification. In this study, we determined the statistical significance of the differences in 271 

these cumulative distribution functions between calibration schemes using the two-sample 272 

Kolmogorov-Smirnov (Conover, 1999) test (D): 273 

 𝐷 = 𝑚𝑎𝑥|𝐹(𝜃𝑖) − 𝐺(𝜃𝑖)| (1) 274 

where 𝐹(𝜃𝑖) and 𝐺(𝜃𝑖) are the empirical cumulative distribution functions of the parameter 𝜃𝑖 for 275 

calibration scheme 1(2) and 2(3). The null hypothesis is that the two samples are from the same 276 

continuous distribution. If D is closer to zero, it indicates that the probability of the two samples being 277 

drawn from the same population is higher. Moreover, the two-sample Kolmogorov-Smirnov test 278 

generates a p-value that corresponds to the calculated D statistic. A higher p-value (> 0.05) provides 279 

stronger support for the null hypothesis. The relative occurrences of certain, significant, KS statistics 280 

can be inspected by means of cumulative frequency plots. As different calibration stations result in 281 

varying levels of model parameters, distinct cumulative frequency curves of model performance will 282 

be observed. 283 

2.7 Uncertainty analysis 284 

To compare model uncertainty among the three calibration schemes, 95% uncertainty boundaries 285 

were calculated based on the 2.5th and 97.5th percentiles of the cumulative distributions for the best 286 

100 model runs from the second calibration step. The R-factor quantifies differences between 287 

observed and simulated data and is calculated by dividing the average distance between the upper 288 

and lower 95% uncertainty boundaries by the standard deviation of the observed data (Abbaspour et 289 

al., 2007). The R-factor expresses the width of the 95% uncertainty and a value less than 1 is being 290 

desirable. The uncertainty analysis was performed for both Q and NO3
− concentrations at all the 291 



16 

 

gauging stations included in schemes 2 and 3. We compared model uncertainty for schemes 2 and 3 292 

by comparing results for the stations shared by the schemes (Stassfurt, Hausneindorf, and Meisdorf). 293 

3. Results 294 

The mHM-Nitrate model was calibrated using the three schemes, resulting in different patterns of 295 

performance (parameter description: Table S1). 296 

3.1 Model performance at gauging stations 297 

The model performance of discharge (Q) for at the catchment outlet (Stassfurt station) was similar 298 

across the three calibration schemes (NSE—scheme 1: 0.82, scheme 2: 0.87, and scheme 3: 0.88; 299 

PBIAS—scheme 1: 0.30%, scheme 2: 0.0%, and scheme 3: -8.60%; Table 4). During the calibration 300 

period, at the Meisdorf and Hausneindorf stations, performance was lower for scheme 3 than for 301 

scheme 2 (NSE—scheme 2: 0.58 to 0.69 vs. scheme 3: 0.53 to 0.66; PBIAS—scheme 2: -7.80% to -302 

23.5% vs. scheme 3: -20.2% to -32.0%). During the validation period, water balance was well captured 303 

across all the calibration schemes and gauging stations, with the exception of Nienhagen (PBIAS—304 

scheme 1: -3.7% to 7.1%, scheme 2: -7.7% to 2.6%, and scheme 3: -12.7% to 1.4%). Performance was 305 

lowest at the Peseckendorf and Nienhagen stations across the three schemes, albeit lower for 306 

scheme 1 than for schemes 2 and 3 (NSE—scheme 1: -0.34 to 0.13 vs. scheme 2: 0.17 to 0.29 and 307 

scheme 3: 0.36 to 0.45; Table 4). It was also better at the Stassfurt, Meisdorf, and Hausneindorf 308 

stations during the validation period than during the calibration period across all calibration schemes 309 

(NSE—lower ranges: 0.53–0.88 and upper ranges: 0.71–0.92). The mean absolute PBIAS values for Q 310 

at all validation stations were 8.4%, 7.5%, and 9.2% for scheme1, scheme2, and scheme3, 311 

respectively. 312 

Model performance of NO3
− concentration at the catchment outlet Stassfurt station decreased from 313 

