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ABSTRACT The COVID-19 pandemic, caused by the SARS-CoV-2 virus, continues to have a significant
impact on the global population. To effectively triage patients and understand the progression of the
disease, a metric-based analysis of diagnostic techniques is necessary. The objective of the present study
is to identify COVID-19 from chest CT scans and determine the extent of severity, defined by a severity
score that indicates the volume of infection. An unsupervised preprocessing pipeline is proposed to
extract relevant clinical features and utilize this information to employ a pre-trained ImageNet model to
extract discriminative features. Subsequently, a shallow feed-forward neural network is trained to classify
the available CT scans into three classes, namely COVID-19, Community-Acquired Pneumonia, and
Normal. Through various ablation studies, we find that a domain-specific pre-processing pipeline improves
classification accuracy significantly. In terms of classification accuracy, our approach, when evaluated on
publicly available datasets, is seen to have an absolute improvement of 6% F1 score over the baseline
model. Further, the estimated infection severity score is observed to be well correlated with radiologists’
assessments. The results support the necessity of data-driven pre-processing before implementing learning
algorithms.

INDEX TERMS COVID-19, CT scans, infection segmentation, semi-supervised augmentation, severity

assessment.

. INTRODUCTION

The COVID-19 pandemic, a highly contagious and primar-
ily respiratory illness, has been of significant concern with
devastating effects on public health, the world economy, and
the social fabric of society. The unabated spread of infection,
contrasted with other respiratory illnesses like SARS, has
been ascribed to the ability of the virus to infect other people
when the infected carrier is clinically asymptomatic. This
poses a significant challenge in terms of early detection and
containment. In severe cases, the progression of the disease
often leads to respiratory problems, which can be identified
by noticeable changes in chest X-rays or CT scans, such as
lung fibrosis and opaqueness.

The diagnosis of COVID-19 is crucial in identifying the
pathogenicity of the virus and the severity of the disease.
The gold standard for this purpose in a community setting
is Real-Time Polymerase Chain Reaction (RT-PCR), which
uses nasal and nasopharyngeal swab samples [1]. While RT-
PCR is a more reliable method for detecting infection, it
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suffers from two limitations — 1. Although RT-PCR estimates
the viral load, there seems to be an ambiguous correlation
between viral load and the severity of the disease. This is ow-
ing to the nature of the swab taken, whereby nasopharyngeal
swabs provide proof of the viral load in the upper respiratory
tract, while the severe disease is usually associated with the
lower respiratory tract. Also, 2. RT-PCR does not quantify
the clinical features of the patient under study, i.e., it is
not a test for the response of the human immune system
to the pathogen. Concerning the scope of the present work
with an emphasis on COVID-19 being a respiratory disease
primarily, the clinical diagnosis of COVID-19 severity is
analyzed through radiological techniques like chest X-ray,
which can be in one angle (traditional X-ray) or along several
planes to provide for tomographic reconstruction of the chest
(CT Scan) [2]. The limitation of traditional X-ray imaging in
being a line-of-sight integration results in poorer resolution
and hence a poorer prognosis of COVID-19 compared to
CT scans. In the context of image processing, CT scans
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represent higher dimensional input data, with the ability of
the processing algorithms being tested on the ability to recog-
nize essential features. Although algorithms can encode high-
dimensional images into a set of low-dimensional features,
the overlap between features of various diseases (respiratory
in the present context) results in erroneous classification as
shown by [3], [4]. This can lead to a failure in managing
the complications of COVID-19, such as cytokine storms,
which are a major cause of fatalities in COVID-19 cases
[5]. Motivated by these issues, the primary purpose of the
present work is to perform better classification between a
widely occurring respiratory disease — community-acquired
pneumonia (CAP) and COVID-19 and also against normal
CT-scan through a pre-processing routine.

Chest CT scans involve the projection of the X-ray bursts
at different planes (termed as slices) to obtain high-resolution
images of the chest region. The superior performance of CT
scans in diagnosing respiratory illness lies in their ability to
localize regions of abnormal opacity, which is usually a result
of inflammation. These are often characterized in the form of
ground-glass opacities (GGO), consolidation, a combination
of GGOs and consolidation, halo sign (central consolidations
surrounded by ground-glass opacities), reverse halo sign
(central ground-glass lucent area with peripheral consolida-
tion), and crazy paving patterns [6]-[8]. Common features of
GGO include opaque foggy areas which do not obstruct the
pulmonary vessels, while consolidation is marked by higher
opacity, thereby rendering the visualization of the pulmonary
vascular structures to be impossible. Crazy-paving patterns
are linear patterns superimposed on the background of GGOs
resembling irregularly shaped paving stones. The bilateral
distributions of GGO with or without consolidation in the
posterior or peripheral lung regions are regarded as the pri-
mary indicators for COVID-19. As the disease severity pro-
gresses, consolidations, crazy-paving patterns, and vascular
enlargement [9], [10] are the hallmark features. Pleural ef-
fusion and significant mediastinal lymphadenopathy are less
commonly observed findings in COVID-19 infection. Pleural
effusion is accumulating excessive fluid in the pleural space
surrounding each lung. In the case of pneumonia, the fea-
tures are more localized with the observation of a unilateral
distribution of GGOs and consolidation and associated with
pleural effusion and significant mediastinal lymphadenopa-
thy compared to COVID-19 [3]. An experienced radiologist
was consulted to obtain the Hounsfield Unit (a measure of the
range of radiation attenuation values — HU) corresponding
to different regions in the CT scan. The clinical features
observed for COVID-19 and CAP are shown in Figure. 1.
The HU values of pixels in the GGO region lie between -650
HU and -50 HU, the consolidation region is between 10 HU
and 45 HU, and the pleural effusion region is between 0 HU
and 35 HU.

