References
Adams, J. (1990). Paleoseismicity of the Cascadia subduction zone: Evidence from turbidites off the Oregon-Washington margin.Tectonics, 9 (4), 569-583. https://doi.org/10.1029/TC009i004p00569
Atwater, B. F. (1987). Evidence for great Holocene earthquakes along the outer coast of Washington State. Science, 236 (4804), 942-944. https://doi.org/10.1126/science.236.4804.942
Avé Lallemant, H. G. (1996). Displacement partitioning and arc-parallel extension in the Aleutian volcanic island arc. Tectonophysics, 256 (1), 279-293. https://doi.org/10.1016/0040-1951(95)00171-9
Avé Lallemant, H. G., & Oldow, J. S. (2000). Active displacement partitioning and arc-parallel extension of the Aleutian volcanic arc based on Global Positioning System geodesy and kinematic analysis.Geology, 28 (8), 739-742. https://doi.org/10.1130/0091-7613(2000)28<739:ADPAAE>2.0.CO;2
Avouac, J.-P. (2015). From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle. Annual Review of Earth and Planetary Sciences, 43 (1), 233-271. https://doi.org/10.1146/annurev-earth-060614-105302
Barnhart, W. D., Murray, J. R., Briggs, R. W., Gomez, F., Miles, C. P. J., Svarc, J., et al. (2016). Coseismic slip and early afterslip of the 2015 Illapel, Chile, earthquake: Implications for frictional heterogeneity and coastal uplift. Journal of Geophysical Research: Solid Earth, 121 (8), 6172-6191. https://doi.org/10.1002/2016JB013124
Beck, S. L., & Christensen, D. H. (1991). Rupture process of the February 4, 1965, Rat Islands Earthquake. Journal of Geophysical Research: Solid Earth, 96 (B2), 2205-2221. https://doi.org/10.1029/90JB02092
Boyd, T. M., & Nábělek, J. L. (1988). Rupture process of the Andreanof Islands earthquake of May 7, 1986. Bulletin of the Seismological Society of America, 78 (5), 1653-1673. https://doi.org/10.1785/BSSA0780051653
Briggs, R. W., Engelhart, S. E., Nelson, A. R., Dura, T., Kemp, A. C., Haeussler, P. J., et al. (2014). Uplift and subsidence reveal a non-persistent megathrust rupture boundary (Sitkinak Island, Alaska).Geophysical Research Letters , 41 (7), 2289-2296. https://doi.org/10.1002/2014GL059380
Briggs, R.W., (2023), Geodetic polygons for an Alaska-Aleutian subduction zone interface earthquake recurrence model. U.S. Geological Survey data release . https://doi.org/10.5066/P9H2PE6W
Brooks, B.A., Goldberg, D., DeSanto, J., Ericksen, T.L., Webb, S.C., Nooner, S.L., et al. (2023). Rapid shallow megathrust afterslip from the 2021 M8.2 Chignik, Alaska earthquake revealed by seafloor geodesy.Science Advances , 9 (17), eadf9299. https://doi.org/10.1126/sciadv.adf9299
Carver, G., & Plafker, G. (2008). Paleoseismicity and neotectonics of the Aleutian subduction zone—An overview. In: J. T. Freymueller, P. J. Haeussler, R. L. Wesson, & G. Ekström (Eds.) Active Tectonics and Seismic Potential of Alaska: Geophysical Monograph Series 179 (pp. 43-63), Washington, D.C.: American Geophysical Union. https://doi.org/10.1029/179GM03
Chlieh, M., Avouac, J. P., Hjorleifsdottir, V., Song, T. R. A., Ji, C., Sieh, K., et al. (2007). Coseismic slip and afterslip of the great Mw 9.15 Sumatra–Andaman earthquake of 2004. Bulletin of the Seismological Society of America, 97 (1A), S152-S173. https://doi.org/10.1785/0120050631
Chlieh, M., Avouac, J. P., Sieh, K., Natawidjaja, D. H., & Galetzka, J. (2008). Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements. Journal of Geophysical Research: Solid Earth, 113 (B5), B05305. https://doi.org/10.1029/2007JB004981
Christensen, D. H., & Beck, S. L. (1994). The rupture process and tectonic implications of the great 1964 Prince William Sound earthquake.Pure and Applied Geophysics, 142 (1), 29-53. https://doi.org/10.1007/BF00875967
Coffey, G. L., Rollins, C., Van Dissen, R. J., Rhoades, D. A., Thingbaijam, K. K. S., Clark, K. J., et al. (2022). New Zealand National Seismic Hazard Model 2022: Earthquake recurrence derivation from paleoseismic data and probability of detection (Vol. 2022/32). Lower Hutt (NZ): GNS Science.