Scheme 1 to 2 and 3  during the calibration period (NSE—scheme 1: 0.67, scheme 2: 0.64, and 314 

scheme 3: 0.62; PBIAS—scheme 1: 0.40%, scheme 2: -6.90%, and scheme 3: 7.10%). Also during the 315 

calibration period, model performance at the Meisdorf station was better at scheme 2 (PBIAS: -316 
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2.60%) than scheme 3 (PBIAS: -23.2%). At Hausneindorf, scheme 3 yielded better performance than 317 

did scheme 2 (PBIAS: -7.90% vs. 1.20%, respectively). During the validation period, performance was 318 

better at scheme 2 than at scheme 1 for all the gauging stations except for Nienhagen station, with 319 

PBIAS values in ranges —scheme 2: 1.8–33.9% and scheme 1: -10.1–23.3%, respectively. While NO3
− 320 

concentration model performance decreased from Scheme 2 to 3 at all gauging stations except 321 

Nienhagen station, with larger absolute PBAIS values in Scheme 3 than Scheme 2. The mean absolute 322 

PBIAS values for NO3 were 15.7%, 9.5%, and 13.8% for scheme1, scheme2, and scheme3, 323 

respectively. These findings provide evidence that scheme 2 is the most promising option. 324 

Additionally, the results indicate that the model performance is categorized as good for Q and very 325 

good for NO3
−. 326 

Table 4. Model performance for discharge (Q) and nitrate (NO3
−) concentrations during the calibration 327 

and validation periods across the three calibration schemes and their associated gauging stations. 328 

Schemes Stations 

Q NO3
− 

Calibration Validation Calibration Validation 

NSE 
 

PBIAS 
(%) 

NSE 
 

PBIAS 
(%) 

NSE 
 

PBIAS 
(%) 

NSE 
 

PBIAS 
(%) 

1 

Stassfurt 0.82 0.30 0.92 4.20 0.67 0.40 0.33 12.5 

Meisdorf - - 0.71 7.10 - - 0.32 33.9 

Hausneindorf - - 0.77 0.70 - - -0.08 8.10 

Wegeleben - - 0.92 -3.70 - - -1.19 16.4 

Hadmersleben - - 0.93 2.90 - - 0.01 20.9 

Peseckendorf - - -0.34 -3.50 - - -3.84 23.0 

Ditfurt - - 0.97 -0.20 - - -4.36 8.80 

Nienhagen - - 0.13 44.7 - - -0.66 1.80 

2 

Stassfurt 0.87 0.00 0.88 0.60 0.64 -6.90 0.23 9.30 

Meisdorf 0.58 -23.5 0.72 -1.70 0.66 -2.60 0.67 -10.1 

Hausneindorf 0.69 -7.80 0.76 -3.00 0.27 -7.90 0.31 -4.00 

Wegeleben - - 0.92 -3.10 - - -0.14 4.00 

Hadmersleben - - 0.92 2.60 - - 0.26 14.3 

Peseckendorf - - 0.17 -7.70 - - -2.72 23.3 

Ditfurt - - 0.96 2.20 - - -2.18 1.60 

Nienhagen - - 0.29 38.8 - - -0.17 -9.10 

3 

Stassfurt 0.88 -8.60 0.90 1.40 0.62 7.10 -0.33 16.8 

Meisdorf 0.53 -32.0 0.71 -12.0 0.53 -23.2 0.71 -14.0 

Hausneindorf 0.66 -20.2 0.73 -12.7 0.31 1.20 0.20 -7.80 
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Wegeleben 0.87 -12.6 0.92 -5.60 0.37 -9.50 -1.39 11.0 

Hadmersleben 0.87 -9.10 0.92 -0.90 0.21 14.0 -0.49 23.8 

Peseckendorf 0.56 -21.6 0.45 -9.80 -0.44 -15.6 -1.70 24.7 

Ditfurt 0.94 -3.40 0.96 1.00 0.35 -9.80 -3.56 9.20 

Nienhagen 0.68 6.00 0.36 29.9 0.59 -14.2 0.39 -3.20 

 329 

The seasonal dynamics of Q were captured by scheme 2 at its three gauging stations during both the 330 

calibration and validation periods as well as during low- and high-flow conditions (Figures 3a, 3c, and 331 

3e). The same was true for the seasonal dynamics of NO3
− concentrations (i.e., high values during 332 

high-flow periods and low values during low-flow periods; Figures 3b, 3d, and 3f). In addition, over the 333 

period from 2011 to 2019, NO3
− concentrations followed a constant seasonal pattern at the Meisdorf 334 

station (Figure 3b) but tended to decline at the Hausneindorf and Stassfurt stations (Figures 3d and 335 

