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Discovery from Massive Planetary LiDAR Data
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Abstract—In recent decades, with the placement of LiDAR
remote sensing instruments in orbit, we now have global coverage
of the bare-ground elevation on the Earth, Mars and beyond.
Encoded in such planetary LiDAR data are interesting landscape
features that promise to further our knowledge of planetary
topography. However, discovery of such features entails 3 major
challenges: 1) massive data; 2) the need for local multi-scale
features; 3) sensitivity to interfering factors. To address these
challenges, we propose FARMYARD, a generic pipeline for
Feature Discovery From Planetary LiDAR Data Data. To our
knowledge, this is the first time such a pipeline has been proposed,
which provides a brand new methodology for comparative studies
of planetary topography. Specifically, drawing on the parallel
computing power of the Graphics Processing Unit (GPU), we
propose a novel pseudo-on-pass sweep (POPS) framework for fast
and memory-efficient feature extraction for massive planetary
LiDAR data, a two-level division scheme for local regions with
support for multi-scale features, and a Domain-Shifted Partition
(DSP) scheme for feature evaluation that is robust against
interfering factors. To showcase the utility of our FARMYARD
pipeline, we deploy it to a real-world research project, which
seeks to find topographical signatures of life by discovering
features that can potentially distinguish between the Earth and
alien worlds with no known life activity. We also highlight the
efficiency of our POPS framework with experiments on both
synthetic and real data, which can be thousands of times faster
than its CPU-based counterpart, including a multi-core parallel
solution.

Index Terms—LiDAR, planets, topography, feature discovery,
GPU

I. INTRODUCTION

TOPOGRAPHY, the surface configuration of a planet,
bears the imprint of the processes that shape it. Deci-

phering the ”text” encoded in topography has been the goal
of scholars for centuries (Darwin, Gilbert, others). In the
past 15 years, the advent of orbital Light Detection And
Ranging (LiDAR) technology has led to global high-resolution
topographical data for Mars [1] and the Moon [2], and to
some extent for other bodies such as Titan, the largest moon of
Saturn [3]. Moreover, December of 2018 saw the arrival of the
Global Ecosystem Dynamics Investigation1 (GEDI) [4], a full-
waveform LiDAR installed onboard the International Space
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Station (ISS). Over the nominal two-year mission, GEDI pro-
vides an estimated 10 billion waveform LiDAR observations
between 51 Degrees N and 51 Degrees S, producing readings
at both ground and vegetation height. Notably, GEDI is the
first instrument to provide complete waveforms of LiDAR
echoes from space. Thus, for the first time, we can literally
see through the living skin of the Earth, obtaining bare ground
readings that are not influenced by vegetation at the global
scale.

Up until now, LiDAR has been used to characterize the
surface properties, such as elevation, roughness, as well as
canopy height or density in the case of the Earth. By nature,
such studies offer a useful constraint on hypotheses about
surface evolution, namely how lithology, tectonics, and climate
on the Earth control the transport flux of rivers, or how
the surface properties are affected by resurfacing mechanisms
by Mars or the Moon [5], [6]. However, existing works are
significantly lacking in inter-planetary comparative studies,
which may hold the key to answering some of the most
intriguing questions concerning planetary topography. For
example, in 2006, Dietrich and Perron asked the question is
there a topographical signature of life [5], and concluded
that none could be detected from terrestrial data available
back then. To answer this question, we can first compare the
topographical features of the Earth and alien worlds (where
no life is known to exist) to find characteristics unique to
the topography of the Earth, and then study whether there
is a relationship between such characteristics with terrestrial
life. Such comparative studies are now made possible by the
abundance of planetary LiDAR data [1]–[3] that provides
global coverage with relatively high resolution. Moreover,
with these data, we are now able to conduct apple-to-apple
comparisons of planets. For example, to make meaningful
comparisons between the Earth and other planets, we need
bare-ground observations of the Earth as there is no known
vegetation on alien worlds. This was previously impossible
until the GEDI mission [3] which, as was mentioned, has
enabled us to see through the terrestrial vegetation cover for
the first time.

While we now have the high-quality LiDAR data needed to
conduct inter-planetary comparative studies, we still lack the
proper methodology needed to carry out such comparisons.
Indeed, there have been strong geophysical perspectives to
justify global topography field surveys since the 1990s on
terrestrial planets, yet existing works on comparison of plan-
etary bodies have mainly focused on exploring deep earth
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issues with spherical harmonic [7] and/or spherical spline
[8] approaches. Such a methodology leads to very smooth
global signals with limited high-frequency components, losing
information that is present in the raw records which may be
significant to subsequent comparative analysis.

In view of the drawbacks in existing works, in this paper, we
present a brand new methodology for comparative studies with
planetary LiDAR data. Specifically, the task we will undertake
in this paper is defined as follows.

Definition 1: Feature Discovery From Planetary LiDAR
Data (FARMYARD): given a set of planetary LiDAR data,
find interesting features that can be used to distinguish between
two or more geo-objects of the same category T .
For example, suppose T is planets, and we have LiDAR data
for the Earth and Mars, FARMYARD aims to find features that
can be used to distinguish between the two planets. For the
rest of the paper, we refer to T as the Target Category (TC).
It is worth noting that while the motivation of this work is to
enable effective comparison of different planets, FARMYARD
also supports comparison of other geo-objects by changing
T from planets to other categories. For instance, one can
change T to landscapes to compare different landscapes, or to
geolocations to compare different regions on the same planet.

In our work, we draw on a machine learning based method-
ology and formulate FARMYARD as a classification problem.
Specifically, we first extract certain candidate features from
the dataset that can potentially distinguish between the geo-
objects in question, and then conduct Cross Validation (CV)
using some pre-defined classifiers upon these features, apply-
ing evaluation criteria for classification (e.g. Cohen’s kappa
coefficient [9], F1-score, etc.) to quantify their distinguishing
power in terms of T . However, this comes with the following
challenges.

• C1: Massive data. Planetary LiDAR data often cover
vast areas, making them big data in their raw form.
For example, as was previously mentioned, the GEDI
[4] planetary LiDAR is to conduct 10 billion measure-
ments of terrestrial landscapes over its nominal two-
year mission. Worse still, raw planetary LiDAR data
is often irregularly-sampled (namely not aligned to a
uniform raster), which is likely to pose an inconvenience
to further analysis. Hence, it is necessary to transform
them into raster data using some interpolation algorithm
such as Kriging [10] and Inverse Distance Weighting
(IDW) [11]. This can make the volume of the raster
data far more massive than the already big raw data.
For example, the dataset used in our experiments (see
Section V) covers multiple geolocations on the Earth and
Mars, where the ratio between the numbers of data points
after and before the interpolation ranges from 2.972 for
the terrestrial Sycamore drainage system, to 104.130 for
the Martian Elaver drainage system. Like many other big
data problems, the sheer volume of planetary LiDAR data
calls for analytical algorithms with high efficiency.

• C2: The need for local multi-scale features. As was
previously mentioned, the methodology applied by exist-
ing works largely leads to very smooth signals on a global
scale [7], [8]. However, important topographical features

often reside not in such global, low-resolution signals,
but in local, high-resolution data. For example, the to-
pographical differences between the Earth and Mars (or
those among various landscapes) may well be exhibited
in minute details of their local regions (e.g., specific vol-
canoes, drainage systems, landslides, impact craters, etc.,
which are scattered across the globe). Moreover, even
for the same local region, its topographical features can
exhibit commonalities [12] or individualities on multiple
scales. For example, for an impact crater (or a landslide),
its bottom may share similar features to the entire crater
(or landslide), such as being mainly flat. By contrast, a
volcano edifice may exhibit varying features from small
scales to larger scales. Hence, delicate design choices are
needed to capture such local multi-scale features across
landscapes and planets.

• C3: Sensitivity to interfering factors. As is well-known
to the machine learning community [13], due to the
presence of interfering factors, a high classification score
does not necessarily translate to high feature quality.
For example, suppose we want to find features that can
distinguish between the Earth and Mars, and we have a
LiDAR dataset composed of two classes: one corresponds
to volcanoes on the Earth, while the other corresponds to
drainage systems on Mars. In this case, a high classifi-
cation score does not necessarily mean that the extracted
features can effectively distinguish between the Earth and
Mars, for they may actually have been distinguishing
between volcanoes and drainage systems. In other words,
differences in landscapes may well interfere with feature
discovery concerning the differences in planets. Such
interference must be minimized.

To address these challenges, we propose the following
3 solutions that will be implemented in our FARMYARD
pipeline.