The proposed research encompasses the development of a
preprocessing pipeline that enhances the features of interest
from a CT scan of a COVID-19 patient, leading to a better
assessment of the severity of the infection.
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FIGURE 1: Clinical image findings: The imaging findings
of COVID_19 and CAP in chest CT scans. Images (A)-
(E) show the COVID-19 patient’s chest CT scan slices, (F)
and (G) show the CAP patient’s chest CT scan slices. (A)
Peripheral distribution of GGO in both lungs (red arrows).
(B) Patchy areas of consolidations in the left lung (red arrow)
and GGOs in the right lung (blue arrow). (C) Crazy paving
pattern: GGOs with superimposed septal thickening (red
arrows). (D) Halo sign: consolidations surrounded by GGOs
(red arrow), consolidations at the lower lobes of lungs (blue
arrow). (E) Subsegmental vessel enlargement near the lesion
(red arrows). (F) An extensive area of consolidations with
GGO in the right lung — severe disease. (G) Pleural effusion
(yellow arrow) and GGOs (red arrows) in the left lung. (H)
Normal chest CT scan slice.

The contributions of the paper are as follows:

o An unsupervised preprocessing module to segment the
regions of infection from chest CT scans of COVID-19
patients.

o COVID-19 CT scan severity analysis (CTSS) based on
the infections developed in the lungs.

« An ablation study is performed to evaluate the contri-
bution of each stage in the preprocessing pipeline to
classification accuracy.

The paper is organized as follows- Discussion on segmen-
tation and identification of COVID-19 from chest CT scans
as presented in Section II. Section IV describes the segmen-
tation of relevant lung features in the CT scan contributing to
infection. We also briefly explain the training strategy to clas-
sify CT scans into COVID-19, CAP, and Normal categories.
Section V details the set of experiments and discussion on
results and inferences. Section VI concludes the work.

Il. RELATED WORK

Prior to the classification/identification of COVID-19, CT
scans primarily relied on raw images, i.e., the data obtained
from a diagnostic procedure. In related fields, however,
preprocessing techniques such as image enhancement and
segmentation have been employed extensively for enhanc-
ing image quality through the focus on dominant features
and noise removal. In our work, we amalgamate generic
image preprocessing techniques to aid image classification
algorithms in identifying the prevalence of COVID-19 from

VOLUME 4, 2016



IEEE Access

Anand et al.: Identification and Severity Assessment of COVID-19 using Lung CT Scans

TABLE 1: Different datasets used in the experiment. “*" —
slice-level labels are available; “**" — slice-level labels are
unavailable, but the CT scan patient-level label is available.
"C" and "S" denotes the classification and segmentation
datasets respectively.

Dataset Class COVID-19 CAP Normal C/S Format
Train 55%+116%* 25%435%* 76
SPGC eyt 28+ S1 51 ¢ DicoM
LDCT Test 104%%* 0 56
LDCT-PCR Test 100* 0 0
Mosmed Test 854+ 0 254
Mosmed Test 50* 0 0 cs NIfTI
MedSeg Test 100* slices 0 0
MedSeg | Test 9% (638 slices) 0 0 s NITI
Mehta Test 14%* 0 0 DICOM

chest CT scans. Although several algorithms for preprocess-
ing do exist, we utilize knowledge-based machine learning
approaches for the said purpose before embarking on clas-
sification. Considering the limitation in obtaining slice-level
labels which however is required for better classification of
the CT scans, a classifier is trained using the available data,
with the training data being further augmented with pseudo-
labeled data to improve accuracy.

A. CT SCAN SEGMENTATION

Segmentation using sophisticated image processing tech-
niques is required to address the issue of varying con-
trasts observed in CT scans procured through different
sources. The proposed work extensively uses unsupervised
segmentation based on domain knowledge. Unsupervised
image segmentation algorithms are broadly categorized into
a)threshold-based, b) region-based, c) boundary-based, d)
machine learning-based, and e) deep learning-based models.
[11] utilized the threshold-based segmentation algorithms
such as Huang [12], Kapur [13], and Otsu [14], to binarize the
CT scans and generated a region adjacency graph (RAG) [15]
to demarcate COVID-19 lesions from CT scans. Threshold-
based methods are very simple in approach and implemen-
tation if provided with images bearing sufficient contrast.
The absence of sufficient contrast leads to a downgrade in
performance while considering differences in image attenu-
ation. Region-based methods segment an area by assessing
the homogeneity of the neighboring pixels. Widely practised
region-based algorithms include region-growing [16]-[18],
watershed [19], graph cuts [20], [21], and fuzzy connect-
edness [22]. Boundary-based methods are computationally
intensive but provide highly accurate segmentation when the
initial iteration is in the vicinity of the actual boundary.
Boundary-based methods include snakes [23], active con-
tours [24], and level sets [25], [26]. The boundary-based
and region-based methods capture variations in attenuation
but fail to segment regions of infection (such as consolida-
tions and pleural effusion) near the lung boundary owing to
a similar range of HU values. [27] proposed a threshold-
based approach to segment lung regions from CT scans
by processing the left and right lungs separately. Further
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modifications are performed using morphological operators
for fine-tuning the identification of irregular boundaries of
the GGOs. [28] proposed a method to extract GGOs by
modeling their intensity distributions and using the Markov
random field model to improve boundary identification. [29]
utilized textural features from CT image intensity parameters
viz. entropy, contrast, roughness, and coarseness for seg-
mentation of infection region. These morphological features
are then used to demarcate GGOs from the image but were
found to be insufficient in distinguishing the consolidations
from pulmonary vessels. [30] proposed a novel approach
for the detection of COVID-19 features using a 3D deep
convolutional neural network (CNN) called "DeCoVNet"
on CT volumes. The authors employed a combination of
the activation maps generated by the DeCoVNet with a 3D
connected component (3DCC) algorithm to identify lesions
from the CT scans. Although the model demonstrated high
recall, it suffered from a high incidence of false positives.
This is seen to be the result of the formulation based on a
black-box approach, thereby rendering the attention of the
gradient to the infection region. The attention of activation
maps cannot be guaranteed to accurately focus on the region
of interest. This may lead to less accurate predictions and a
higher rate of false positives.