Cohen, S. C., & Freymueller, J. T. (1997). Deformation of the Kenai Peninsula, Alaska. Journal of Geophysical Research: Solid Earth, 102 (B9), 20479-20487. https://doi.org/1029/97JB01513
Cross, R. S., & Freymueller, J. T. (2008). Evidence for and implications of a Bering plate based on geodetic measurements from the Aleutians and western Alaska. Journal of Geophysical Research: Solid Earth, 113 (B7), B07405. https://doi.org/10.1029/2007JB005136
Daly, K. A., Abers, G. A., Mann, M. E., Roecker, S., & Christensen, D. H. (2021). Subduction of an oceanic plateau across southcentral Alaska: High-resolution seismicity. Journal of Geophysical Research: Solid Earth, 126 (11), e2021JB022809. https://doi.org/10.1029/2021JB022809
Davies, J., Sykes, L., House, L., & Jacob, K. (1981). Shumagin seismic gap, Alaska Peninsula: History of great earthquakes, tectonic setting, and evidence for high seismic potential. Journal of Geophysical Research: Solid Earth, 86 (B5), 3821-3855. https://doi.org/10.1029/JB086iB05p03821
Drooff, C., & Freymueller, J. T. (2021). New constraints on slipdDeficit on the Aleutian megathrust and inflation at Mt. Veniaminof, Alaska from repeat GPS measurements. Geophysical Research Letters, 48 (4), e2020GL091787. https://doi.org/10.1029/2020GL091787
Eberhart-Phillips, D., Christensen, D. H., Brocher, T. M., Hansen, R., Ruppert, N. A., Haeussler, P. J., & Abers, G. A. (2006). Imaging the transition from Aleutian subduction to Yakutat collision in central Alaska, with local earthquakes and active source data. Journal of Geophysical Research: Solid Earth, 111 (B11), B11303. https://doi.org/10.1029/2005JB004240
Elliott, J., & Freymueller, J. T. (2020). A block model of present-day kinematics of Alaska and western Canada. Journal of Geophysical Research: Solid Earth, 125 (7), e2019JB018378. https://doi.org/10.1029/2019JB018378
Elliott, J., Freymueller, J. T., & Larsen, C. F. (2013). Active tectonics of the St. Elias orogen, Alaska, observed with GPS measurements. Journal of Geophysical Research: Solid Earth, 118 (10), 5625-5642. https://doi.org/10.1002/jgrb.50341
Elliott, J. L., Grapenthin, R., Parameswaran, R. M., Xiao, Z., Freymueller, J. T., & Fusso, L. (2022). Cascading rupture of a megathrust. Science Advances, 8 (18), eabm4131. https://doi.org/10.1126/sciadv.abm4131
Engelhart, S. E., Horton, B. P., & Dura, T. (2015). Paleoseismology of Sanak Island: Collaborative Research with University of Rhode Island, Rutgers University, and U.S. Geological Survey. Final Technical Report, USGS External Grants , 30 pp. https://earthquake.usgs.gov/cfusion/external_grants/research.cfm
Estabrook, C. H., & Boyd, T. M. (1992). The Shumagin Islands, Alaska, earthquake of 31 May 1917. Bulletin of the Seismological Society of America, 82 (2), 755-773. https://doi.org/10.1785/BSSA0820020755
Estabrook, C. H., Nábělek, J. L., & Lerner-Lam, A. L. (1992). Tectonic model of the Pacific-North American plate boundary in the Gulf of Alaska from broadband analysis of the 1979 St. Elias, Alaska, earthquake and its aftershocks. Journal of Geophysical Research: Solid Earth, 97 (B5), 6587-6612. https://doi.org/10.1029/92JB00131
Field, E. H., Arrowsmith, R. J., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., et al. (2014). Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3) —The time-independent model.Bulletin of the Seismological Society of America, 104 (3), 1122-1180. https://doi.org/10.1785/0120130164
Field, E. H., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., Jackson, D. D., et al. (2013). Uniform California earthquake rupture forecast, version 3 (UCERF3): The time-independent model. U.S. Geological Survey Open-File Report 2013–1165 , 97 pp. https://doi.org/10.3133/ofr20131165