• S1: Memory-efficient Graphics Processing Unit
(GPU) based parallelism. To address Challenge C1,
namely the problem with massive data, we draw on the
power of GPU-based parallelism [14] in all potential
computational bottlenecks in the FARMYARD pipeline,
including raster interpolation, feature extraction and K-
fold CV. This results in a (nearly) fully GPU-based
pipeline. Most notably, we present a generic GPU-based
framework for raw feature extraction of planetary
raster data that is compatible with a wide range of core
feature extraction methods. At the heart of this framework
is a novel Pseudo-One-Pass Sweep (POPS) routine that
allows for highly efficient feature extraction with limited
memory resources.

• S2: Two-level division of local Regions-Of-Interest
(ROIs). To address Challenge C2, namely the problem
with local multi-scale features, we select multiple local
regions scattered around the globe on which we will
extract features. We then apply a novel two-level divi-
sion scheme to the ROIs derived from these regions to
generate the training/testing examples for CV, which can
simultaneously address the need for multi-scale features
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and balance the quality and quantity of the CV examples.
• S3: Domain-Shifted Partition (DSP) of diverse data.

To address Challenge C3, namely the problem with
interfering factors, we first ensure that the entire dataset is
diverse enough for these factors to be taken into account.
We then devise a novel Domain-Shifted Partition (DSP)
strategy for the dataset which can lead to train-test splits
that maximize intra-class diversity in terms of the interfer-
ing factors. This can in turn make the classification scores
better reflect the classifier’s robustness to interference,
thus better evaluating feature quality.

Before we move on, we would like to note 2 points: First,
we are NOT proposing a specific feature extraction method
for planetary LiDAR data. Rather, we are proposing a generic
pipeline that can be instantiated using existing (and future)
feature extraction methods (which we call core methods).
Second, unless otherwise stated, we limit our discussion to
traditional hand-crafted features (namely non-deep learning
features) in this work. The reason for this is that while
deep learning can often yield higher classification scores, its
black-box nature can prevent the user from interpreting the
learned features and thus gaining insight into the geoscientific
knowledge behind them.

In summary, the main contributions of this paper are as
follows.

• We present a generic GPU-based pipeline for Feature
Discovery From planetary LiDAR Data (FARMYARD).
To the best of our knowledge, this is the first time such a
pipeline has been proposed, which presents a brand new
methodology for comparative studies of planetary topog-
raphy that can effectively exploit local high-resolution in-
formation. Exploiting the parallel processing power of the
GPU, FARMYARD promises raster interpolation, multi-
scale decimation and feature evaluation of topographical
data with efficiency never reached before.

• As the 1st highlight of the FARMYARD pipeline, we
propose a generic framework for GPU-based raw feature
extraction, which as far as we know is another first
attempt at planetary LiDAR data analysis. Exploiting
a novel Pseudo-One-Pass Sweep (POPS) routine, this
framework can achieve memory- and time-efficient raw
feature discovery with compatibility with a wide range of
core feature extraction methods.

• As the 2nd highlight of the FARMYARD pipeline, we
propose a two-level ROI division scheme to produce
CV examples with balanced quality and quantity while
enabling multi-scale feature extraction of local regions.

• As the 3rd highlight of the FARMYARD pipeline, we
propose a Domain-Shifted Partition (DSP) strategy for
train-test splits. This results in feature evaluation that is
robust against interfering factors, which can in turn lead
to better assessment of feature quality.

• We conduct extensive experiments to showcase the utility
of our FARMYARD pipeline in an ongoing project called
PARKER that seeks to find topographical signatures of
terrestrial life activities, and provide suggestions to future
studies on planetary LiDAR based on our results on real-

world data. We also examine the efficiency of our POPS
framework, which can be hundreds or even thousands
of times faster than its CPU-based counterpart, including
a CPU-based multi-core parallel solution with Message
Pass Interface (MPI) [15].

The rest of this paper is organized as follows: Section II
provides an overview of planetary LiDAR data. Section III
presents our FARMYARD pipeline. Section IV details how
we leverage the GPU to accelerate this pipeline. Section V
demonstrates the experimental results. Section VI concludes
the paper.

II. PLANETARY LIDAR DATA

Light detection and ranging (LiDAR) laser systems have
been put into orbit around Mars, the Moon and more recently
around the Earth. They share the same physical concept and
formalism. Specifically, planetary LiDAR comes in the form
of represented as 3D point clouds, in which each point is
represented by a triplet (x, y, z) where x is the longitude, y is
the latitude, and z is the elevation of that point. Fig. 1 shows
a LiDAR point cloud of the Vesuvius volcano in Italy.

Next, we present brief introductions of some of the existing
planetary LiDAR data repositories.

1) GEDI [4]: Global Ecosystem Dynamics Investigation
(GEDI) is a full-waveform topographic LiDAR installed on-
board the International Space Station (ISS). The GEDI in-
strument uses three lasers that produce 8 ground tracks. Each
ground track is a series of footprint samples separated by 60
m in the along-track direction. The distance between adjacent
ground tracks is 600m. The sole GEDI observable is the
returned laser waveform, which records the three-dimensional
distribution of intercepted surfaces within the extent of the
illuminated laser footprint (23 ± 2m). Measurements are ac-
quired over the land surface during day and night conditions
(one ISS orbit is about 90 minutes) within the observational
limit of the ISS (51.6 Degrees N to S latitude). This orbit
results in greater measurement density at high latitudes and
fewer measurements near the equator. The total number of
land-surface measurements anticipated over the nominal two-
year mission life is 10 billion. A significant advantage of GEDI
is that apart from producing observations at vegetation height,
it can also see through the vegetation and produce observations
of the ground surface, thus avoiding biases induced by top-of-
canopy inferences of underlying topography [16], [17].

2) MOLA [1]: Mars was scanned globally by the Mars
Orbiter Laser Altimeter (MOLA) onboard MGS from 1996 to
2001. This global data set offers half a billion echoes from
the surface with a ground spatial sampling of about 460m at
the equator with a beam diameter of about 75m in diameter.
Note that subsequent missions offer higher resolution from
stereo imagery, e.g., HRSC onboard Mars-Express, HiRISE
onboard Mars Reconnaissance Orbiter, and CaSISS onboard
Trace Gas Orbiter. Therefore, the topography can be derived
at 1m sampling very locally in completion with the global
MOLA LiDAR echoes.

3) LOLA [2]: Similarly to Mars, the Moon is being scanned
since 2009 with the Lunar Orbiter Laser Altimeter (LOLA),
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Fig. 1. Planetary LiDAR point cloud in 2D (a) and 3D (b) of the bare ground over Vesuvius volcano in Italy, extracted from the GEDI [4] repository.

a 5 beams laser altimeter similar to MOLA. LOLA offers 6.5
billion measurements of global surface height with a vertical
precision of ∼10cm, and a mean ground spatial sampling of
100 m at the equator and about 10m at the poles [18]. As on
Mars, this data set is being completed with stereo images using
LROC sensors from which Digital Terrain Models (DTM) at
1m/pixel at the local scale can be derived from the orbit. Mars
and the Moon’s surface have been visited (by landers, rovers
and humans, the latter only for the Moon) and small-scale and
high-resolution DTMs are also available very locally.

III. THE FARMYARD PIPELINE

We are finally in a position to introduce our FARMYARD
pipeline, which is shown in Fig. 2. The pipeline starts with
data collection where we collect a set of raw point cloud data
covering various geolocations from planetary LiDAR repos-
itories such as those mentioned in the previous section. We
then conduct data preprocessing for them with the following
three steps: ROI selection where we select subsets of points
that correspond to regions of interest (ROIs) from each geolo-
cation, coordinate reference system (CRS) unification where
we project the CRSes of the raw points from the different
LiDAR repositories to a uniform CRS, and raster interpolation
where we interpolate irregularly-sampled points into regularly-
sampled raster data. On the other hand, we separately conduct
feature definition where we define the features to extract via
a feature template on which we will elaborate later. With the
data preprocessed and features defined, we conduct feature
extraction where we first extract raw features from the raster
data and then aggregate them to obtain the final features.
Afterwards, we perform feature evaluation in two ways: First,
we partition the dataset into training and testing data for Cross
Validation (CV) and obtain CV scores such as Cohen’s kappa
coefficient [9] and F1-score which quantify the distinguishing
power of the extracted features. Second, we visualize the
features for manual inspection. The user can then apply the

CV scores and visualized features to further analysis on which
we will elaborate in Section III-F.

For the rest of this section, we will elaborate on the
aforementioned procedures one by one.

A. Data Collection

The starting point of our FARMYARD pipeline is to collect
raw 3D point cloud data of multiple local regions scattered
across the globe from planetary LiDAR repositories such as the
ones introduced in Section II. Here an important principle is
to make the data as diverse as possible. For example, suppose
we are trying to discover features that can distinguish between
the Earth and Mars, it is imperative that we collect data from
diverse geolocations and across diverse landscapes on both
planets. This can give us a comprehensive representation of
the two geo-objects in question. As we will show in Section
III-E, this is crucial to finding features that are truly relevant
to the differences between the two geo-objects.