3f), which were well captured by the model. Model performance for NO3
− concentrations was 336 

greatest at the Meisdorf station (NSE—calibration: 0.66 and validation: 0.67; Table 4). It was lowest at 337 

the Hausneindorf station (NSE—calibration: 0.27 and validation: 0.31; Table 4). At Stassfurt, Meisdorf, 338 

and Hausneindorf, model performance for NO3
− concentrations were satisfactory (PBIAS ranged 339 

between -7.9% and 9.3% during calibration and validation). 340 
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 341 

Figure 3. Observed and simulated Q and NO3
− concentration at (a-b) Meisdorf, (c-d) Hausneindorf and 342 

(e-f) Stassfurt stations for calibration Scheme 2. 343 

 344 

3.2 Model performance at spatially distributed sampling locations 345 

We further tested how the calibration schemes affected model performance using NO3
− data from the 346 

94 spatially distributed sampling locations. Performance was generally better for scheme 2 than for 347 

scheme 1 (PBIAS ≤ 15.0%: 34 vs. 9 sampling stations, respectively, and PBIAS > 45%: 12 vs. 65 348 

sampling stations, respectively) (Table 5). Performance was similar for schemes 2 and 3 (PBIAS ≤ 349 

15.0%: 34 vs. 35 sampling locations, respectively).    350 
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Table 5. Frequency of sampling locations associated with different PBIAS ranges across the three 351 
calibration schemes. 352 

PBIAS (%) Scheme 1 Scheme 2 Scheme 3 

0.00–15.0 9 34 35 

15.1–25.0 9 19 16 

25.1–35.0 8 17 20 

35.1–45.0 3 12 10 

> 45.1  65 12 13 

We also examined how catchment characteristics might influence model performance by looking at 353 

the spatial distributions of the PBIAS values for all 94 sampling locations across the three calibration 354 

schemes (Figure 4). The model performance for  NO3
−  concentration at each stream order and land 355 

use (farmland vs. forest) are shown in Figure S1. Overall, more locations showed a good level of 356 

performance (PBIAS ≤ 15.0%) at scheme 2 versus scheme 1; no such difference was seen between 357 

schemes 2 and 3. For example, in forested areas, scheme 2 demonstrated considerable improvement 358 

compared to scheme 1. By visually inspecting, there was no noticeable distinction between scheme 2 359 

and 3 (Figure 4). More specifically, performance was better at scheme 2 than scheme 1 in areas 360 

dominated by farmlands for all stream orders (Figure S1). Additionally, performance was better for 361 

scheme 2 than scheme 3 except in the case of stream orders 2 and 4 in agricultural areas and stream 362 

order 5 in forested areas (Figure S1).  363 
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 364 

Figure 4. Performance of the mHM-Nitrate model for NO3
−  concentrations at the 94 spatially 365 

distributed sampling locations across the three calibration schemes. 366 

We used the optimized parameter sets for scheme 2 to explore model performance in greater detail 367 

at six spatially distributed sampling locations that displayed distinct characteristics (map: Figure 1c; 368 

observed and simulated NO3
− concentrations: Figure 6; PBIAS: Table 6). There was variation in the 369 

duration and frequency of the validation data for the six sampling locations. Seasonal patterns of NO3
− 370 

concentrations were well captured by the model over different levels of NO3
− (Figure 5), with PBIAS 371 

values ranging from -17.1% to 14.5% (Table 6). This result indicates that the mHM-Nitrate model was 372 

capable of representing NO3
− dynamics within different subcatchments when scheme 2 was applied. 373 

The largest difference between mean observed and simulated NO3
− concentrations occurred at NO3

− 374 
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sampling location 2 (Figure 5c) with PBIAS value of -17.1%, which represents an arable dominated 375 

sub-catchment. The best fit between mean observed and simulated NO3
− concentration was found at 376 

NO3
− sampling location 4 (Figure 5d; PBIAS = -9.3%), which is found in a mountainous sub-catchment 377 

that contains a mixture of farmland and pasture (Figure 1c). 378 

 379 

Figure 5. Observed and simulated nitrate (NO3
−) concentrations (calibration scheme 2) for the six 380 

sampling locations displaying distinct characteristics. 381 

Table 6. Summary of catchment characteristics represented by the six sampling locations, model 382 
performance for nitrate (NO3

−) concentrations (PBIAS values), minimum and maximum values of 383 
simulated and observed NO3