Field, E. H., Milner, K. R., & Page, M. T. (2020). Generalizing the inversion‐based PSHA source model for an interconnected fault system.Bulletin of the Seismological Society of America, 111 (1), 371-390. https://doi.org/10.1785/0120200219
Fournier, T. J., & Freymueller, J. T. (2007). Transition from locked to creeping subduction in the Shumagin region, Alaska. Geophysical Research Letters, 34 (6), L06303. https://doi.org/10.1029/2006GL029073
Frankel, A., Chen, R., Petersen, M., Moschetti, M., & Sherrod, B. (2015). 2014 Update of the Pacific Northwest portion of the U.S. National Seismic Hazard Maps. Earthquake Spectra, 31 (1_suppl), S131-S148. https://doi.org/10.1193/111314EQS193M
Freymueller, J. T., & Beavan, J. (1999). Absence of strain accumulation in the Western Shumagin Segment of the Alaska Subduction Zone.Geophysical Research Letters, 26 (21), 3233-3236. https://doi.org/10.1029/1999GL008356
Freymueller, J. T., Cohen, S. C., & Fletcher, H. J. (2000). Spatial variations in present-day deformation, Kenai Peninsula, Alaska, and their implications. Journal of Geophysical Research: Solid Earth, 105 (B4), 8079-8101. https://doi.org/10.1029/1999JB900388
Freymueller, J. T., Suleimani, E. N., & Nicolsky, D. J. (2021). Constraints on the slip distribution of the 1938 MW 8.3 Alaska Peninsula earthquake from tsunami modeling. Geophysical Research Letters, 48 (9), e2021GL092812. https://doi.org/10.1029/2021GL092812
Freymueller, J. T., Woodard, H., Cohen, S. C., Cross, R., Elliot, J., Larsen, C. F., et al. (2008). Active deformation processes in Alaska, based on 15 years of GPS measurements. In: J. T. Freymueller, P. J. Haeussler, R. L. Wesson, & G. Ekström (Eds.) Active Tectonics and Seismic Potential of Alaska: Geophysical Monograph Series 179(pp. 1-42), Washington, DC: American Geophysical Union. https://doi.org/10.1029/179GM02
GEBCO Compilation Group (2023). GEBCO 2023 Grid. https://doi:10.5285/f98b053b-0cbc-6c23-e053-6c86abc0af7b
Geist, E. L., Childs, J. R., & Scholl, D. W. (1988). The origin of summit basins of the Aleutian Ridge: Implications for block rotation of an arc massif. Tectonics, 7 (2), 327-341. https://doi.org/10.1029/TC007i002p00327
Gilpin, L. M. (1995). Holocene paleoseismicity and coastal tectonics of the Kodiak Islands, Alaska. Ph.D. dissertation, University of California, Santa Cruz, 358 pp.
Gilpin, L. M., Carver, G.A., and Hemphill-Haley, E. (1994). Paleoseismicity of the SW extent of the 1964 Alaskan rupture zone, eastern Aleutian arc, Kodiak Island, Alaska. In: D. P. Schwartz & R. S. Yeats (Eds.) Proceedings of the workshop on Paleoseismology, 18-22 September 1994, Marshall, California. U.S. Geological Survey Open-File Report 94-568 (p. 70). https://doi.org/10.3133/ofr94568
Goldfinger, C., Nelson, C. H., Morey, A. E., Johnson, J. E., Patton, J. R., Karabanov, E. B., et al. (2012). Turbidite event history—Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone. U.S. Geological Survey Professional Paper 1661-F , 170 pp. https://doi.org/10.3133/pp1661F
Hamilton, S., & Shennan, I. (2005a). Late Holocene great earthquakes and relative sea-level change at Kenai, southern Alaska. Journal of Quaternary Science, 20 (2), 95-111. https://doi.org/10.1002/jqs.903
Hamilton, S., & Shennan, I. (2005b). Late Holocene relative sea-level changes and the earthquake deformation cycle around upper Cook Inlet, Alaska. Quaternary Science Reviews, 24 (12-13), 1479-1498. https://doi.org/10.1016/j.quascirev.2004.11.003