B. Data Preprocessing

After data collection, we preprocess the collected raw data
according to the following procedures, as illustrated in Fig. 3)
in the case of the Vesuvius volcano.

1) ROI selection: The user may want to select regions of
interest (ROIs) from the raw data. For example, a user may
want to only keep a certain landscape at a geolocation where
multiple landscapes co-exist, or the boundaries pre-defined
by the data source are too rough for certain geo-objects. In
such cases, the user can manually crop out polygonal ROIs
at that geolocation. Note that if a user-selected ROI is not
rectangular, we use its rectangular bounding box instead for
the ensuing procedures for ease of processing, and map the
extracted features back to the original non-rectangular ROI
with a simple step between feature extraction and feature
evaluation. See Section III-D for more.
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Fig. 2. The workflow of our FARMYARD pipeline, with its 3 design highlights shown in dark blue banners, and its GPU-accelerated procedures shown in
golden boxes. Note that these GPU-accelerated procedures are the main efficiency bottlenecks of our pipeline, thus moving them onto the GPU makes our
pipeline almost entirely GPU-based.

2) CRS unification: The raw data points in the dataset
often follow different coordinate reference systems (CRS) as
they originate from different data repositories produced for
different planets. We need to unify the CRS so that all data
points are comparable. Specifically, we recommend a Lambert
Conformal Conic Alternative (LCCA) projection, as it can be
well adapted to the variety of latitude’s cover as well as the
extent of the ROIs.

3) Raster interpolation: After CRS transformation, we in-
terpolate the raw data in each ROI to raster with uniform
resolution. The reason for raster interpolation is two-fold:
First, the raw cloud is irregularly sampled, thus the sampling
protocol differs from ROI to ROI. Like the discrepancy with
CRS, the discrepancy with sampling needs to be addressed to
make all ROIs comparable with each other. Second, for some
ROIs, the raw clouds may be too sparse to extract meaningful
features, thus they must be made denser with interpolation.
There are many existing tools for topographical point cloud
interpolation, such as IDW [11], Kriging [10], etc. We will
not dive into the details of them for brevity.

C. Feature Definition

We define the features to extract by means of a feature
template which is a triplet (core, dim, featScale) comprised
of the following 3 elements:

• A Core method core: a specific feature extraction
method used to extract features from a given set of
3D points. Here we provide two examples of such core
methods.

– PCA: In [12], Brodu and Lague proposed a Principle
Component Analysis (PCA) based approach for feature
extraction from 3D point clouds, where PCA is applied
to the set of points and 3 eigenvalues λ1, λ2 and
λ3 are obtained which represent the variances on the
3 dimensions after PCA projection. The features are
the explained variance ratios of the first 2 dimensions

λ1

λ1+λ2+λ3
and λ2

λ1+λ2+λ3
. In our implementation, we

further transform these 2 values into their coordinates
in a ternary graph, using the latter as the final features.

– STAT : This method extracts statistics of the elevation
(namely z) values for the set of points as feature values.
Specifically, we use the following 6 statistics: standard
deviation (std), minimum (min), first quartile (Q1),
median, third quartile (Q3), and maximum (max)1.

• Dimensionality dim: either 2D or 3D. In 2D, the core
method is applied to all points in a 2D square bounding
box along x and y. In 3D, the core method is applied to
points in a 3D (namely x, y and z) spherical area.

• A set of Feature scales fScales: one or several length
values. For each of these values, if dim is 2D, it refers
to the edge size of the square bounding box; if dim
is 3D, it refers to the diameter of the spherical area.
Together with dim, fScales define the sets of points to
apply the core method to. For example, if dim is 2D and
fScales is 300m, 400m and 500m, the core method will
be applied to points in bounding boxes with edge sizes
of 300m, 400m and 500m individually, and the feature

1See Section III-D for why we do not use the mean value as a feature here.
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Fig. 3. An illustration of data preprocessing for Vesuvius volcano, with data from the GEDI repository [4]. For Region-Of-Interest (ROI) selection (b), the
shaded area indicates the non-rectangular polygonal ROI selected by the user, while the rectangular area enclosed by the dashed lines indicates its bounding
box.

values obtained on each feature scale are concatenated to
form the final feature vector.

Before moving on, we note that we consider the location
of the bounding boxes or spheres (which correspond to 2D
and 3D, respectively) to be irrelevant to the definition of the
features. The rationale is that a feature with high distinguishing
power between multiple geo-objects should remain consistent
everywhere within each of these geo-objects. Also, note that
we allow for multiple feature scales. This is because the same
features can exist across multiple scales, which makes a multi-
scale setting better suited to capture them [12].

D. Feature Extraction

With regularly sampled raster data of all ROIs and the fea-
ture template defined, we can now conduct feature extraction.
This procedure is shown in Algorithm 1. Specifically, for each
ROI (line 3 in Algorithm 1), we take the following 3 steps to
extract its features.

1) ROI division: For a given ROI, we opt not to extract a
uniform set of features for all data points in it for 2 reasons:
First, there may be so few ROIs that it is hard to directly
use them as training and testing examples for ensuing Cross
Validation (CV) procedure (see Section III-E). Second, the
need for multi-scale features makes it impractical to extract
features upon an ROI with a fixed size. In view of these, we
devise a two-level ROI division scheme (Fig. 4) to divide
the ROI into smaller sub-regions on which we extract features

Fig. 4. Two-level division of a Region-Of-Interest (ROI). (a) Dividing an ROI
of size 91×84 into examples of size 42×42 with an example sampling step
of 25. (b) Further dividing an example into patches of size 18 × 18 with a
feature sampling step of 10 (left), and size 6×6 with a feature sampling step
of 9 (right). Note that this is merely a toy example for illustration. Actual
ROIs and examples are hundreds or thousands of times larger than what is
shown here.

with the core method. Specifically, on the top level, we handle
the problem of ROI scarcity in line 4 in Algorithm 1, where we
divide each ROI into examples that will later be used for CV.
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Algorithm 1: extractFeats(rois, exScale, exStep,
core, dim, fScales, stsRatio): feature extraction
Input : raster data for all ROIs rois, example scale

exScale, example sampling step exStep,
core method core, dimensionality dim,
feature scales fScales, feature stride-to-scale
ratio stsRatio

Output: aggregated feature vectors of all examples in
all ROIs aggFeats

1 aggFeats = [];
2 lcv = getLenCoreVec(core) ; // The length of

the output vector of core. For
example, lcv = 2 for PCA as it
outputs 2 ternary coordinates.

3 foreach roi in rois do
// Divide an ROI into examples.

4 examples = roiToEx(roi, exScale, exStep);
5 curAggFeats = [];
6 foreach ex in examples do
7 featV ec = [];
8 foreach fScalep in fScales do
9 fStep = round(fScale× stsRatio);

// Divide an example into
patches.

10 patches = exToPat(ex, fScale, fStep);

// Extract raw features.
11 curRawFeats = [];
12 foreach patch in patches do
13 if dim == ’2D’ then
14 data = patch;

15 else if dim == ’3D’ then
16 data =

sphereAroundCenter(patch);
17 data = meanNorm(data);
18 raw = runCore(data, core);
19 curRawFeats.append(raw);

// Aggregate features.
20 foreach i = 0 : lcv − 1 do
21 cur = curRawFeats[:, i];
22 agg = getStats(cur);
23 featV ec.concat(agg);

24 curAggFeats.append(featV ec);

25 aggFeats.append(curAggFeats);
26 return aggFeats;

Each example is a square sub-region of the ROI that resides
in one of all possible locations of a 2D sliding window, which
moves rightwards and upwards from the bottom-left corner
of the ROI (Fig. 4a). This process requires two user-defined
parameters: the first is an example scale parameter exScale
that dictates the edge size of the sliding window (namely
that of each example). The second parameter is an example

sampling step parameter exStep that dictates the stride size
of the sliding window as it moves horizontally and vertically.

On the bottom level of the division, we further divide each
example into patches (line 10 in Algorithm 1) on which we
later apply the core method to. To facilitate multi-scale feature
extraction, we obtain these patches by applying multiple 2D
sliding windows to the example. For each window, its edge
size is fScale which is one of the feature scales in fScales
in the feature template (line 8). Similar to that used in the
top level of the division, these windows move rightwards and
upwards from the bottom-left corner of each example (Fig.
4b). We introduce a user-defined stride-to-scale ratio parameter
stsRatio to control the stride size of the sliding windows.
Specifically, if the edge size of a window is fScale, then its
stride size is fScale× stsRatio (line 9).

2) Raw feature extraction: With the ROIs divided into
examples, and then patches after the two-level division, we
now apply the core method to the points in each patch to
obtain a set of raw features (lines 11-19 in Algorithm 1).
Specifically, if dim is 2D in the feature template, all points
in the patch are fed into the core method core; if dim is 3D,
then we obtain the spherical area around the center point of
the patch with a diameter of fScale and apply core to it.
Also note that we mean-normalize the data points on each of
the x-, y- and z-axes before feature extraction (line 17) to
avoid interference from inter-patch (and indeed inter-example
and inter-ROI) distinctions in geolocation and elevation. This
is also why in the core method STAT (see Section III-C) we
do not extract the mean value, as it is always 0 for mean-
normalized data.