− concentrations at the sampling locations, and range (mean) of NO3
− 384 

concentrations. 385 

Sampling 
location 

Sub-
catchment 

area 
(km2) 

Dominant land 
use 

PBIAS 
(%) 

Simulated NO3
− 

concentration 
(mg N L-1) 

Observed NO3
− 

concentration 
(mg N L-1) 

1=a 11.8 Arable (87.2%) 12.8 4.6-12.9 (9.1) 2.9-11.1 (7.4) 
2=b 12.6 Arable (78.3%) -17.1 2.4-10.8 (7.4) 4.3-14.5 (8.9) 
3=c 26.4 Arable (53.6%) 

Forest (40.1%) 
-12.6 1.1-4.7 (2.6) 1.4-4.7 (2.9) 

4=d 37.1 Arable (22.2%) 
Pasture (29.0%) 

-9.3 0.8-10.2 (2.0) 0.3-5.8 (2.2) 

5=e 6.1 Forest (96.0%) -11.7 0.1-2.0 (0.7) 0.2-3.1 (0.7) 
6=f 3.9 Forest (100%) 14.5 0.3-2.1 (1.0) 0.1-3.0 (0.8) 
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3.3 Model parameter distributions 386 

For the three calibration schemes, we constructed cumulative distribution functions for the most 387 

sensitive hydrological and water quality parameters using the best 100 model runs (Figure 6). From 388 

the results, it is clear that the hydrological parameters—infiltration shape factor (infil) and potential 389 

evapotranspiration (pet) differ significantly between schemes 1 and 2 as well as between schemes 2 390 

and 3 (p < 0.01) (Figure 6 and Table 7). In the mHM-Nitrate model, soil infiltration is parameterized 391 

using the power function of soil saturation, whose exponent is determined by the infiltration shape 392 

factor (infil). Cuntz et al. (2015) reported that, as a parameter, infil is highly related to soil saturation, 393 

where higher infiltration occurs in mountain soils than in lowland soils. Because the Meisdorf station 394 

was included in scheme 2, a greater range of soil types were represented, allowing infil to be better 395 

defined. In contrast, scheme 1 averaged all the soil types present in the catchment, as reflected by 396 

the narrower ranges of infil for scheme 2 versus 1 (Figure 6). The cumulative distributions of four 397 

water quality parameters, namely in-stream denitrification rate (denitri), primary production rate 398 

(pprt), primary production coefficient in non-agriculture stream (pprt_na), and primary production 399 

coefficient in agriculture stream (pprt_agri), showed dissimilarities between scheme 1 and schemes 2 400 

and 3. However, there were no differences in the cumulative parameter distributions between 401 

scheme 2 and scheme 3 (p >0.05) (Figure 6 and Table 7). The four water quality parameters were 402 

better constrained for scheme 2 than scheme 1, as reflected by their narrower ranges in the former 403 

versus the latter (Figure 6). Yang et al. (2019b) found the control factors for denitri and pprt varied 404 

between the Meisdorf and Hausneindorf stations. At Meisdorf, both parameters have a strong 405 

correlation with stream discharge and benthic area, while at Hausneindorf they are highly correlated 406 

with terrestrial flows and fluxes. In summary, parameter distributions were dramatically affected by 407 

the increase in station number between scheme 1 and scheme 2. In contrast, the additional stations 408 

added in scheme 3 had little to no effect. 409 
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 410 

Figure 6. Cumulative distributions for the hydrological parameters infil (a) and pet (b) and four the 411 

water quality parameters, in-stream denitrification rate (denitri) (c), primary production rate (pprt) 412 

(d), primary production coefficient in non-agriculture stream (pprt_na) (e), and primary production 413 

coefficient in agriculture stream (pprt_agri) (f) across the three calibration schemes. 414 

Table 7. Kolmogorov-Smirnov (KS) statistics and significance estimates for cumulative parameter 415 

distributions between calibration schemes.  416 

Parameters 
KS statistic and p-value 

Scheme 1 and scheme 2 Scheme 1 and scheme 3 Scheme 2 and scheme 3 

infil 0.64 (p<0.01) 0.38 (p<0.01) 0.88 (p<0.01) 

pet 0.61 (p<0.01) 0.78 (p<0.01) 0.39 (p<0.01) 

denitri 0.32 (p<0.01) 0.38 (p<0.01) 0.16 (p>0.05) 

pprt 0.46 (p<0.01) 0.46 (p<0.01) 0.09 (p>0.05) 

pprt_na 0.28 (p<0.01) 0.34 (p<0.01) 0.12 (p>0.05) 

pprt_agri 0.31 (p<0.01) 0.37 (p<0.01) 0.14 (p>0.05) 