Hatem, A. E., Reitman, N. G., Briggs, R. W., Gold, R. D., Jobe, J. A. T., & Burgette, R. J. (2022). Western U.S. geologic deformation model for use in the U.S. National Seismic Hazard Model 2023.Seismological Research Letters, 93 (6), 3053-3067. https://doi.org/10.1785/0220220154
Hawkes, A. D., Horton, B. P., Nelson, A. R., & Hill, D. F. (2010). The application of intertidal foraminifera to reconstruct coastal subsidence during the giant Cascadia earthquake of AD 1700 in Oregon, USA.Quaternary International, 221 (1-2), 116-140. https://doi.org/10.1016/j.quaint.2009.09.019
Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362 (6410), 58-61. https://doi.org/10.1126/science.aat4723
Hutchinson, I., & Crowell, A. L. (2007). Recurrence and Extent of Great Earthquakes in Southern Alaska During the Late Holocene from an Analysis of the Radiocarbon Record of Land-Level Change and Village Abandonment.Radiocarbon, 49 (3), 1323-1385. https://doi.org/10.1017/S0033822200043198
Ichinose, G., Somerville, P., Thio, H. K., Graves, R., & O’Connell, D. (2007). Rupture process of the 1964 Prince William Sound, Alaska, earthquake from the combined inversion of seismic, tsunami, and geodetic data. Journal of Geophysical Research: Solid Earth, 112 (B7). https://doi.org/10.1029/2006JB004728
Johnson, J. M., & Satake, K. (1993). Source parameters of the 1957 Aleutian earthquake from tsunami waveforms. Geophysical Research Letters, 20 (14), 1487-1490. https://doi.org/10.1029/93GL01217
Johnson, J. M., & Satake, K. (1997). Estimation of seismic moment and slip distribution of the April 1, 1946, Aleutian tsunami earthquake.Journal of Geophysical Research: Solid Earth, 102 (B6), 11765-11774. https://doi.org/10.1029/97JB00274
Kelsey, H. M., Witter, R. C., Engelhart, S. E., Briggs, R., Nelson, A., Haeussler, P., & Corbett, D. (2015). Beach ridges as paleoseismic indicators of abrupt coastal subsidence during subduction zone earthquakes, and implications for Alaska-Aleutian subduction zone paleoseismology, southeast coast of the Kenai Peninsula, Alaska.Quaternary Science Reviews, 113 , 147-158. https://doi.org/10.1016/j.quascirev.2015.01.006
Kogan, M. G., Frolov, D. I., Vasilenko, N. F., Freymueller, J. T., Steblov, G. M., Ekström, G., et al. (2017). Plate coupling and strain in the far western Aleutian arc modeled from GPS data. Geophysical Research Letters, 44 (7), 3176-3183. https://doi.org/10.1002/2017GL072735
Lay, T., Kanamori, H., Ammon, C. J., Koper, K. D., Hutko, A. R., Ye, L., et al. (2012). Depth-varying rupture properties of subduction zone megathrust faults. Journal of Geophysical Research: Solid Earth, 117 (B4), B0431. https:// doi.org/10.1029/2011JB009133
Lay, T., Ye, L., Bai, Y., Cheung, K. F., Kanamori, H., Freymueller, J., et al. (2017). Rupture Along 400 km of the Bering Fracture Zone in the Komandorsky Islands Earthquake (MW 7.8) of 17 July 2017.Geophysical Research Letters, 44 (24), 12161-112169. https://doi.org/10.1002/2017GL076148
Li, S., Freymueller, J., & McCaffrey, R. (2016). Slow slip events and time-dependent variations in locking beneath Lower Cook Inlet of the Alaska-Aleutian subduction zone. Journal of Geophysical Research: Solid Earth, 121 (2), 1060-1079. https://doi.org/10.1002/2015JB012491
Li, S., & Freymueller, J. T. (2018). Spatial variation of slip behavior beneath the Alaska Peninsula along Alaska-Aleutian subduction zone.Geophysical Research Letters, 45 (8), 3453-3460. https://doi.org/10.1002/2017GL076761
Liberty, L. M., Finn, S. P., Haeussler, P. J., Pratt, T. L., and Peterson, A. (2013), Megathrust splay faults at the focus of the Prince William Sound asperity, Alaska, J. Geophys. Res. Solid Earth, 118, 5428–5441, doi:10.1002/jgrb.50372.