3) Feature aggregation: After raw feature extraction for
each patch, our next move is to obtain the final feature vector
for each example. Note that it is not advisable to simply
concatenate all the raw features to obtain the feature vector for
two reasons: First, as mentioned in Section III-C, the feature
template does not consider the locations of the bounding
boxes or spheres, thus each example-level feature (namely
each value in the final feature vector) should be agnostic to
patch positions. Second, it is most likely that an example
can have a large number of patches in it, thus a simple
concatenation of all patch-level raw features will result in a
very long feature vector, which can lead to the well-known
curse of dimensionality [19] problem in later CV steps. In view
of these, we opt to obtain the feature vector by aggregating the
raw features. Specifically, in lines 20-23, for all patches of a
fixed fScale (namely edge size), we aggregate each dimension
of their raw features using 7 statistics (line 22): mean, and
the 6 statistics used in the core method STAT 1 (see Section
III-C), namely std, min, Q1, median, Q3, max. The feature
vector of each example is comprised of the aforementioned
statistics for all indices in the raw features of all patch sizes
in it (namely all indices of curRawFeats in Algorithm 1, see
line 20). Therefore, the length of this feature vector is agnostic

1Note that STAT is not to be confused with the feature aggregation
method we describe here. The former is a raw feature extraction method
that aggregates the original 3D data points in each patch to obtain patch-level
raw features, while the latter is used to further aggregate the patch-level raw
features into example-level features.
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to both the positions and the number of patches. The final
return of Algorithm 1 is the feature vectors of all examples
(line 24) in all ROIs (line 25).

Before we move on, we note 2 points: First, we discuss
how to set the parameters exScale, exStep and stsRatio
for the two-level ROI division scheme. We begin with the
example scale exScale. Obviously, exScale should at least
be equal to the largest fScale in fScales so that an example
can hold at least one largest patch. With this criterion met, the
choice of exScale is essentially a trade-off between quality
and quantity: The larger exScale is, the more patches it
can hold, and the more robust its aggregated features are
likely to be. However, this also means fewer examples for
ROIs of fixed sizes, which can limit the performance of the
classifiers used in CV. Similar trade-offs hold for exStep
and stsRatio, as the larger the stride sizes are, the smaller
inter-dependency between adjacent examples (patches) is, and
the more robust the ensuing CV process is likely to be. On
the other hand, increasing the stride sizes will lead to fewer
examples (patches), which will hinder classifier performance.
The user needs to carefully consider such trade-offs when
setting these parameters. Especially, we strongly recommend
against setting exStep smaller than exScale, as this will
cause examples to overlap, breaking the minimal level of
independence between examples in CV. However, we do allow
patches within an example to overlap as this does not violate
example-wise independence.

Second, the aforementioned feature extraction procedure
only allows for rectangular ROIs. We now discuss how to cater
to non-rectangular polygonal ROIs. Recall that we substituted
these non-rectangular ROIs with their rectangular bounding
boxes in ROI selection (see Section III-B1). To map back to
the original ROIs, we simply remove all examples that are not
enclosed by any of the original ROIs after feature extraction
while keeping all the rest.

E. Feature Evaluation

Having obtained the feature vectors for all examples, we
now move on to feature evaluation. Specifically, for a given set
of features extracted under a certain feature template, suppose
we wish to evaluate how well these features can distinguish
between geo-objects from Target category (TC) (see Section
I) T , we assign a label to each example under T . For instance,
with T being planets, we label each example with the planet
it comes from, such as Earth or Mars. We then partition the
labeled examples into several folds, and feed them into a Cross
Validation (CV) routine. The CV scores (to be discussed later
in this section) are used as indicators of feature quality (namely
their distinguishing power). Next, we separately discuss how
to partition the labeled examples, and how to obtain the CV
scores based on the partitioned data.

1) Data partition: On partitioning the examples, a straight-
forward solution is Random Partition (RP), namely randomly
assigning each example to one of K folds for CV where K is
a user-defined parameter. However, RP cannot address Chal-
lenge C3 in Section I, namely the problem with interfering
factors. For instance, suppose we have examples with labels

Earth and Mars, derived from the TC planet. For each label,
we have examples that correspond to 3 landscapes: volcano,
drainage and crater. In this case, RP is likely to result in
partitions where examples with all landscapes coexist in both
the training and testing sets, In this case, even if we get a high
CV score, we cannot tell whether this is because the features
can distinguish between different planets or landscapes.

To tackle this issue, we devise the following Domain-
Shifted Partition (DSP)1 strategy, which entails the following
steps.

Step 1: Non-Target Categories (NTC) identification Identify
as many Non-Target Categories (NTCs) as possible, with
each NTC indicating a potential interfering factor for feature
evaluation. For instance, if the TC is planets, the set of NTCs
may include landscapes, geolocations, etc.

Step 2: Label assignment. Under each NTC, assign labels
to all examples. For example, under landscapes, a label may
be volcano, drainage or crater; under geolocations, a label
may be bounding box coordinates, or a textual designation for
a specific region, such as Etna for Mount Etna in Italy on the
Earth, Olympus for Olympus Mons on Mars,

:::::
Borku which is a

region in Central Africa on the Earth,
:::::::
Warego for the Warego

drainage basin on Mars, and
:::::::::::
Gosses Bluff for the Goss Bluff

crater in Australia on Earth. For the rest of this section, we
refer to the labels under TC as Target Labels (TL), and those
under NTCs as Non-Target Labels (NTL).

Step 3: Data partition Partition the data into K folds, such
that the following 2 criteria are met:

• TL inclusivity: for the TC, all TLs must appear in
all folds. This is the common requirement by all data
partition strategies for CV: the examples in one fold must
cover all TLs.

• NTL mutual exclusivity: for each NTC, any NTL under
it should only appear in one fold. This is a unique require-
ment by our DSP strategy: for any pair of examples that
are drawn from the training and testing sets respectively,
we do NOT allow them to share the same NTL under
any NTC.

For instance, suppose the TC is planets, the NTCs are
landscapes and geolocations, and we have examples whose
labels are (in order of planets, landscapes and geolocations)
as follows.

• Example a: Earth, volcano,
::::
Etna;

• Example b: Earth, drainage,
:::::
Borku;

• Example c: Earth, landslide,
::::::::
Sycamore;

• Example d: Mars, crater,
::::::
Warego2;

• Example e: Mars, volcano,
:::::::
Olympus;

• Example f : Mars, drainage,
::::::
Warego.

Suppose K = 2, then there are two ways to divide these
examples into 2 folds: 1) examples a, c, e for one fold,

1DSP is inspired by the inter-patient setting in electrocardiogram-based
arrhythmia detection in the biomedical engineering literature [20], while
its namesake comes from the domain adaptation [21] problem in machine
learning, where a domain refers to a set of examples from the same distribution
and different domains tend to have inter-domain distribution discrepancies that
lead to significant performance decay for classifiers trained in one domain to
classify examples in another domain.

2There are craters located near the Warego drainage basin.
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examples b, d, f for the other fold; 2) examples a, e for one
fold, examples b, c, d, f for the other fold. In both cases,
the aforementioned 2 criteria are met: On the one hand, TL
inclusivity is guaranteed as either one of the two folds covers
both the TLs Earth and Mars. On the other hand, NTL mutual
exclusivity is guaranteed, for each one of the NTLs under the
NTC landscapes, namely volcano, drainage, landslide and
crater, only appears in one fold, which also holds true for
the NTC geolocations.

Unlike RP, DSP can effectively screen influence from any
interfering factors indicated by the NTCs. To illustrate, in the
aforementioned instance, the TLs are Earth and Mars under
the TC planets, while the NTLs under NTC landscapes are
volcano, landslide, drainage and crater. The coexistence of
these 4 NTLs in the training and testing sets makes it hard to
identify whether the features are indicative of differences in
terms of planets or landscapes. However, with DSP, if any
one of the 4 NTLs appears in the training set, it cannot appear
in the testing set. Therefore, features that are mostly relevant to
differences among the 4 NTLs will be of little use to training
a classifier that will do well in testing. Rather, only features
that are actually related to the differences between Earth and
Mars are likely to yield high CV scores.

The DSP strategy highlights the need for diverse data, which
was mentioned in Section III-A. Specifically, we need the raw
data to encompass as many NTCs as possible. Only in this
way can we take into account enough interfering factors to
accurately evaluate the relevance of the features to the TC.