Inspired by the intensity distribution adaptive model using
MAP as proposed by Zhu et al. [28], we propose to use a
three-mixture Gaussian mixture model using adaptive thresh-
olding instead of a single Gaussian to extract the clinical
features (defined by the radiologists in Section I)) in the
proposed work.

B. CT SCAN CLASSIFICATION

Previous studies have made significant progress in identify-
ing COVID-19 using CT scan images, which can be broadly
divided into two categories: 3D CT scan-based classification
and 2D CT scan-based classification. In 3D CT scan-based
classification, a 3D CNN is trained on volumetric CT scans,
and a probability score is evaluated for each scan [30]-[35].
Among these techniques, segmentation of the lung region
using image preprocessing methods is applied before per-
forming classification. Owing to the varying dimensionality
of 3D CT scans, interpolation or truncation of the slices is
applied to convert them to fixed dimensionality, which might
lead to information loss [36].

In 2D CT scan-based classification, a 2D CNN is trained
on individual slices, generating slice-level probability scores.
Further, threshold-based [36], majority voting [37], [38],
weighted average methods [39], and sequence models (such
as recurrent neural network (RNN) [40] and bidirectional
long short term memory (BiLSTM) [41]) are used to obtain
patient-level COVID-19 classification. Threshold-based and
majority voting methods create higher false negatives at
regions where the traces of infections are not visible, as in
most CT scan slices. Considering the difficulty in obtaining
annotated CT scans, transfer learning methods have been
extensively employed in COVID-19 classification. Some
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transfer learning works [38], [39], [41]-[43] have explored
different CNN models trained on ImageNet dataset [44] for
classification tasks. Transfer learning methods reduce the
training requirement for every dataset and provide discrim-
inative features for classifying COVID-19, even while being
applied to raw CT scan images.

[39] employed transfer learning in generating features
from raw CT images using the EfficientNet-B5 model [45].
The slice-level scores were obtained using a shallow FFNN.
Further, patient-level classification was performed using a
weighted average method on the slice-level scores. With
higher accuracy in classifying COVID-19, this model is used
as the baseline model in the present work. Inspired by this
technique [39], the present work attempts to enhance the
performance in classifying COVID-19 in a CT scan by using
preprocessing pipeline rather than raw CT scan images. We
further provide an objective understanding of the severity of a
COVID-19 patient by introducing a severity analysis module
in the proposed architecture.

lll. DATASETS

This work uses six publicly available online datasets, sum-
marising the details in Table 1. CT scan is a volumetric scan
consisting of 'n’ slices. Each slice has a dimension of 512 x
512. The classification model is based on 2D CT scan images,
which use the transfer learning from ImageNet database-
trained models to generate discriminative features.

The dataset SPGC [46] provides slice-wise labels for
COVID-19 and CAP cases by expert radiologists and is used
for building a model for the classification tasks. Since the
unavailability of slice-wise labels (but volume level labels
are available) for CT scans in this dataset, a semi-supervised
training method is performed for the classification task,
explained in detail in Section IV-C. Hereafter, this dataset
is named SPGC. Three publicly available datasets (named
LDCT, LDCT-PCR [47] and Mosmed [48] for further use
in the paper) are used for testing the robustness of the
trained model. The LDCT and Mosmed datasets are collected
from different geographical locations across the globe and
are available in Digital Imaging and Communications in
Medicine (DICOM) and NIfTI (Neuroimaging Informatics
Technology Initiative).

Three publicly available datasets named Mosmed [48],
MedSeg [49], and MedSeg_1 [50] are used for testing the
accuracy of infection region segmentation from the COVID-
19 patients. Expert radiologists demarcated the lesion region
from the CT scans. The MedSeg dataset contains 100 CT
slices collected from more than 40 patients with COVID-
19, ranging from minimal to severe infections. This dataset
which contains random slices from different patients, is inad-
equate to test the lesion segmentation because the severity
analysis on COVID-19 patients uses the CT scan volume.
The CT scan volume may or may not contain infections in
all the slices. The Mosmed and MedSeg_1 datasets contain
50 and 9 patients’ CT scan volumes collected from different
geographical places. The infection ranges in patients of the
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Mosmed dataset are less than 25%, while infection ranges
vary from minimal to severe in the MedSeg_1 dataset. The
severity of COVID-19 for a patient is performed by the
CT severity score (CTSS), which indicates a severity scale
from 0-25. The Mehta dataset contains fourteen COVID-
19 patients’ CT scans collected from Mehta multispeciality
hospital (native hospital). This dataset includes a detailed
diagnosis report for each CT scan, such as the CT severity
score (CTSS), COVID-19 Reporting and Data System (CO-
RADS) score, symptoms, and infection volume developed
in the lungs. The patient’s details are anonymized in the
CT scan metadata and the diagnosis reports. This dataset is
used to identify the correlation of the CTSS predicted by the
proposed model.