Lisowski, M., Savage, J. C., Prescott, W. H., & Gross, W. K. (1988). Absence of strain accumulation in the Shumagin seismic gap, Alaska, 1980–1987. Journal of Geophysical Research: Solid Earth, 93 (B7), 7909-7922. https://doi.org/10.1029/JB093iB07p07909
López, A. M. & Okal, E.A. (2006). A seismological reassessment of the source of the 1946 Aleutian ‘tsunami’ earthquake, Geophysical Journal International, 165(3), 835–849. https://doi.org/10.1111/j.1365-246X.2006.02899.x
Mackey, K. G., Fujita, K., Gunbina, L. V., Kovalev, V. N., Imaev, V. S., Koz’min, B. M., & Imaeva, L. P. (1997). Seismicity of the Bering Strait region: Evidence for a Bering block. Geology, 25 (11), 979-982. https://doi.org/10.1130/0091-7613(1997)025%3C0979:SOTBSR%3E2.3.CO;2
Mann, D. H., & Crowell, A. L. (1996). A large earthquake occurring 700–800 years ago in Aialik Bay, southern coastal Alaska.Canadian Journal of Earth Sciences, 33 (1), 117-126. https://doi.org/10.1139/e96-012
Mann, M. E., Abers, G. A., Daly, K. A., & Christensen, D. H. (2022). Subduction of an oceanic plateau across southcentral Alaska: Scattered-wave imaging. Journal of Geophysical Research: Solid Earth, 127 (1), e2021JB022697. https://doi.org/10.1029/2021JB022697
Mariniere, J., Beauval, C., Nocquet, J. M., Chlieh, M., & Yepes, H. (2021). Earthquake recurrence model for the Colombia–Ecuador subduction zone constrained from seismic and geodetic data, Implication for PSHA.Bulletin of the Seismological Society of America, 111 (3), 1508-1528. https://doi.org/10.1785/0120200338
McCann, W. R., Nishenko, S. P., Sykes, L. R., & Krause, J. (1979). Seismic gaps and plate tectonics: Seismic potential for major boundaries. Pure and Applied Geophysics, 117 (6), 1082-1147. https://doi.org/10.1007/BF00876211
National Research Council. (1997). Review of Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. Washington, DC:The National Academies Press, 84 pp. https://doi.org/10.17226/5487
Nelson, A. R., Briggs, R. W., Dura, T., Engelhart, S. E., Gelfenbaum, G., Bradley, L. A., et al. (2015). Tsunami recurrence in the eastern Alaska-Aleutian arc: A Holocene stratigraphic record from Chirikof Island, Alaska. Geosphere, 11 (4), 1172-1203. https://doi.org/10.1130/GES01108.1
Nelson, A. R., DuRoss, C. B., Witter, R. C., Kelsey, H. M., Engelhart, S. E., Mahan, S. A., et al. (2021). A maximum rupture model for the central and southern Cascadia subduction zone—reassessing ages for coastal evidence of megathrust earthquakes and tsunamis.Quaternary Science Reviews, 261 , 106922. https://doi.org/10.1016/j.quascirev.2021.106922
Newberry, J. T., Laclair, D. L., & Fujita, K. (1986). Seismicity and tectonics of the far western Aleutian Islands. Journal of Geodynamics, 6 (1-4), 13-32. https://doi.org/10.1016/0264-3707(86)90030-X
Nicolsky, D. J., Freymueller, J. T., Witter, R. C., Suleimani, E. N., & Koehler, R. D. (2016). Evidence for shallow megathrust slip across the Unalaska seismic gap during the great 1957 Andreanof Islands earthquake, eastern Aleutian Islands, Alaska. Geophysical Research Letters, 43 (19), 10328-310337. https://doi.org/10.1002/2016GL070704