2) Cross validation (CV): After data partition, we conduct
CV, performing K runs over the K folds, among which each
run has a K − 1 : 1 train-test split and yields a classification
score. The average classification score over all runs is the final
CV score. For the choice of classifiers, commonly-used op-
tions such as support vector machines (SVMs), XGBoost [22],
k-nearest neighbor (k-NN), logistic regression and artificial
neural networks are all valid choices.

For the choice of classification score, we recommend using
a combination of Cohen’s kappa coefficient [9] (κ) and F1-
score, as these two metrics are both robust against imbalanced
datasets, which is common in real-world scenarios. κ is a
single-value metric that measures the agreement between the
predicted labels and the groundtruth labels. The range of κ is [-
1, 1], the higher it is, the better the classification performance.
Specifically, a κ of 1 indicates perfect agreement; a κ of 0
indicates no agreement other than those that are expected by
chance; a κ that is negative indicates either no relationship
between the predicted and groundtruth labels, or a tendency
of the two disagreeing with each other. On the other hand,
F1-score is a per-label metric (that is, there is one F1-score
for each label) that can reflect the classifier’s accuracy in
identifying examples with each label. The higher the F1-score
is, the more accurate. In our case, we recommend using κ to
quantify the overall quality of the features as defined by the
feature template, and inspecting the F1-scores to gain deeper
insight into their per-label distinguishing power.

Apart from choosing CV scores that can better cope with
imbalanced datasets, it is also advisable to balance the training
set before training to actively counter this problem. Possible

data balancing methods include oversampling methods such as
SMOTE [23] and ADASYN [24], as well as undersampling
methods such as random undersampling and undersampling
with instance hardness threshold [25], which are implemented
in the Imbalanced-learn1 [26] package.

3) Feature visualization: Aside from quantitative evalu-
ation with CV, it is also important for domain experts to
manually inspect the extracted features. To facilitate this, it
is advisable to visualize both the raw and aggregated features
across different TLs. This can be done using visualization tools
such as t-distributed Stochastic Neighbor Embedding (t-SNE)
[27], or adopting customized visualization methods that are
compatible with the core feature extraction method.

F. Further Analysis

With the CV scores and visualized features, we can now per-
form further analysis as needed. Here we present 3 instances
of such analysis.

1) Feature ranking: A straightforward type of analysis is
to decide the best feature template among multiple candidates.
For example, we can use the CV scores of these candidates
to obtain an objective ranking, or inspect the visualizations to
give a subjective assessment.

It is worth noting that both the CV scores and the visu-
alization are subjected to influence from the configurations
of FARMYARD (e.g. the choice of interpolation method and
its parameters, the choice of data balancing method before
classification, the choice of classifier and its parameters,
the choice of visualization method and its parameters, etc.).
Therefore, it is advisable that the user run the FARMYARD
pipeline under multiple configurations and comprehensively
examine the results across all configurations.

Concretely, when comparing the CV scores (especially κ),
we highly recommend performing statistical tests to compare
the statistical differences of the multiple candidate feature
templates across all configurations. Specifically, drawing on
practices in the time series data mining literature [28], [29],
we first conduct a Friedman test (with a significance threshold
p = 0.05) to check whether there are significant differences
among the rankings of all candidates. If so, we then use
Wilcoxon signed rank test (p = 0.05) with Holm correction to
divide them into groups such that candidates in the same group
have no significant differences, while those in different groups
do. The results of the aforementioned two statistical tests
can be represented by a visualization method called Critical
Difference Diagram (CDD) [30], on which we will further
elaborate in Section V-A.

2) Feature qualification: Another simple type of analysis is
to decide whether a feature template can yield features whose
quality meets the user’s expectations. For example, the user
can set thresholds for κ and the F1-scores, and judge whether
a feature template is qualified by comparing its CV scores
against this threshold. The user can also manually inspect
the visualized features to give a subjective assessment of the
feature quality. Again, it is advisable that the user conduct

1https://imbalanced-learn.org/stable/
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multiple runs under different FARMYARD configurations for
both CV and feature visualization.

3) Bias analysis: Another possible analysis to perform is to
see if the results are biased toward certain labels, which can be
achieved by looking into the per-label F1-scores. Specifically,
if the F1-scores of some labels are much higher than those of
the other labels, then it suffices to say that there exists a bias
towards the former. However, we cannot be certain of the cause
of such a bias, which may be down to the feature template, the
dataset composition (especially data imbalance), the FARM-
YARD configurations, or a combination of some or all of the
aforementioned factors. The user would probably need further
investigation (e.g. scrutinizing the feature visualization results,
etc.) to pinpoint the cause. Again, we recommend conducting
multiple runs on different configurations. This can at least
help determine whether such a bias exists only for certain
FARMYARD configurations, or are common to the majority
of them, thus providing clues to the cause of the bias.

Besides the aforementioned analyses, the user can perform
other types of analysis as needed. It is also advisable to
conduct multiple analyses for a more comprehensive insight.

IV. GPU ACCELERATION FOR FARMYARD
So far, we have discussed the general workflow of our

FARMYARD pipeline without looking into its efficiency,
which is most likely to be unreasonably low under a CPU-
based sequential implementation. Specifically, in most cases,
the computational bottlenecks of our pipeline are raster inter-
polation, raw feature extraction, feature aggregation and cross
validation (namely the procedures highlighted by golden boxes
in Fig. 2). To break these bottlenecks, we adopt CUDA-based
GPU parallelism to accelerate these procedures. In particular,
for the first time to our knowledge, we propose a GPU-
accelerated framework for raw feature extraction. It is also
worth noting that as the aforementioned procedures are the
main bottlenecks of our pipeline, moving them onto the GPU
essentially makes our pipeline almost entirely GPU-based.

For the rest of this section, we will first briefly introduce
CUDA-based GPU acceleration, and then go through how we
accelerate the aforementioned bottlenecks one by one.

A. CUDA-based GPU Acceleration

CUDA [14] is a general-purpose parallel computing plat-
form and programming model that can effectively leverage
NVIDIA GPUs for parallel processing of massive data. In
particular, GPUs are especially suitable to process multiple
data slices in parallel with a single set of operations, thanks to
their single-instruction-multiple-threads (SIMT) architecture.
Specifically, a GPU has massive numbers of threads executing
in parallel on multiple streaming multiprocessors (SMs), and
each thread executes the same operations on different data.
These threads are grouped into blocks, which are assigned to
SMs to be executed independently from each other. The index
of each block and that of each thread in the block are identified
by CUDA built-in variables blockIdx.x and threadIdx.x1.

1The indexing of GPU blocks and threads can be either 1D, 2D or 3D. In
this paper, we only consider the case with 1D.

Arguably, the most important factor to consider when
designing CUDA-based algorithms is the memory hierarchy.
Under CUDA, each GPU thread has its registers, all threads
in a block can access the same block-wise shared memory,
and all threads across all blocks can access the same global
memory. To process data using CUDA, it must first be loaded
into the global memory from the CPU memory, and then be
fetched to registers or shared memory by individual threads.
Likewise, the output of the CUDA program can only be
transferred to CPU memory via global memory. The memory
size increases in the order of per-thread registers, per-block
shared memory and global memory, with the global memory
being much larger than the former two. For example, for
the Quadro RTX 6000 GPU, the maximum number of 32-bit
registers per thread is 255, the maximum amount of shared
memory per block is 64KB, while its global memory size is
24GB. As with access time, accessing registers and shared
memory is much faster than accessing global memory. Thus,
global memory accesses should be avoided whenever possible.
Rather, when handling data that cannot be fitted into registers,
it is advisable to cache the data in shared memory2. Moreover,
all data in the shared memory of a block can be accessed
by all threads in that block, thus shared memory offers an
effective way for intra-block communication. Also, CUDA
offers the syncthreads() function which serves as an intra-
block synchronization barrier where any thread must wait till
all other threads in the same block have reached this barrier
to proceed. See [14] for more on CUDA programming.

B. GPU-accelerated Raster Interpolation

As an integral part of data preprocessing, raster interpolation
can be extremely time-consuming under a sequential imple-
mentation. Fortunately, GPU acceleration for topographical
point cloud data has attracted much attention from researchers
in recent years, and there are many off-the-shelf options [31]–
[33] for the user to choose from. For brevity, we opt not to
elaborate on these methods here.

C. GPU-accelerated Raw Feature Extraction

The sequential version of our feature extraction workflow,
as illustrated in Algorithm 1, can be too inefficient to handle
massive datasets. Its main bottleneck is the nested loops in
lines 6-24. This is because while the number of ROIs is usually
limited, they can often cover large areas. Therefore, for each
of them, both the number of examples and the number of
patches in each example can be huge, and looping over all of
them can be highly time-consuming. Fortunately, note that we
conduct the same operations (namely the same core method
for raw feature extraction, and the same statistics for feature
aggregation) to all patches and examples, which makes the
feature extraction procedure amiable to the aforementioned
SIMT architecture of the GPU. For the rest of this section, we

2NVIDIA GPUs also have memory space named local memory, which is
essentially global memory space that is private to each thread to cater to
variables that cannot be fitted into registers. The size of local memory is
limited and its access time is comparable with regular global memory, thus
such accesses should also be avoided whenever possible.
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focus on GPU-based raw feature extraction. We will discuss
GPU-based feature aggregation in the next section.