 417 



25 

 

3.4 Uncertainty analysis—nitrate concentrations 418 

We calculated the 95% uncertainty boundaries for simulated daily NO3
−  concentrations at the 419 

Meisdorf, Hausneindorf, and Stassfurt stations for schemes 2 and 3 (Figure 7). The associated R-420 

factors are given in Table 8. The 95% uncertainty boundaries for simulated daily Q associated with 421 

schemes 2 and 3 are available in the Supplementary Materials (Figure S3). Whether under low- or 422 

high-flow conditions, 95% uncertainty boundaries for daily NO3
− concentrations were narrower for 423 

scheme 2 than for scheme 3 (Figure 7). For instance, they were nearly twice as wide for scheme 3 424 

than scheme 2 at Hausneindorf (R-factor = 4.13 vs. 2.18, respectively) and Stassfurt (R-factor = 4.52 425 

vs. 2.79, respectively) (Table 8). Furthermore, over 60% of the observed NO3
− concentrations lay 426 

within the 95% uncertainty boundaries for scheme 2. When scheme 2 was used, the Meisdorf station, 427 

located in a forested subcatchment, displayed lower levels of uncertainty than did the Hausneindorf 428 

and Stassfurt stations, which are found in a subcatchment dominated by farmland. The same was also 429 

true for scheme 3. This finding was reflected in the narrower 95% uncertainty boundaries for 430 

Meisdorf versus Hausneindorf and Stassfurt (Figures 7a-b vs. 7c-f), as well as in the lower R-factor 431 

values for Meisdorf (scheme 2 = 0.92; scheme 3 = 1.08; Table 8). 432 
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 433 

 Figure 7. Comparison of 95% uncertainty boundaries for the simulated nitrate (NO3
−) concentrations 434 

obtained with schemes 2 and 3 for three gauging stations: Meisdorf (a-b), Hausneindorf (c-d), and 435 
Stassfurt (e-f). 436 

Table 8. R-factor values for nitrate (NO3
−) concentrations at three gauging stations for schemes 2 and 437 

3. 438 

Stations Scheme 2 Scheme 3 

Meisdorf 0.92 1.08 

Hausneindorf 2.18 4.13 

Stassfurt 2.79 4.52 
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4. Discussion 439 

4.1 Evaluation of model performance for different calibration schemes 440 

We evaluated the ability of the mHM-Nitrate model to simulate discharge and nitrate concentrations 441 

at eight gauging stations. We specifically examined the transferability of hydrological and water 442 

quality parameters at spatial scales.  443 

4.1.1 Model performance for discharge under three calibration schemes 444 

During model validation, simulated discharge at the catchment outlet was similar whether the 445 

calibration data came from a single site (scheme 1: catchment outlet station) or multiple sites 446 

(scheme 2: 3 stations and scheme 3: 8 stations) (Table 4). This result suggests that, for discharge, the 447 

number of stations used during calibration did not affect model performance at the catchment outlet. 448 

Our finding is consistent with those of Chiang et al. (2014); Wang et al. (2012); Wu et al. (2022a).   449 

That said, performance was better with scheme 2 than scheme 1 when discharge was simulated for 450 

all eight gauging stations, except in the case of Hausneindorf (Table 4). This result could have arisen 451 

because multi-site calibration better constrains model parameters by including information on 452 

catchment characteristics (e.g., land use and soil types) at upstream stations (here, Meisdorf and 453 

Hausneindorf); these characteristics are frequently heterogeneous in space and shape hydrological 454 

parameters (e.g., infil and pet, Figures 6a and 6b). Jiang et al. (2015) reported that, compared to 455 

single-site calibration, multi-site calibration may better capture dynamics in large, diverse catchments 456 

because it accounts for the effects of different hydrological processes (e.g., slow groundwater 457 

dynamics and quick interflows). For example, in the Bode catchment, interflow is the primary form of 458 

runoff in mountainous areas (Jiang et al., 2014), while the share of groundwater increases from the 459 

mountains to the lowlands (Zhou et al., 2022). 460 

In contrast, model performance was similar for schemes 2 and 3 (NSE values for the eight gauging 461 

stations; Table 4), which suggests that adding more sites does not always improve simulations for 462 