Nishenko, S. P., & Jacob, K. H. (1990). Seismic potential of the Queen Charlotte-Alaska-Aleutian seismic zone. Journal of Geophysical Research: Solid Earth, 95 (B3), 2511-2532. https://doi.org/10.1029/JB095iB03p02511
Noda, H. & Lapusta, N. (2013). Stable creeping fault segments can become destructive as a result of dynamic weakening. Nature 493 , 518–521. https://doi.org/10.1038/nature11703
Okal, E. A., & Hébert, H. (2007). Far-field simulation of the 1946 Aleutian tsunami. Geophysical Journal International, 169 (3), 1229-1238. https://doi.org/10.1111/j.1365-246X.2007.03375.x
Pacheco, J. F., Sykes, L. R., & Scholz, C. H. (1993). Nature of seismic coupling along simple plate boundaries of the subduction type.Journal of Geophysical Research-Solid Earth, 98 (B8), 14133-14159. https://doi.org/10.1029/93JB00349
Pagani, M., Johnson, K., & Garcia Pelaez, J. (2021). Modelling subduction sources for probabilistic seismic hazard analysis.Geological Society, London, Special Publications, 501 (1), 225-244. https://doi.org/10.1144/SP501-2019-120
Plafker, G. (1969). Tectonics of the March 27, 1964 Alaska earthquake.U.S. Geological Survey Professional Paper 543-I , 74 pp. https://doi.org/10.3133/pp543I
Plafker, G., Lajoie, K. R., & Rubin, M. (1992). Determining recurrence intervals of great subduction zone earthquakes in southern Alaska by radiocarbon dating. In: R. E. Taylor, A. Long, & R. Kra (Eds.),Radiocarbon After Four Decades (pp. 436-453), New York: Springer. https://doi.org/10.1007/978-1-4757-4249-7_2
Pulpan, H., & Frohlich, C. (1985). Geometry of the subducted plate near Kodiak Island and Lower Cook Inlet, Alaska, determined from relocated earthquake hypocenters. Bulletin of the Seismological Society of America, 75 (3), 791-810. https://doi.org/10.1785/BSSA0750030791
Ross, S. L., Eble, M., Nicolsky, D. J., & Wilson, R. (2023). Tsunami source standardization for hazards mitigation in the United States.John Wesley Powell Center for Analysis and Synthesis . Retrieved from https://www.sciencebase.gov/catalog/item/59a06151e4b038630d030525
Ross, S. L., Jones, L. M., Miller, K., Porter, K. A., Wein, A., Wilson, R. I., et al. (2013). SAFRR (Science Application for Risk Reduction) tsunami scenario—Executive summary and introduction. U.S. Geological Survey Open-File Report 2013-1170-A , 17 pp. https://doi.org/10.3133/ofr20131170A
Ryan, H. F., & Coleman, P. J. (1992). Composite transform-convergent plate boundaries: Description and discussion. Marine and Petroleum Geology, 9 (1), 89-97. https://doi.org/10.1016/0264-8172(92)90006-Z
Ryan, H. F., Draut, A. E., Keranen, K., & Scholl, D. W. (2012). Influence of the Amlia fracture zone on the evolution of the Aleutian Terrace forearc basin, central Aleutian subduction zone.Geosphere, 8 (6), 1254-1273. https://doi.org/10.1130/GES00815.1
Satake, K., & Atwater, B. F. (2007). Long-term perspectives on giant earthquakes and tsunamis at subduction zones. Annual Review of Earth and Planetary Sciences, 35 (1), 349-374. https://doi.org/10.1146/annurev.earth.35.031306.140302
Savage, J. C., J. L. Svarc, W. H. Prescott, and W. K. Gross (1998), Deformation across the rupture zone of the 1964 Alaska earthquake 1993–1997, J. Geophys. Res., 103, 21,275–21,283, https://doi.org/10.1029/98JB02048.