IV. PROPOSED SYSTEM

The proposed system is designed to accomplish three key
tasks: 1) A novel preprocessing pipeline to extract relevant
clinical features, 2) A Semi-supervised method for classify-
ing CT scans, and 3) A CT severity score is generated for
patients by utilizing the preprocessing pipeline. The proposed
system initially preprocesses the CT scan images, which are
then fed to a model trained on the ImageNet dataset for
extracting high-dimensional features. These features subse-
quently train a shallow feed-forward neural network (FFNN)
to predict slice-level scores. A weighted average method is
then applied to calculate the final score for the CT scans. A
severity analysis module is also implemented to determine
the CT severity score (CTSS). We evaluate the system’s
performance on six publicly available online datasets, the
details of which are summarized in Table 1.

A. PREPROCESSING PIPELINE

Radiologists often use common clinical features such as
GGO, consolidation, crazy paving pattern, halo sign, re-
verse halo sign, and pleural effusion to distinguish between
COVID-19 and CAP from healthy individuals. The abnor-
malities in the CT scan exhibit attenuation variations with
respect to the severity of the infection. Based on the observa-
tions in Figure. 1, an image processing pipeline is proposed
with primary emphasis on the differences between the three
classes of interest — COVID-19, CAP, and Normal. The
proposed preprocessing pipeline is shown in Figure. 2. The
preprocessing pipeline is developed in an unsupervised man-
ner by integrating traditional image processing techniques in
tandem with machine learning and deep learning models.

1) Stage-I: Lung mask generation

A CT scan is a volumetric scan consisting of multiple slices
with a 512 x 512 pixels resolution. In a chest CT scan,
tissues, heart, stomach, blood vessels, and bones possess
higher attenuation (HU) values than air and lung areas. The
preprocessing pipeline is applied on the HU scale of CT
scan images. CT scans are mainly available in two formats:
Neuroimaging Informatics Technology Initiative (NIfTI) and
Digital Imaging and Communications in Medicine (DI-
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FIGURE 2: Proposed model architecture.

COM). The pixel intensity values of the CT scan slices
are HU units in NIfTI format, whereas DICOM format
CT scan slices are converted to HU scale images using a
linear transformation. The preliminary task is to remove the
unnecessary areas in the CT scan and identify the region of
interest (lung region). The HU scale image is fed to the pre-
trained UNet model to extract the region of interest. The pre-
trained UNet [51] is an end-to-end, fully convolution neural
network containing an encoder module that compresses input
CT images using convolution and max-pooling operations
into a fixed-length feature map. The decoder module (which
provides a better spatial representation) upsamples these fea-
ture maps to the lung mask. The skip connections between the
encoder and decoder modules enhance the semantic features
for segmentation. The pre-trained UNet model segments the
lung CT scan into three classes: the left lung region, the right
lung region, and the background. The UNet model removes
unnecessary objects such as bones, trachea, and organs and
retains only the lung region. The lung region provides a clear
segmented image, making identifying potential issues easier.

The initial and final slices of the CT scan typically con-
tain structures such as bones, the trachea, the diaphragm,
the heart, and the stomach, which are irrelevant to further
analysis and hence not considered. A fixed threshold on the
number of slices is impossible as the number of slices can
vary between patients. Instead, a lung mask is used as a
threshold to remove the initial and final slices. A criterion
based on the degree of lung involvement is used to decide
the number of slices for further analysis for every patient.
This approach ensures that only the slices most relevant to
COVID-19 analysis are included, improving the accuracy of
the diagnosis.

2) Stage-ll: GMM-based adaptive filter

The range of attenuation values (HU) of features like GGO,
consolidation, and pleural effusion are discussed in Section
I. The pixel intensity values of GGO, consolidation, and
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pleural effusion regions can vary depending on the severity
of the infection. Severe infection regions have higher pixel
intensities than mild infection regions. This variability in
the attenuation is captured by modeling the pixel’s intensity
histogram with a three-mixture GMM. Each mixture attempts
to capture the GGO, consolidation, pleural effusion, and
background patterns. This unsupervised clustering technique
is applied to the preprocessing (Stage I) images. HU ranges
for the clinical features were defined by the radiologist. Each
mixture in GMM is represented by a mean u, a standard
deviation o, and a threshold of (4 £ 1.5 % o) is considered for
the pixel selection. The pixel intensities lie between the range
defined above, and the proposed radiologist is considered for
further analysis. While the GMM adaptive filter accurately
segments the infection regions, the presence of blood vessels
affects the severity analysis. To address this issue, the images
are further subjected to vascular analysis.

3) Stage-lll: Vascular enhancement and morphological filters
After Stage II of preprocessing, the image contains essen-
tial features of COVID-19 and CAP and details of bronchi
and primary pulmonary vessels, which can resemble tubular
structures. The vessels share similar HU values as that of
consolidations and pleural effusions. A shape-based filter
is needed to retain the consolidation and pleural effusion
regions and remove the blood vessels. The Jerman blood
vessel enhancement filter [52] is widely used in angiographic
images to enhance blood vessels. This filter can identify the
local structures in the images based on the shape (elongated
or circular) by evaluating the sign and magnitude of the
Eigenvalues of the image’s Hessian matrix. The Jerman filter
examines the largest to smallest eigenvalue ratio and assigns
a probability score for each pixel to be a part of elongated
local structures. The output from stage-I is subjected to this
filter with a threshold of 0.75 to generate a binary mask for
marking and removing the blood vessels. The blood vessels
underneath the GGOs are also marked and removed from
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the image, creating holes in the GGO region. The flood fill
algorithm [53] is then applied to homogenize these holes
using the intensities of the pixels in the neighborhood. Fol-
lowing this, a morphological operation (dilation) is applied
to enhance the infection boundary in the resulting image. The
small white regions, which are generated due to the removal
of the blood vessels, are removed using the area opening
morphological method [54].