For raw feature extraction, given the two-level nature of
both the ROI division scheme (example-patch) and the GPU
architecture (block-thread), it is intuitive to let each GPU block
handle one example, and let each thread in the block handle
one patch in the example. The former is advisable as all
examples have the same size with the same number of patches,
thus the workloads across all blocks are naturally balanced.
However, it is not practicable to allocate one patch to one
thread, for the number of threads in each block is limited
to 1024 [14], which is usually surpassed by the number of
patches. This would require each thread to iteratively process
multiple patches, which brings about the following issue:
under our multi-scale setting, a naı̈ve iterative method is to
process each feature scale one by one, letting each thread
process one or more patches for each scale. However, this
comes with the problem of idle threads. For example, suppose
we have a 10000× 10000 example, and the feature scales are
250, 500, 1000 with the stride-to-scale ratio set to 1 for all
3 scales, thus the number of patches for each scale is 1600,
400, 100. Suppose we use a block of 1024 threads to process
it. To process the first scale with 1600 patches, we need two
iterations, in the second of which only 1600 − 1024 = 576
threads are busy, while nearly half of the available threads sit
idle. Moreover, when processing the second and third scales,
only 400 and 100 threads are busy, leading to an even greater
waste of computational resources. It is thus highly desirable to
allow different scales to be processed simultaneously to keep
as many threads busy for as long as possible.

Another problem the multi-scale setting brings about is
many data points in the example will be accessed multiple
times, and directly accessing them from the GPU global
memory is highly inefficient. Thus we need to leverage the
shared memory for faster access, yet it is often the case that
the example is so large that it cannot be fitted into the shared
memory all at once. This calls for a well-designed shared
memory management method that can both accommodate the
limited size of the shared memory and the aforementioned
need for simultaneous multi-scale processing.

In view of these problems, we present the GPU-based
solution shown in Algorithm 2, which can extract raw features
from all patches of all scales in all examples with very limited
numbers of repeated accesses to global memory.

Specifically, as mentioned earlier, each GPU block is as-
signed a single example (lines 3-4). Raw feature extraction
is performed in a Pseudo-One-Pass Sweep (POPS)1 of the
example (lines 5-24). This process is illustrated in Fig. 5,
which revisits the example in Fig. 4b. To extract features
from this example, we introduce the concept of superpatch,
which is a rectangular area in the example that can fit into
the shared memory while being able to hold the largest of the
patches in the example. Specifically, the size of the superpatch
is dictated by two user-defined parameters spScaleX and
spScaleY which set the upper bounds for the edge sizes
of the superpatch on the x- and y-axes. The general idea of

1We will explain the namesake of POPS later.

Algorithm 2: extrRawGPU(examples, exScale, core,
dim, fScales, stsRatio, spScaleX , spScaleY ):
GPU-based raw feature extraction

Input : examples from a given ROI examples,
example scale exScale, core method core,
dimensionality dim, feature scales fScales,
feature stride-to-scale ratio stsRatio,
maximum superpatch scales on the x- and
y-axes spScaleX and spScaleY

Output: raw features for all patches in all examples
in the ROI rawFeats

// initialize return value in global
memory

1 l = getLenRawFeats(|examples|, fScales, stsRatio);
2 rawFeats = initArray(l);
3 foreach GPU block do in parallel
4 bid = blockIdx.x; ex = examples[bid];

// Pseudo-One-Pass Sweep
5 sp = initSupPat(ex, spScaleX, spScaleY );
6 while True do
7 syncthreads();

// Apply core method to all
patches in the superpatch.

8 foreach thread in block do in parallel
9 tid = threadIdx.x;

10 while True do
11 patch = getNextPatch(sp, tid);
12 if patch ̸= NULL then
13 cur = applyCore(patch, core, dim);
14 writeToRawFeats(cur, rawFeats, bid,

tid);
15 else
16 break;

17 syncthreads();

// Move superpatch.
18 params = [sp, exScale, fScales, stsRatio];
19 if canGoRight(params) then
20 sp = goRight(ex, params, spScaleX);

21 else if canGoUp(params) then
22 sp = goUp(ex, params, spScaleY );

23 else
24 break;

25 return rawFeats;

POPS is to use several superpatches to sequentially (that is,
only one superpatch is used at a time) fetch data points in
the example from global memory to shared memory. Each
superpatch covers several patches in the example, thus we can
let threads in the block extract raw features from the covered
patches while the latter reside in shared memory. This process
goes on until all patches are covered, that is, until all raw
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Fig. 5. An illustration of our Pseudo-One-Pass Sweep (POPS) framework. For the 42× 42 example that is divided into 18× 18 and 6× 6 patches shown in
Fig. 4b, we use superpatches with a maximum size of 21 × 21 to move over all patches in it, fetching data points from global memory to shared memory.
Within the superpatchs, the green regions indicate data points that have not been covered by any previous superpatches. The grey regions indicate data points
that have been covered by the last superpatch in the same row, but have not by any superpatches in the previous row. Our incremental data transfer strategy
ensures that we do not need repeated global memory accesses to re-fetch these data points to the current superpatch. The purple regions indicate data points
that have been covered by a superpatch in a previous row. Only these data points require repeated global memory accesses for the current superpatch.

features are extracted for all the patches. Note that throughout
this process, all superpatches reside in only one chunk of
shared memory with a fixed size.

As a concrete example, we look into Fig. 5. Here, with
spScaleX and spScaleY being both 21, the first superpatch
(Superpatch 0) is initiated at the bottom-left corner of the
example (line 5 in Algorithm 2). This can be done by letting
each thread in the block transfer one or several data points
from global memory to the chunk of shared memory dedicated
to the superpatch. Starting here, we iteratively conduct the
following 2 steps (lines 6-24).

Step 1: apply the core method to all patches of all scales
in the current superpatch (lines 8-16 in Algorithm 2). Here
we let each thread extract features for one or several patches.
For example, in Fig. 5, Superpatch 0 covers Patches A-0, B-0,

B-1, B-5, B-6. Suppose we have 3 available threads. Here we
let each thread handle each one of the first 3 patches. Plus, we
let the first 2 threads handle the remaining 2 patches B-5 and
B-6. Note that we allow different threads to handle patches
of different feature scales simultaneously, thus avoiding the
aforementioned waste of resources problem with sequential
processing of each feature scale1.

Step 2: move to the next superpatch (lines 18-24 in
Algorithm 2). There are two ways of moving. One is the go-
right move (lines 19-20), namely, move to the next superpatch
in the same row along the x-axis. The x-coordinate of the

1In reality, to avoid running into the bank conflict [14] problem with shared
memory, we may let a few threads sit idle while the others finish processing
patches with the previous feature scale. The number of such idle threads is
small (smaller than 16), leading to minimal waste of resources.
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leftmost points in the next superpatch is that of the first
patch(es) in this row that the current superpatch fails to cover.
For example, in Fig. 5, the first patches that Superpatch 0
fails to cover on the x-axis is A-1 and B-2, whose leftmost
x-coordinate is 18, which is that of Superpatch 1. Go-right
moves continue till the last possible superpatch in the current
row, namely Superpatch 2.

For the go-right move, we can use a simple incremental data
transfer (Fig. 6) strategy to negate the need for repeated global
memory access. Specifically, we store the data points in each
superpatch in the shared memory such that the y index changes
faster than the x index. This means that when we perform a
go-right move, if the next and the current superpatches have
any overlap, that is, the first few columns of data points in the
next superpatch are also the last few columns in the current
one, these data points already reside in a contiguous sub-chunk
of shared memory. Hence, we do not need to reload these
points from global memory. Rather, we can simply move the
starting index of the next superpatch to where these data points
currently reside in the shared memory. For example, in Fig.
6, as the first 3 columns of Superpatch 0 in Fig. 5 are also
the last 3 columns of Superpatch 1, and is already in a sub-
chunk of shared memory with the starting index 18 × 21 =
378. we simply move the starting position of Superpatch 0
to 378 without reloading these 3 columns. For the rest of the
new superpatch, we append these data points to the existing
ones. If we hit the end of the chunk of shared memory for
superpatches, we simply re-use the indices from the beginning
of the chunk. For example, for Superpatch 1, the columns other
than the first 3 ones are stored in the positions with indices 0
to 18×21−1 = 377. Also, if the last superpatch of the current
row is smaller than the rest, such as the case with Superpatch
2, we can simply keep part of the shared memory vacant.