upstream stations. This finding is consistent with those of previous studies (Her and Chaubey (2015); 463 
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Wang et al. (2012); Xie et al. (2021)) and could potentially be explained by station choice and the 464 

failure of scheme 3 to introduce any new catchment characteristics. As a result, schemes 2 and 3 465 

displayed similar cumulative distributions for their hydrological parameters (Figures 6a-b). Therefore, 466 

during calibration, it may be challenging to optimize model parameters by relying on station number 467 

only.   468 

4.1.2 Model performance for NO3
− concentration under three calibration schemes 469 

Simulated nitrate concentrations were significantly better for all gauging stations (with the exception 470 

of Nienhagen) when scheme 2 versus scheme 1 was used (Table 4). This could be due to the fact that 471 

the inclusion of Meisdorf in scheme 2 results in additional parameter constraint. The station is found 472 

in a forested subcatchment, which likely led to changes in the values of land-use-dependent 473 

parameters (e.g., pprt_na, pprt_agri; Figures 6e and 6f). These parameters were optimized in scheme 474 

2 and, additionally, improved model performance at non-calibrated stations, such as Wegeleben and 475 

Ditfurt. Both stations are located in subcatchments with intermediate levels of forest cover (> 30% 476 

and > 56.4%, respectively). Similarly, the inclusion of Hausneindorf in scheme 2 improved model 477 

performance at Hadmersleben, which had not been part of the calibration process, because the two 478 

stations occur in regions with similar levels of farmlands (Table 2). This finding indicates that utilizing 479 

multi-site calibration schemes that capture diverse catchment characteristics can improve simulated 480 

nitrate concentrations even at locations that were not included in the calibration process. This result 481 

concurs with those of previous studies (Chiang et al., 2014; Jiang et al., 2015; Shrestha et al., 2016), 482 

which found that such improvements result from the fact that multi-site calibration schemes can 483 

account for dramatic variability in observed nitrate concentrations and hydrological regimes across 484 

catchments. These schemes can thus better constrain parameters associated with nitrate transport 485 

and transformation.  486 

In contrast, model performance was slightly lower at all stations (except Nienhagen) for scheme 3 487 

than scheme 2 (PBIAS values; Table 4), which suggests that adding more gauging stations to the 488 

calibration process cannot, by itself, result in further improvements to simulations of nitrate 489 
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concentrations. This finding may have two explanations. First, the five additional gauging stations 490 

(Wegeleben, Hadmersleben, Peseckendorf, Ditfurt, and Nienhagen) included in scheme 3 did not 491 

introduce additional diversity in catchment characteristics, which was the case when Meisdorf and 492 

Hausneindorf were included in scheme 2 (Figure 2). For instance, except for Peseckendorf, four of the 493 

five additional stations have farmland surface areas and mean nitrate concentrations that are similar 494 

to that of Hausneindorf, which led to similar model parameter distributions for schemes 2 and 3 495 

(Figures 6c-f). Second, three of the five additional stations have low-frequency measurements of 496 

nitrate concentrations (i.e., once or twice per month). Jiang et al. (2019) found that, when the HYPE 497 

model was applied to the Selke catchment, performance was better when calibration used nitrate 498 

concentrations that were collected daily versus every two weeks. The slight decline in performance 499 

from scheme 2 to scheme 3 could be affected by the model’s attempt to satisfyingly balance the large 500 

number of additional observations resulting from site addition (Jiang et al., 2015). In other words, 501 

multi-site calibration approaches try to identify the parameter set that represents the best 502 

compromise given the presence of multiple subcatchments, which is a more intensive task than 503 

simply focusing on a single catchment outlet. 504 

4.1.3 Comparison of hydrological and water quality model performance 505 

In brief, the model's accuracy for predicting both discharge and NO3
− concentration improved when 506 

using Scheme 2 compared to Scheme 1. However, while the model's accuracy for discharge remained 507 

consistent between Scheme 2 and 3, its accuracy for nitrate decreased in Scheme 3. On one hand, 508 

hydrology is a physical process that is well understood and can be easily quantified through 509 

measurements and modeling. On the other hand, nitrate dynamics are much more complex and can 510 

be influenced by a variety of specific factors that are unique to a particular location, such as the 511 

amount of fertilizer applied and the level of moisture in the soil. Nitrogen fertilizer application rates 512 

are often uncertain and can vary depending on crop type and management practices. Nitrate uptake 513 

by plants is also difficult to predict, as it is influenced by a range of factors such as soil moisture, 514 