4) Stage-IV: Generate lung boundary and grayscale image
As proposed in [55], the Prewitt edge detector is employed
to extract the lung boundary from the lung mask generated
from Stage-I. This lung boundary aids in identifying the
localization and distribution of the clinical features in the CT
scan. Furthermore, the resultant HU scale image is converted
to an 8-bit grayscale image using min-max normalization.
This grayscale image is then resized to a three-channel image
to match the input dimension of the model pre-trained on the
ImageNet dataset.

B. FEATURE EXTRACTION BY IMAGENET
PRE-TRAINED MODELS

Considering that the training dataset does not contain suffi-
cient labeled 2D CT scan slices to train a deep CNN, state-
of-the-art computer vision models trained on the ImageNet
dataset are used to extract high-dimensional features of the
preprocessed CT scan images. In this work, five deep CNN
models, namely, MobileNet [56], ResNet-101 [57], ResNet-
50 [57], EfficientNet-B5 [45], and EfficientNet-B1 [45] are
used to extract discriminative features from the preprocessed
CT scan images. The MobileNet [56] is a lightweight model
that generates a 1024-dimensional feature vector for each
2D image. The novel depth-wise convolution in each layer
reduces the number of parameters compared to a network
with regular convolutions with the same depth. The ResNet
models contain skip connections to allow for deep CNN mod-
els. These models perform better than models without skip
connections. The deep CNN model with skip connections
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can handle the vanishing gradient problem by following an
alternate method for backpropagation. Tan et al. proposed a
simple and effective way of scaling up CNN models to obtain
better accuracy using compound coefficients. The technique
allows the EfficientNet models to achieve higher accuracy
with fewer parameters by focusing on the design choice of
the model, thereby performing better than random scaling up
of the model’s width, depth, or the resolution of the feature
map. Compared to other convolutional neural networks, the
compound scaling method scales the input dimensions at a
constant ratio to enhance classification accuracy. The ResNet
and EfficientNet models generate a 2048-dimensional feature
vector for each preprocessed CT scan image.

C. TRAINING

The SPGC training dataset [46] is insufficient to train a deep
CNN model from scratch, so a semi-supervised approach is
used to label the unannotated CT scan images in the training
dataset. This method helps augment the final training dataset
with more COVID-19 and CAP slices. Labeled images are
preprocessed and fed to the pre-trained MobilNet to extract
slice-wise feature maps. Each feature map is given to the
global average pooling layer to make it a 1024-dimensional
feature vector. Two shallow feed-forward neural networks
(FFNN), with 1024 neurons and two neurons in the first and
last layers, are trained on the 1024-dimensional extracted
feature vectors. Among the two models, one FFNN is trained
with an equal amount of features of COVID-19 and Normal
CT scans, and the other FFNN is trained with an equal
amount of features of CAP and Normal CT scans, named Mo-
bilenet_COVID and MobileNet_CAP for future references,
respectively. The SPGC training dataset contains unlabelled
CT scan images; nevertheless, the entire CT scan patient-
level labels are given. Unlabeled slice-wise CT scan images
are preprocessed using the preprocessing pipeline developed
in Section IV-A, and then fed to the pre-trained ImageNet
models for feature extraction. The features corresponding to
the COVID-19 slices are given to the MobileNet_ COVID
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model; similarly, the features of unlabelled CAP slices are
given to the MobileNet_CAP model. CT scan slices with
predicted labels as COVID-19 and CAP are further used to
augment the final training dataset, and slices with the label as
Normal are discarded. The pseudo-labeled COVID-19, CAP
slices, and the labeled training dataset are used to train the
final classifier. The final classifier consists of three layers:
two dense layers (2048 and 1024 neurons) and a final layer
(three neurons). Each neuron in the last layer gives a prob-
ability score for each class: CAP, COVID-19, and Normal.
The final classifier is trained with an equal number of CT
scan slices from COVID-19, CAP, and Normal categories.
To avoid class imbalance, the final classifier model is trained
with the same number of samples from each category. The
complete pipeline of the training process is shown in Figure
3.

D. PATIENT-LEVEL CLASSIFICATION
The three-class classifier generates a probabilistic score for
each CT scan slice. Since the CT scan is volumetric and
has a dimension of (n * 512x512), patient-level annotation is
preferable to slice-level classification. Thus, a weighted av-
eraging method is applied to the probability score generated
by the classifier. The CT scan volume ( with 'n’ images) is
divided into three equal regions, and each part is associated
with different weights (Wy, Wa, W3), where Wy, Wy, W3
are 0.7, 1, and 0.7 respectively. The middle region CT scan
slices have a large lung region and contain more information.
Hence, more weightage is assigned to the slices from this
region. If the weighted sum of the probabilities of COVID-
19 and CAP categories is greater than that of the Normal
class, the CT scan is considered abnormal and classified as
either COVID-19 or CAP based on the scores. The LDCT,
Mosmed, and LDCT-PCR datasets do not contain any CAP
CT scans. The CT scan slices predicted as CAP class are
considered to belong to the COVID-19 category for these
datasets. Consider the predicted score for the i'" slice is P;.
The patient label is calculated as:

FS = max (ZZ‘E P« Wy + Zfz{jd P« Wy + Z?:zn/:% P; W3> @))
V. RESULTS AND DISCUSSIONS
The proposed pipeline is thoroughly evaluated on several
aspects, including segmentation and classification accuracy.
Additionally, ablation studies are conducted to evaluate the
image preprocessing pipeline’s significance in the proposed
method’s overall performance.