Savage, J. C., Lisowski, M., & Prescott, W. H. (1986). Strain accumulation in the Shumagin and Yakataga seismic gaps, Alaska.Science, 231 (4738), 585-587. https://doi.org/10.1126/science.231.4738.585
Schmalzle, G. M., McCaffrey, R., & Creager, K. C. (2014). Central Cascadia subduction zone creep. Geochemistry, Geophysics, Geosystems, 15 (4), 1515-1532. https://doi.org/10.1002/2013GC005172
Scholz, C. H., & Campos, J. (2012). The seismic coupling of subduction zones revisited. Journal of Geophysical Research: Solid Earth, 117 (B5), B05310. https://doi.org/10.1029/2011JB009003
Schwartz, S. Y. (1999). Noncharacteristic behavior and complex recurrence of large subduction zone earthquakes. Journal of Geophysical Research: Solid Earth, 104 (B10), 23111-23125. https://doi.org/10.1029/1999JB900226
Shaw, B. E. (2023). Magnitude and slip scaling relations for fault‐based seismic hazard. Bulletin of the Seismological Society of America ,113 (3), 924-947. https://doi.org/10.1785/0120220144
Shennan, I., Brader, M. D., Barlow, N. L. M., Davies, F. P., Longley, C., & Tunstall, N. (2018). Late Holocene paleoseismology of Shuyak Island, Alaska. Quaternary Science Reviews, 201 , 380-395. https://doi.org/10.1016/j.quascirev.2018.10.028
Shennan, I., Bruhn, R., Barlow, N., Good, K., & Hocking, E. (2014). Late Holocene great earthquakes in the eastern part of the Aleutian megathrust. Quaternary Science Reviews, 84 , 86-97. https://doi.org/10.1016/j.quascirev.2013.11.010
Shennan, I., Bruhn, R., & Plafker, G. (2009). Multi-segment earthquakes and tsunami potential of the Aleutian megathrust. Quaternary Science Reviews, 28 (1–2), 7-13. https://doi.org/10.1016/j.quascirev.2008.09.016
Shennan, I., Garrett, E., & Barlow, N. (2016). Detection limits of tidal-wetland sequences to identify variable rupture modes of megathrust earthquakes. Quaternary Science Reviews, 150 , 1-30. https://doi.org/10.1016/j.quascirev.2016.08.003
Small, D. T., & Melgar, D. (2021). Geodetic coupling models as constraints on stochastic earthquake ruptures: An example application to PTHA in Cascadia. Journal of Geophysical Research: Solid Earth, 126 (7), e2020JB021149. https://doi.org/10.1029/2020JB021149
Stirling, M., McVerry, G., Gerstenberger, M., Litchfield, N., Van Dissen, R., Berryman, K., et al. (2012). National Seismic Hazard Model for New Zealand: 2010 Update. Bulletin of the Seismological Society of America, 102 (4), 1514-1542. https://doi.org/10.1785/0120110170
Suito, H., & Freymueller, J. T. (2009). A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake.Journal of Geophysical Research: Solid Earth, 114 (B11), B11404. https://doi.org/10.1029/2008JB005954
Sykes, L. R. (1971). Aftershock zones of great earthquakes, seismicity gaps, and earthquake prediction for Alaska and the Aleutians.Journal of Geophysical Research , 76 (32), 8021-8041. https://doi.org/10.1029/JB076i032p08021
Tanioka, Y., & Gonzalez, F. I. (1998). The Aleutian Earthquake of June 10, 1996 (Mw 7.9) ruptured parts of both the Andreanof and Delarof segments. Geophysical Research Letters, 25 (12), 2245-2248. https://doi.org/10.1029/98GL01578
Tape, C., & Lomax, A. (2022). Aftershock regions of Aleutian-Alaska megathrust earthquakes, 1938–2021. Journal of Geophysical Research: Solid Earth, 127 (7), e2022JB024336. https://doi.org/10.1029/2022JB024336
Taylor, F. W., Frohlich, C., Lecolle, J., & Strecker, M. (1987). Analysis of partially emerged corals and reef terraces in the central Vanuatu Arc: Comparison of contemporary coseismic and nonseismic with quaternary vertical movements. Journal of Geophysical Research: Solid Earth, 92 (B6), 4905-4933. https://doi.org/10.1029/JB092iB06p04905
Tsang, L. L. H., Meltzner, A. J., Hill, E. M., Freymueller, J. T., & Sieh, K. (2015). A paleogeodetic record of variable interseismic rates and megathrust coupling at Simeulue Island, Sumatra. Geophysical Research Letters, 42 , 10,585–10,594. https://doi.org/10.1002/2015GL066366
von Huene, R., Klaeschen, D., & Fruehn, J. (1999). Relation between the subducting plate and seismicity associated with the great 1964 Alaska earthquake. Pure and Applied Geophysics, 154 (3), 575-591. https://doi.org/10.1007/s000240050245