30 

 

temperature, and nutrient availability. Overall, nitrate simulations are likely to be more accurate in 515 

mountainous regions where quick flowing systems lead to less storage and transformation of nitrate 516 

(Table 4). In lowland agricultural systems, nitrate can persist in soils for several years and in 517 

groundwater for even longer time scales, leading to legacy effects that can complicate stream nitrate 518 

dynamics (Wriedt and Rode 2006, Ehrhardt et al., 2019; Hrachowitz et al., 2015).  519 

4.2 Simulating nitrate concentrations across space 520 

Scheme 1, which solely utilized data from the catchment outlet, was unable to accurately simulate 521 

nitrate dynamics at upstream sites within the large, heterogeneous Bode catchment. Indeed, PBIAS 522 

values were high (> 45%) for many of the 94 spatially distributed sampling locations when scheme 1 523 

was used (Figure 4a and Table 5). The model performed much better when scheme 2 was employed. 524 

Its addition of two gauging stations to the calibration process thus appeared to greatly influence 525 

model performance at the catchment scale. 526 

However, little to no further improvement was seen with scheme 3 and its five additional gauging 527 

stations. This assertion has two sources of support: schemes 2 and 3 had similar numbers of sampling 528 

locations within the different PBIAS ranges (Table 5) and displayed similar cumulative distributions for 529 

their parameters (Figure 6). Comparing cumulative parameter distributions can help identify 530 

informative calibration stations. It can also determine whether adding or removing calibration 531 

stations would improve. 532 

Further results of the model performance of NO3
−  concentration at Scheme 2 shows varying 533 

performances among NO3
− sampling locations that represent different catchment characteristics (e.g., 534 

precipitation, land use, and fertilizer inputs) (Figure 5). At sampling location 4, NO3
−  concentration 535 

was overestimated in summer, but the PBIAS value of the whole period was negative, it means that 536 

the model underestimated NO3
−  concentrations during other times of the year. This could be due to 537 

errors in the representation of hydrological processes, such as groundwater recharge, which can 538 

affect NO3
− transport and concentration in the groundwater. This suggests that spatial representation 539 
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of groundwater processes (such as groundwater NO3
− concentration) are needed to be refined to 540 

obtain better model performance for small sub-catchments. Faramarzi et al. (2015) and Gao et al. 541 

(2016) concluded that the hydrological and water quality models that only rely on calibration without 542 

refining internal process representation (e.g., groundwater NO3
− concentration) will often not result in 543 

further improvement. Nevertheless, the above analysis indicates that Scheme 2 is sufficient to ensure 544 

the satisfactory model performance at NO3
−  sampling locations, since 75% of the NO3

−  sampling 545 

locations showed absolute PBIAS ≤35% (Figure 4b and Table 5) and the mHM-Nitrate model was 546 

capable to present different magnitudes of NO3
−  levels for different sub-catchments which differ in 547 

their catchment characteristics (Figure 5). These findings are in line with Ghaffar et al. (2021), where 548 

they found that considering archetypal gauging stations in the calibration process leads better spatial 549 

validation of the model at internal locations that were not originally considered in calibration. These 550 

stations represent the maximum catchment characteristics in heterogeneous catchments in terms of 551 

dominant land-use and meteorological features. This highlights the need for multiple internal 552 

stations/locations to validate the model's capacity to accurately capture the complexity of natural 553 

processes and identify which process needs to be improved (Beven, 2001; Daggupati et al., 2015). 554 

4.3 Impact of calibration approaches on model uncertainty 555 

For the three gauging stations, there was more uncertainty around simulated nitrate concentrations 556 

for scheme 3 than for scheme 2 (Figure 7), likely because scheme 3 included stations with low-557 

frequency measurements. This result highlights the effect of measurement frequency on simulation 558 

uncertainty. Indeed, low-frequency measurements may not capture the full range of variability in 559 

NO3
− dynamics. Furthermore, multi-site calibration approaches that rely on low-frequency data may 560 

give rise to spatial representation issues, given that water quality can vary widely across 561 

heterogenous catchments and be influenced by local factors, such as land use and soil type. This 562 

finding is in line with those of previous studies (Jiang et al., 2019; Khorashadi Zadeh et al., 2019; 563 