A. EVALUATION METRICS

The proposed pipeline is evaluated using several widely used
metrics for segmentation and classification. For segmenta-
tion, the pipeline is evaluated using metrics such as Dice
score (Dice), sensitivity (Sen.), specificity (Spec.), precision
(Prec.), and mean absolute error (MAE). Dice score com-
putes the error in segmentation by computing the overlap
between annotated and predicted areas. Precision denotes
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the number of accurate white pixel predictions out of the
overall white pixel predictions by the model. At the same
time, specificity represents the number of correct predictions
of black pixels from the total black pixels in the ground
truth image. The MAE finds the average absolute difference
between the predicted and annotated binary masks and quan-
tifies the quality of the ROI predicted by the model. A lower
MAE value indicates a better segmentation by the model. For
classification, the pipeline is evaluated using metrics such
as sensitivity, precision, and F1 score. Sensitivity denotes
the number of CT scan volumes correctly predicted to the
ground truth. It determines how well the model can discrim-
inate patients’ input CT scans with respect to the ground
truth. Precision denotes the number of CT scans correctly
predicted by the model’s overall prediction. F1 score can be
quantified as the harmonic mean of sensitivity and precision.
The F1 score is similar to the Dice score in the segmentation
task. The proposed pipeline also predicts the CT severity
score (CTSS) and evaluates the prediction using the Pearson
correlation coefficient and cosine similarity. The Pearson
correlation measures the ratio between the covariance of the
predicted and ground truth scores and their standard devia-
tions, showing the trend between the proposed and ground
truth CTSS. Cosine similarity calculates the angle between
the proposed and ground truth CTSS vectors, measuring the
prediction accuracy relative to the ground truth. The Pearson
correlation coefficient and cosine similarity range from -1 to
1, with positive correlations and higher similarities indicated
by values greater than zero.

B. SEGMENTATION RESULTS

The output image from Stage-III of the preprocessing
pipeline (image (I) in Figure. 2) is used as the infection
mask for the CT scan slices. This preprocessed image (I) is
generated by adaptively filtering the clinical features using
a three-mixture GMM; then, blood vessels are removed by
the Jerman filter, and the extracted features are fine-tuned
with the morphological filters. In a previous study, [58]
evaluated five baseline models based on the different variants
of the UNet [59] architecture with the MedSeg dataset (48
slices). The slices in the MedSeg dataset contain a wide
range of infections, but non-infectious slices are absent. The
infection segmentation results of the proposed model are
evaluated with the same dataset with the same CT scan slices,
and the results are summarized in Table 2. The infection
segmentation of sample images from the MedSeg dataset
is shown in Figure 4. The proposed model achieves better
results in dice score, specificity, and MAE to the baseline,
and also the models proposed by [58], namely, InfNet and
SemilnfNet. Since the MedSeg dataset is a random collection
of slices from different patients, they conducted infection
segmentation with another dataset (MedSeg_1) comprising
nine patients with 638 slices (285 non-infected and 353 in-
fected slices). The results are summarized in Table 2. Again,
the preprocessing pipeline improves performance, especially
when the non-infected slices are identified more accurately
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TABLE 2: The infection segmentation results with the Med-
Seg Dataset (48 CT scan slices).

TABLE 4: The infection segmentation results with the
Mosmed Dataset (50 patients CT scan volume).

Model Dice Sen. Spec. MAE

UNet [59] 0439 0.534  0.858 0.186
Attention UNet [60] 0.583 0.637  0.921 0.112
Gated UNet [61] 0.623  0.658  0.926 0.102
Dense UNet [62] 0.515 0594  0.840 0.184
UNet++ [63] 0.581 0.672  0.902 0.120
InfNet [58] 0.682 0.692  0.943 0.082
SemilnfNet [58] 0.739  0.725  0.960 0.064
Our Method 0.673  0.678 0.9852  0.0356

TABLE 3: The infection segmentation results with the Med-
Seg_1 Dataset (nine patients’ real CT scan volumes).

Model Dice Sen.  Spec. Prec. MAE

UNet [59] 0308 0.678 0.836 0.265  0.214
Attention UNet [60] 0.466 0.723 0930 0.390  0.095
Gated UNet [61] 0.447 0.674 0956 0375  0.066
Dense UNet [62] 0.410 0.607 0977 0415 0.167
UNet++ [63] 0.444 0.877 0929 0369 0.106
InfNet [58] 0.579  0.870 0974 0.500  0.047
SemilInfNet [58] 0597 0.865 0977 0.515  0.033
Our Method 0726  0.775 0996 0.711  0.0057

than the baseline, InfNet, and SemilnfNet models. Moreover,
the proposed pipeline can detect even minor infections based
on the statistical properties of the attenuation in the infection
regions.

[64] used a nnUNet (no new UNet) based baseline model
for infection segmentation. The baseline model is mainly
trained with two datasets, out-of-domain, and in-domain.
The out-of-domain datasets include Medical Segmentation
Decathlon (MSD) lung tumor segmentation (MICCAI 2018
challenge dataset), StructSeg lung cancer volume segmenta-
tion (MICCAI 2019 challenge dataset), and NSCLC pleural
effusion segmentation [65]. The in-domain datasets contain
20 COVID-19 CT scans with an infection range of 0.01%
- 59% [50]. Three baseline results are provided by training
the nnUNet on each out-of-domain dataset (Task 1). Two
baseline results are provided by training the nnUNet with
in-domain and out-of-domain datasets (Task 2). Out of the
two benchmark results, one model is trained for lung and in-
fection segmentation (Union), and the other is prepared only
for infection segmentation (separate). The Mosmed dataset
[48] is used as blind test data for the baseline models, and
the baseline results, along with our proposed model results,
are summarized in Table 4. The proposed model provides
better dice score, sensitivity, and precision results. Since the
infection region is less than 25% in the CT scan, it is observed
that the proposed model can identify small infection regions
from the CT scan slices and outperform the baseline models.