von Huene, R., Miller, J. J., & Weinrebe, W. (2012). Subducting plate geology in three great earthquake ruptures of the western Alaska margin, Kodiak to Unimak. Geosphere, 8 (3), 628-644. https://doi.org/10.1130/GES00715.1
Wang, K. (1995). Coupling of tectonic loading and earthquake fault slips at subduction zones. Pure and Applied Geophysics, 145 (3), 537-559. https://doi.org/10.1007/BF00879588
Wech, A. G. (2016). Extending Alaska’s plate boundary: Tectonic tremor generated by Yakutat subduction. Geology, 44 (7), 587-590. https://doi.org/10.1130/G37817.1
Wesson, R. L., Boyd, O. S., Mueller, C. S., Bufe, C. G., Frankel, A. D., & Petersen, M. D. (2007). Revision of time-independent probabilistic seismic hazard maps for Alaska. U.S. Geological Survey Open-File Report 2007-1043 , 33 pp. https://doi.org/10.3133/ofr20071043
Working Group on California Earthquake Probabilities (WGCEP) (2003). Earthquake probabilities in the San Francisco Bay region: 2002 to 2031.U.S. Geological Surey. Open File Report 2003-214 , 235 pp. https://doi.org/10.3133/ofr03214
Witter, R., Briggs, R., Engelhart, S. E., Gelfenbaum, G., Koehler, R. D., Nelson, A., et al. (2019). Evidence for frequent, large tsunamis spanning locked and creeping parts of the Aleutian megathrust. GSA Bulletin, 131 (5-6), 707-729. https://doi.org/10.1130/B32031.1
Witter, R. C., Briggs, R. W., Engelhart, S. E., Gelfenbaum, G., Koehler, R. D., & Barnhart, W. D. (2014). Little late Holocene strain accumulation and release on the Aleutian megathrust below the Shumagin Islands, Alaska. Geophysical Research Letters, 41 (7), 2359-2367. https://doi.org/10.1002/2014GL059393
Witter, R. C., Carver, G. A., Briggs, R. W., Gelfenbaum, G., Koehler, R. D., La Selle, S., et al. (2016). Unusually large tsunamis frequent a currently creeping part of the Aleutian megathrust. Geophysical Research Letters, 43 (1), 76-84. https://doi.org/10.1002/2015GL066083
Worthington, L. L., Gulick, S. P. S., & Pavlis, T. L. (2008). Identifying active structures in the Kayak Island and Pamplona zones: Implications for offshore tectonics of the Yakutat microplate, Gulf of Alaska. In: J. T. Freymueller, P. J. Haeussler, R. L. Wesson, & G. Ekström (Eds.) Active Tectonics and Seismic Potential of Alaska: Geophysical Monograph Series 179 (pp. 257-268), Washington, DC: American Geophysical Union. https://doi.org/10.1029/179GM14
Worthington, L. L., Van Avendonk, H. J. A., Gulick, S. P. S., Christeson, G. L., & Pavlis, T. L. (2012). Crustal structure of the Yakutat terrane and the evolution of subduction and collision in southern Alaska. Journal of Geophysical Research: Solid Earth, 117 (B1), B01102. https://doi.org/10.1029/2011JB008493
Xiao, Z., Freymueller, J. T., Grapenthin, R., Elliott, J., Drooff, C., & Fusso, L. (2021), The deep Shumagin gap filled: Kinematic rupture model and slip budget analysis of the 2020 Mw 7.8 Simeonof earthquake constrained by GNSS, global seismic waveforms, and floating InSAR.Earth and Planetary Science Letters , 576 , 117241, https://doi.org/10.1016/j.epsl.2021.117241
Xue, X., & Freymueller, J. T. (2020). A 25-year history of volcano magma supply in the east central Aleutian arc, Alaska. Geophysical Research Letters, 47 (15), e2020GL088388. https://doi.org/10.1029/2020GL088388
Ye, L., Bai, Y., Si, D., Lay, T., Cheung, K. F., & Kanamori, H. (2022). Rupture model for the 29 July 2021 MW 8.2 Chignik, Alaska earthquake constrained by seismic, geodetic, and tsunami observations. Journal of Geophysical Research: Solid Earth, 127 (7), e2021JB023676. https://doi.org/10.1029/2021JB023676
Ye, S., Flueh, E. R., Klaeschen, D., & von Huene, R. (1997). Crustal structure along the EDGE transect beneath the Kodiak shelf off Alaska derived from OBH seismic refraction data. Geophysical Journal International, 130 (2), 283-302. https://doi.org/10.1111/j.1365-246X.1997.tb05648.x
Zhao, B., Bürgmann, R., Wang, D., Zhang, J., Yu, J., & Li, Q. (2022). Aseismic slip and recent ruptures of persistent asperities along the Alaska-Aleutian subduction zone. Nature Communications ,13 , 3098. https://doi.org/10.1038/s41467-022-30883-7