The second way of moving is the go-up move (lines 21-
22 in Algorithm 2). When the go-right moves hit the end of
the current row, we re-initiate the superpatch at the leftmost
position of the next row. The y-coordinate of the points at the
bottom of the current row is the minimum y-coordinate of the
points in the patches that have not been covered by previous
rows. For example, in Fig. 5, when moving from Superpatch
2 to 3, this minimum y-coordinate is 18, which is that of the
points at the bottom of Patches A-2, A-3, B-10, B-11, B-12,
B-13 and B-14. Thus, Superpatch 3 starts at 18 on the y-axis.

After the go-up move, we can again perform the go-right
move till the end of this row, conducting feature extraction
for all patches in this row along the way. Then we can again
perform the go-up move. This iterative process stops when it
is no longer possible to perform either the go-right or go-up
moves (lines 23-24 in Algorithm 2), at which point all patches
in the example have been processed.

Looking back on the entire Pseudo-One-Pass Sweep, we
reach a point where we can explain its namesake. By one-
pass, we mean that unlike the naı̈ve approach where we scan
the global memory once for each feature scale, we can now
logically perform only one scan using the superpatches to
achieve multi-scale feature extraction; by pseudo, we mean
while it is logically possible to scan only once, in practice
we need repeated global memory access for overlapping data

Fig. 6. An illustration of shared memory usage for Superpatches 0-2 in Fig. 5
under incremental data transfer. Green indicates new data points that require
global memory access. Grey indicates data that is already in shared memory.
Light green indicates unused shared memory space. Red arrow indicates where
the first point in the superpatch is stored.

points in superpatches from different rows (the purple regions
in Fig. 5). However, the number of such points is usually very
limited compared to the total number of points in the example.
Also, it is worth noting that our incremental data transfer
strategy ensures that no repeated global memory access is
required for a single row, except for those data points that
have appeared in a previous row. This can greatly reduce the
total number of repeated global memory accesses.

Before moving on, we note 2 points: First, we provide
advice on how to set the superpatch size parameters spScaleX
and spScaleY . Obviously, both of these parameters should be
larger than the largest feature scale to accommodate at least
one patch with the largest size. Moreover, we would like the
superpatch to be as large as possible given a fixed number of
bytes available in the shared memory. This can be achieved by
making spScaleX and spScaleY as large as possible while
keeping their difference as small as possible.

Second, we look into whether the choice of core methods is
significantly limited by the relatively scarce memory resource
on the GPU. Fortunately, the answer is no. Specifically, in
Algorithm 2, we let each thread execute the core method for
a single patch at a time. The patch itself, which holds the
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raw raster data, already resides in shared memory. Therefore,
the only remaining concern is assigning the extra workspace
memory needed by the core method to process the raw data.
Given the highly limited size of per-thread registers and
per-block shared memory, one simple solution is to relegate
the workspace to global memory as needed. Considering the
fact that modern NVIDIA GPUs have (tens of) gigabytes of
global memory, this solution will suffice for the vast majority
of (if not all) core methods that can be run on the CPU.
However, as was mentioned in Section IV-A, global memory
is slow to access and using it can limit the overall efficiency
of raw feature extraction. Rather, we prefer to assign the
workspace memory within the per-thread registers, or use both
the registers and a small proportion of the shared memory.
This would normally require the workspace to be of O(1) size
(namely constant size), regardless of the number of points in
the raw data. As it turns out, in many cases, this is achievable.
To illustrate, we look into the two core methods mentioned
in Section III-C, and see how they can be implemented with
constant workspace and relatively low time complexity.

• PCA: Applying PCA to a patch of data points entails
3 steps:

1) Obtain the covariance matrix C of the patch. Suppose
the patch contains n data points, each being a 3D
coordinate, then the patch can be represented as an
n × 3 matrix M = [mT

1 ,m
T
2 ,m

T
3 ] where mT

i =
[mi,1,mi,2, . . . ,mi,n]

T (i = 1, 2, 3) are the columns
of M, and C is a 3 × 3 matrix where the element at
position (i, j) is

ci,j =

∑n
k=1 mi,kmj,k

n− 1
(1)

Note that ci,j can be obtained in O(n) time with O(1)
workspace as we only need to keep one mi,k and one
mj,k in the workspace at a time. As there are 3× 3 =
O(1) elements in C, it takes O(n) time and O(1) space
to obtain C.

2) Obtain the eigenvalues λ1, λ2 and λ3 of C and the
explained variance ratios λ1

λ1+λ2+λ3
and λ2

λ1+λ2+λ3
,

which takes O(1) time and workspace as the size of
C is constant.

3) Transform the explained variance ratios to their coor-
dinates in a ternary graph, which also takes O(1) time
and workspace as there are only 2 = O(1) values to
transform.

All in all, the entire process takes O(1) workspace and
O(n) time.

• STAT : Applying STAT to a patch of n data points
entails calculating their std, as well as min, Q1, median,
Q3 and max which are order statistics. Among them, std
(denoted as σ) can be calculated as

σ =

√√√√ 1

n

n∑
i=1

(zi − µ)2 =

√∑n
i=1 z

2
i

n
− µ2 (2)

where zi is the elevation value of the i-th point in the
patch and µ is the mean of elevation values of all points

in the patch, which can be calculated as

µ =

∑n
i=1 zi
n

(3)

It is easy to see that we simply need to obtain the sums∑
i z

p
i (p = 1, 2) to further calculate std in constant

workspace and time, and we can obtain them in O(n)
time and O(1) workspace, as we only need to keep the
sum so far and the next zi value in the workspace at a
time. Thus, it takes O(1) workspace and O(n) time to
obtain std.
For the order statistics, we can obtain them using some
selection algorithm which usually comes with a space-
time trade-off. In our implementation, we use the ba-
sic algorithm proposed in [34], which uses constant
workspace and has a time complexity of O(nlgn), which
is usually fast enough as it is unlikely that the patches
are excessively large. In the rare cases that this happens,
Munro and Raman [34] also provided methods with
lower time complexity with slightly higher demand for
workspace memory. We omit discussion of these methods
for brevity.

In conclusion, by implementing the core method in a way
that only requires O(1) workspace, which is achievable in
many cases, or by simply relegating the workspace to global
memory, we can run the vast majority of (if not all) core
methods on the GPU.

D. GPU-based feature aggregation

We now discuss GPU acceleration for feature aggregation.
From Section III-D (in particular lines 20-23 in Algorithm 1),
we can conclude that the aggregated features for an ROI can be
divided into segments with an ID of (ex, fScale, i), in which
ex is the ID of an example in the ROI, fScale is one of the
feature scales, and i is an index of the output vector of the core
method. Each segment consists of the 7 statistics mentioned
in Section III-D. Among them, mean and std can be obtained
in constant time if we pre-calculate the two sums mentioned
in the discussion on STAT in the previous section (although
here the values to sum up are raw feature values, rather than
elevation values). These sums can be obtained by CUDA-based
parallel reduction [35]. For the order statistics, we can first sort
the raw features that correspond to the current segment, which
can be performed on GPU using existing software tools such
as Thrust1 [36] and CuPy2 [37], and then trivially obtain them
in constant time.

E. GPU-accelerated Cross Validation

For Cross Validation (CV), we mainly apply GPU ac-
celeration to the classifiers. Here we have a wide range
of open-source GPU-based implementations for a variety of
classifiers. For example, the CuML3 [38] library includes
GPU-accelerated implementations of multiple commonly-used

1https://developer.nvidia.com/thrust
2https://cupy.dev/
3https://github.com/rapidsai/cuml
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classification models; the ThunderSVM1 [39] library pro-
vides GPU-based implementations of support vector machines
(SVMs); the XGBoost2 [22] library has built-in support
for GPU acceleration; k-nearest neighbor is implemented in
CUDA-based packages such as KNN CUDA3; deep learning
frameworks such as PyTorch4 [40] and Tensorflow5 [41] can
be used to implement logistic regression and artificial neural
networks executable on GPUs.

V. EXPERIMENTS

For empirical study, we conduct 2 sets of experiments: First,
we present a demo of our FARMYARD pipeline to showcase
its utility in a real-world geoscientific research project. Second,
we conduct experiments on both real and simulated large
planetary LiDAR datasets to demonstrate the efficiency of our
Pseudo-One-Pass Sweep (POPS) based raw feature extraction
framework. All experiments were run on a Ubuntu 18.04
server with 2 NVIDIA Quadro RTX 6000 GPUs (only one is
used at a time), 1 AMD EPYC 7402P 24-core CPU @2.8GHz,
and 125GB memory. All CPU-based code is implemented
in Python 3.8, while all GPU-based code is implemented in
CUDA-C [14] and linked with the Python code using the
PyCUDA6 [42] package. All results are averaged over 10 runs.