C. SEVERITY ANALYSIS

Determining the severity of infection in a COVID-19 patient
is essential in determining the appropriate course of treat-
ment. The CT severity score (CTSS) is the standard metric
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Task 1 Task 2 Proposed method
MSD  Structseg NSCLC  Separate  Union Infection Mask
Dice score  0.392 0.443 0.301 0.588 0.482 0.752
Specificity 1.00 1.00 1.00 0.999 0.999 0.998
Sensitivity  0.364 0.422 0.249 0.575 0.601 0.757
Precision  0.614 0.607 0.614 0.679 0.577 0.812

used for severity analysis, and it ranges from 0 (no involve-
ment) to 25 (maximum involvement). This score is evaluated
by segmenting the right lung into three lobes and the left
lung into two, respectively. The percentage of infection in
each lobe is calculated based on the infection rate, as shown
in Figure. 5. In the present work, we evaluate the severity
analysis by projecting the volumetric CT scan into axial
slices. An empirical threshold on the lung mask (C in (Figure.
2)) is used to select CT scan slices for the estimation of
CTSS. The pre-trained UNet [51] categorizes each CT scan
image into right, left, and background lung masks. The right
and left lungs are segmented as briefed before. The infection
mask (I in (Figure. 2)) is projected (element by element pixel
intensity multiplication) on either lobe, and the percentage
of infection in each lobe is calculated. A score of 0 to 5 is
assigned to each lobe based on the percentage of infection.
This process is depicted in Figure. 5. The average (across the
images) lobe score is then acquired to yield the total CTSS,
the sum of the averaged lobe scores.

The Mehta dataset (14 patients) and a subset from the
SPGC dataset (36 patients) are used for the CTSS analysis.
An expert radiologist provides the CTSS for the subset of the
SPGC dataset. The CTSS predicted by the proposed method
and radiologist-predicted CTSS is compared in Figure. 6. A
strong correlation of 0.82 between the CTSS predicted by the
proposed method and the ground truth is observed, as well as
a high cosine similarity of 0.97 between the proposed and
ground truth CTSS score vectors of 50 patients. These results
indicate that the CTSS predicted by the proposed method
follows the same trend as the ground truth provided by the
radiologist.

D. CLASSIFICATION RESULTS

Features are extracted using pre-trained networks, as stated
earlier. A shallow feed-forward neural network is trained
using a semi-supervised learning method. The classification
results for the ablation study, as well as the slice-level and
patient-level, are summarised in Table 5, Table 6, Table 7,
and Figure. 7 respectively.

1) Ablation Study

The proposed work differs significantly from previous work
in its image processing pipeline. A series of ablation stud-
ies are performed to evaluate each stage’s contribution in
the preprocessing pipeline to classification accuracy. These
studies include additional preprocessing steps in the pipeline.
The different intermediate preprocessed images used in the
ablation study are original image (OI), Stage II with GMM
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U-Net Semi-Inf-Net

Inf-Net

CT scan U-Net++ Our Method Ground Truth

FIGURE 4: The region of infection extracted from the MedSeg dataset using different baseline models and the proposed model.

TABLE 5: An ablation study on the different preprocessing stages of the SPGC test dataset with four different features.

Category Feature Extractor [0)1 GMM GMM+MO GMM+B GMM+MO+B GMM+MO+JF GMM+MO+JF+B
ResNet-50 0.71 0.78 0.83 0.73 0.81 0.68 0.77
COVID-19 ResNet-101 0.46 0.83 0.78 0.80 0.87 0.81 0.71
EfficientNet-B1 0.72 0.81 0.77 0.81 0.81 0.79 0.76
EfficientNet-B5 0.77 0.71 0.73 0.80 0.83 0.75 0.74
ResNet-50 0.64 0.78 0.89 0.51 0.81 0.29 0.70
CAP ResNet-101 0.65 0.81 0.81 0.81 0.78 0.80 0.50
EfficientNet-B1 0.72 0.74 0.74 0.85 0.78 0.76 0.76
EfficientNet-B5 0.85 0.57 0.73 0.79 0.78 0.68 0.73
ResNet-50 0.64 0.90 0.86 0.85 0.93 0.76 0.84
Normal ResNet-101 0.68 0.87 0.83 0.85 0.92 0.89 0.79
EfficientNet-B1 0.77 0.88 0.84 0.85 0.92 0.87 0.82
EfficientNet-B5 0.83 0.79 0.82 0.87 0.93 0.88 0.83
cTss ‘ TABLE 6: The slice-level classification of the LDCT dataset
0 . .
~ % of Score with different features.
infection
0 0 Feature Sensitivity Precision F1 Score
<=5 1 Extractor COVID-19 Normal | COVID-19 Normal | COVID-19 Normal
- ResNet-50 0.90 0.86 0.88 0.89 0.89 0.88
5-25 2 ResNet-101 0.82 0.89 0.89 0.82 0.86 0.86
25 -50 3 EfficientNet-B5 0.88 0.88 0.89 0.87 0.88 0.87
EfficientNet-B1 0.80 0.93 0.92 0.81 0.86 0.86
50-75 4
>=75 5

1) Divide the right lung into three lobes and left lung into two lobes
2) Find the percentage of infection in each lobes and assign a score
based on the Table (CTSS)

Stage-IV output image (GMM + MO + JF + B). Again, we
use the pre-trained ImageNet model for feature extraction
and train a shallow FFNN to classify the images. Ablation
studies are performed on the SPGC dataset, and the results
are summarized in Table 5.