Ullrich and Volk, 2010). For example, Jiang et al. (2019) found that, for the HYPE model, uncertainty 564 
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was reduced when the calibration process used NO3
− concentrations that had been collected daily 565 

versus every two weeks. 566 

Once the catchment function is well captured by representative key stations (Scheme 2), additional 567 

measurements may not be cost-effective and could increase model simulation uncertainty (Scheme 568 

3). Therefore, it is essential to consider the specific requirements of the study and the desired level of 569 

accuracy in model simulation. Depending on the goals and context, it may be necessary to find a 570 

balance between cost-effectiveness and model performance by considering the spatial distribution of 571 

measurements.  572 

4.4 Implication of spatial evaluation of distributed hydrological water quality model 573 

Improving the performance of hydrological water quality models has become a critical concern as 574 

these models grow more complex (Beven, 2001; Refsgaard et al., 2016; Refsgaard et al., 2022). 575 

Calibration using multiple sites is a crucial step in this process as it enables a better representation of 576 

the spatial variability of hydrological and water processes. It is also equally essential to extend the 577 

evaluation beyond calibration in order to gain insights into the spatial variability of hydrological and 578 

water processes and understand the underlying processes that govern the behavior of the system 579 

(Efstratiadis and Koutsoyiannis, 2010; Koch et al., 2015). 580 

It is possible to use remote sensing data such as soil moisture (Mei et al., 2023; Rajib et al., 2016) and 581 

evapotranspiration (Rajib et al., 2018; Zhang et al., 2021) to evaluate spatial performance of 582 

distributed models for water quantity, but this approach cannot be applied to spatially evaluate 583 

models for NO3
− and other chemicals. To effectively evaluate the spatial performance of distributed 584 

models for water quality, water quality monitoring or sampling is always necessary. This study 585 

highlights the significance of long-term and spatially distributed monitoring water quality data, which 586 

is readily accessible from authorities.  587 
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5. Conclusion 588 

Using three different approaches, we calibrated a fully distributed process-based mHM-Nitrate model 589 

that was then validated spatially and temporally at 8 gauging stations (discharge and NO_3^- 590 

concentrations) and 94 spatially distributed sampling locations (NO_3^- concentrations) within the 591 

heterogeneous Bode catchment in central Germany. Scheme 1 used only data from the catchment 592 

outlet; scheme 2 used data from the catchment outlet and two upstream stations; and scheme 3 used 593 

data from the catchment outlet and seven additional upstream stations. Our study found that, for 594 

simulated discharge, model performance was similar at the catchment outlet for the three calibration 595 

schemes. Furthermore, model performance did not improve consistently across the upstream 596 

gauging stations.  597 

In contrast, for NO_3^- concentrations, scheme 2 was better than scheme 1 when it came to 598 

simulating dynamics at sampling locations that had not been part of the calibration process. That said, 599 

model performance across the sampling locations was similar for schemes 2 and 3. Our results 600 

indicate that increasing the number of stations used in calibration does not necessarily improve 601 

simulations of NO_3^- concentrations. Additionally, we found that the use of low-frequency 602 

calibration data may increase the degree of model uncertainty.  603 

In conclusion, this research provides guidance on selecting gauging stations for the purposes of model 604 

calibration: differences in cumulative parameter distributions should signal which stations can add 605 

helpful additional representation. Furthermore, our work highlights that this selection process must 606 

account for diversity in catchment characteristics, such as land use, meteorological patterns, and 607 

elevation. In this way, the calibration data will better represent spatial patterns, and the model will 608 

yield more accurate predictions. Overall, this study provides valuable insights into calibration-related 609 

decision-making when carrying out fully distributed hydrological water quality models to simulate 610 

dynamics within spatially heterogeneous catchments. This study also highlights the value of using 611 
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readily available water authorities monitoring data with high spatial resolution but low temporal 612 

resolution for validating fully distributed models, even in the absence of discharge measurements.  613 
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Data Availability Statement 614 

 The high-frequency monitoring data used are available at Zhang et al. (2022) 615 

via https://doi.org/10.48758/ufz.12911 616 

 The discharge and low frequency  monitoring data are available at the data portal 617 

(Datenportal) of the State Agency for Flood Protection and Water Management of Saxony 618 

Anhalt, Germany (LHW, 2022) https://gld.lhw-sachsen-anhalt.de/ 619 

 The high-frequency monitoring data is available at TERENO (TERrestrial ENvironmental 620 

Observatories) Data Discovery Portal https://ddp.tereno.net/ddp/ (TERENO, 2020). 621 
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