As seen in Table 5 that GMM-filtered images with mor-
phological operations and lung region boundary (GMM +
MO + B) have consistent and uniform F1 scores across

FIGURE 5: A lung mask generated by UNet and an infection
mask is used for estimating the severity score for a CT scan
slice.

(GMM), Stage II with morphological operations (GMM +
MO), Stage-II with lung region boundary (GMM + B), Stage
IT with morphological operations and lung boundary (GMM
+ MO + B), Stage-III output image (GMM + MO + JF) and

VOLUME 4, 2016

all the models pre-trained on the ImageNet dataset. GMM
+ MO images performed well with the ResNet-50 model,
but the other models with the same image produced less
classification accuracy. It is observed from the ablation study
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FIGURE 6: CTSS for 14 patients (Mehta) and 36 patients (a subset of SPGC datasets).
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F1 Score
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FIGURE 7: Patient-wise classification results for the baseline
and proposed models with SPGC dataset.

that blood vessel removal from the CT scan images degrades
the classification performance. The blood vessel removal
algorithm introduces an information loss in the CT scan
images for the classification task. It is observed from the
literature that blood vessel enlargement can happen in the
later stages of COVID-19 infection [9], [10]. From the ab-
lation study on the SPGC dataset, the (GMM + MO + B)
image in preprocessing pipeline appears to contribute most
to accuracy. The F1 score is used as the evaluation metric for
the ablation study since the test dataset has a class imbalance
with the different categories of CT scans.

2) Slice-level classification

An experiment is conducted with the LDCT dataset, which
provides slice-level labels for 160 patients. The (GMM +
MO + B) images from the preprocessing pipeline are used
to train and test the models. Four different models pre-
trained on the ImageNet dataset extract the features. Each
feature is trained with different shallow FFNN models. It
is observed from Table 6 that all the features are suitable
for discriminating between the classes. Since the CT scan is
volumetric data, patient-level classification is preferable to
slice-level identification.

3) Patient-level classification

The proposed three-class classifier model is evaluated with
the SPGC test dataset and summarised the results along with
the baseline model in Fig. 7. The baseline model [39] used
the EfficientNet-BS5 as the feature extractor from the raw CT
scan images, and a shallow FFNN is trained on the extracted
features. The proposed model with the EfficientNet-B5 as a
feature extractor shows an average improvement of 6% F1
score for the classification task. Similarly, other features are
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TABLE 7: A comparative study of different features with
different test datasets used in the experiments.

Feature LDCT RT-PCR Mosmed

Extractor COVID-19 Normal | COVID-19 Normal | COVID-19  Normal

ResNet-50
ResNet-101
EfficientNet-B1
EfficientNet-B5

0.88
0.89
0.89
0.88

0.82
0.82
0.82
0.82

0.89 0.82
0.90 0.83
0.94 0.89
0.89 0.82

0.72 0.54
0.77 0.58
0.79 0.59
0.75 0.59

TABLE 8: Different severity classes and respective classifi-
cation results.

Category Prediction Number of  Percentage of
COVID-19 Normal patients infection
CT-0 30 224 254 <=5
CT-1 412 272 685 5-25
CT-2 110 15 125 25-50
CT-3 37 8 44 50-75

also performing better than the baseline model. Figure. 7
shows that the preprocessing pipeline significantly improves
the classification task.

The LDCT, LDCT-PCR, and Mosmed datasets consist
of two classes of CT scans: COVID-19 and Normal. The
proposed model achieves better results with both LDCT and
LDCT-PCR datasets. However, the Mosmed dataset provides
comparatively less accuracy than the LDCT dataset. The
Mosmed dataset divided the patients into four categories: CT-
0, CT-1, CT-2, and CT-3, based on the volume and severity
of infection in the CT scans. The CT-0 category consists
of COVID-19 cases having less than 5% of infections in
CT scans. Since the ground truth was not given for each
CT scan, CT-0 corresponds to the Normal class, and other
categories CT-1, CT-2, and CT-3 to the COVID-19 class.
A category-wise experiment is conducted with ResNet-101
generated features, and the classification results are given in
Table 7. Table 8 shows that patients in CT-0 are classified
as Normal with less misclassification. The CT-2 and CT-3
categories have significant lung infections in the CT scans
and are classified as COVID-19 with minor misclassification.
Our proposed model can identify the infected slices, but
the number of infected slices is very small compared to the
overall slices in the CT scan volume in the case of CT-0 and
CT-1. The classifier can perform well for patients with greater
than 25% infections developed in the lungs.
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VI. CONCLUSION

The proposed work facilitates the identification of COVID-
19 infection and the prediction of the CTSS for assessing
the severity of infections developed in the lungs. The task
is challenging since the slice level has limited labeled data.
Deep learning models use raw images for classification but
require much data. On the other hand, pre-trained ImageNet
models enable classification with small amounts of data but
are not trained solely for the purpose of COVID-19 detec-
tion. Hence, an image preprocessing module is introduced
to enhance the lung’s infection regions, resulting in better
classification. The domain expertise of radiologists helps to
identify the lung infection regions during the preprocessing
stages. The preprocessing module is unsupervised, which
helps to extract the clinical features from the CT scans per
the radiologist’s suggestions. These preprocessed images are
used to train the COVID-19 classifier in a semi-supervised
way. The semi-supervised approach is adopted along with
transfer learning to overcome the limitation of small amounts
of training data. The importance of the preprocessing module
is established as an absolute improvement of 6% is observed
in the F1 score compared to the baseline model. The CTSS
achieves a correlation of 82% with the manual assessment
of radiologists. Thus, the work forms the framework with
a possibility of further extension to a real-time COVID-19
support tool for clinicians.
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