A. PARKER: A Demo of the Utility of FARMYARD

In this section, we showcase the utility of our FARMYARD
pipeline in an ongoing geoscientific research project called
Planetary lidAR seeKing for lifE signatuRe (PARKER), where
we are interested in discovering topographical features related
to terrestrial life activities. To do so, we attempt to find
features that can distinguish between the Earth and other
planets with no known life signs (currently we focus on Mars)
by analyzing planetary LiDAR data. Specifically, we follow
our FARMYARD pipeline step by step, with notable settings
for each step listed as follows.

1) Data collection: We collect raw points of various regions
scattered across the globe on the Earth and Mars (Fig. 7).
The reason why these regions have been chosen is that
they encompass 4 landscapes that are present on both the
Earth and Mars, which are volcanoes, drainage systems,
landslides (or rock avalanches) and impact craters. For
the Earth, we use the GEDI [4] repository (since 4/2019);
for Mars, we use the MOLA [1] repository (1997-2006).
See Section II for a more detailed description of these
repositories.

2) Preprocessing:
• ROI selection: From each of the aforementioned re-

gions, we manually select one or more non-rectangular
ROIs, each bounding a sub-region with only one dom-
inant landscape.

1https://github.com/Xtra-Computing/thundersvm
2https://xgboost.readthedocs.io/en/stable/index.html
3https://github.com/unlimblue/KNN CUDA
4https://pytorch.org/
5https://tensorflow.org/
6https://pypi.org/project/pycuda/

• CRS transformation: As mentioned in Section III-B,
we apply the Lambert Conformal Conic Alternative
(LCCA) projection to the selected ROIs.

• Raster interpolation: For each transformed ROI, we
interpolate them to raster data with 60m resolution
with the IDW [11] algorithm. IDW has two parameters:
search radius r and power parameter α. We fix the
former to 10,000m, while setting the latter from one
of 1 : 5.

3) Feature Definition: For the feature template, we consider
2 core methods, 2 dimensionalities, and 3 feature scales.
• Core method core: We consider PCA and STAT ,

which have been introduced in Section III-C.
• Dimensionality dim: We consider both 2D and 3D.
• Feature scales fScales: We consider 3 options, each

of which is a group of 3 feature scales: (300m, 400m,
500m) which we designate as the small group, (700m,
800m, 900m) which we designate as the medium
group, and (1100m, 1200m, 1300m) which we des-
ignate as the large group.

Combining these options leads to 2×2×3 = 12 candidate
feature templates. For the rest of this section, we refer
to each template in the format of {core} − {dim} −
{fScales}. For example, PCA− 2D− small indicates
the feature template with the core method PCA, the
dimensionality 2D, and the feature scales small.

4) Feature extraction:
• Raw feature extraction: We set both the example scale
exScale and example step exStep to 2000m. We fix
the feature stride-to-scale ratio stsRatio to 0.5 for all
9 feature scales that are included in the aforementioned
options for fScales. Also, we implement the raw
feature extraction in such a way that it is executed
for all 9 feature scales in a single run on GPU (rather
than one separate run for each option of feature scale).
This can maximally leverage the ability of our POPS
framework to handle multiple scales.

• Feature aggregation: We use the CuPy [37] package to
sort raw features in each segment (see Section IV-D)
before we pass them on to our own CUDA-C code.

5) Feature evaluation:
• Data partition: For our Domain-Shifted Partition

(DSP), since we are trying to find features related
to inter-planet differences, we set the Target Category
(TC) to planets with the Target Labels (TLs) being
Earth and Mars. For Non-Target Categories (NTCs),
we consider landscapes and geolocations. The Non-
Target Labels (NTLs) for the former are volcano,
drainage, landslide and crater, and those for the latter
are

::::
Etna,

:::::::::
Emi Koussi,

:::::::
Vesuvius,

:::::::
Elysium,

:::::::
Olympus,

::::::
Pavonis,

:::::
Borku,

:::::::
Ngazima,

::::::::
Sycamore,

:::::
Durius,

:::::
Elaver,

::::::
Warego,

:::::::::
Blackhawk,

:::::::
Socompa,

:::::::
Coprates,

::::::
Ganges,

::
Ius

and
::::::::::
Gosses Bluff. The number of folds K is set to 3,

as larger settings can not lead to partitioned datasets
that meet the criteria of DSP. The numbers of examples
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Fig. 7. Geolocations of the regions on the Earth (a) and Mars (b) currently studied in the PARKER project.

in all folds are shown in Table I1.
• Cross Validation (CV): For data balancing, we consider

5 balancing methods: no balancing, 2 oversampling
methods which are SMOTE [23] and ADASYN [24],
as well as 2 undersampling methods which are random
undersampling (RUS) and undersampling with instance
hardness threshold (IHT) [25]. For the latter four, we
use the implementation provided by the Imbalanced-
learn [26] library. For the choice of classifiers, we
apply 8 classifiers, including 4 SVM classifiers with
different kernels (linear, RBF, polynomial, and Sig-
moid) which are implemented in the ThunderSVM [39]
package, XGBoost [22] and 3 k-NN classifiers (the
number of neighbors k are set to 1, 5 and 10) which
are implemented using the KNN CUDA package (see
Section IV-E).

• Feature visualization: For feature visualization, we use
the t-SNE algorithm [27], which is a dimensionality

1Note that the data is highly imbalanced. We will explain why it was hard
for us to obtain a balanced dataset in Section V-B.

reduction algorithm that can facilitate the visualization
of high-dimensional datasets in 2D space. In our case,
we visualize both the raw and aggregated features
extracted using each feature template for all examples.
The raw feature vector for each example is obtained
by concatenating the features of all patches in it. t-
SNE has an expected density parameter perplexity
that can affect the visualization result by controlling the
number of points used as nearest neighbors (see [27]
for details). Here we consider 3 values for perplexity:
10, 30, 50. For visual clearance, we keep the number
of examples for each target label under 500 within the
visualization by random sampling.

Note that in some of the aforementioned steps, we consider
multiple FARMYARD configurations, as was recommended in
Section III-F. Specifically, for raster interpolation, we consider
5 configurations as dictated by the 5 different IDW alpha
settings; for data balancing, we consider 5 configurations as
dictated by the 5 balancing methods; for CV, we consider 8
configurations as dictated by the 8 classifiers; for visualization,



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 17

TABLE I
NUMBER OF EXAMPLES FOR CROSS VALIDATION

Fold
Target Labels
(TC: planets)

Non-Target Labels Number of examples
NTC: landscapes NTC: geolocations

1

Earth volcano
Etna 124

766

83249

Emi Koussi 640
Vesuvius 2

Mars volcano
Elysium 5631

82533Olympus 59985
Pavonis 16917

2

Earth
drainage

Borku 206

5224

10762

Ngazima 4998
Sycomore 16

crater Gosses Bluff 4

Mars
drainage

Durius 1318

5538
Elaver 1810
Warego 1643

crater
Durius 457
Warego 310

3

Earth landslide
Blackhawk 3

64

2198
Socompa 61

Mars landslide
Coprates 551

2134Ganges 1077
Ius 506

we consider 3 configurations as dictated by the 3 perplexity
values. This leads to 5× 5× 8 = 200 configurations for CV,
and 5× 3 = 15 configurations for feature visualization.

Next, we show how we can carry out the 3 further analysis
tasks mentioned in Section III-F, based on the CV and
visualization results.

1) Feature ranking: We would like to first see which ones
among the 12 candidate feature templates can best distinguish
between Earth and Mars, which may be indicative of their
relevance to terrestrial life activities. To this end, we look
into the CV results shown in Fig. 8, from which it is very
hard to decide a clear winner. Therefore, as was mentioned
in Section III-F, we perform two statistical tests over the κ
scores of the 12 feature templates across all 200 CV configu-
rations, obtaining the Critical Difference Diagram (CDD) [30]
shown in Fig. 9. In the CDD, each feature template has a
mean rank (the values over the lines connected to templates)
obtained from the Friedman test, and the smaller the rank
value (that is, the more to the right in the CDD), the better
CV results the template has yielded. As is shown in Fig. 9,
PCA− 2D − small has led to the best overall results.

Next, we examine whether there are statistical differences
between one feature template to another. In other words, if
one template is better than another, we wish to know if it is
significantly better. In the CDD, feature templates are grouped
into cliques as indicated by the bold bars. Those in the same
clique, such as STAT − 2D −medium and STAT − 3D −
medium, as well as PCA−3D−large and PCA−2D−large
in Fig. 9, have no statistically significant differences, while the
rest do. In particular, PCA−2D−small is significantly better
than all the other feature templates, which makes it the sole
winner.

Finally, from Fig. 9 we can make 2 interesting observations

besides deciding the winning feature template: First, PCA
generally outperforms STAT for the same group of feature
scales (except large). Second, small generally outperforms
medium, and medium generally outperforms large, no mat-
ter which core method is used.

2) Feature qualification: While we already know that
PCA − 2D − large significantly outperforms the remaining
11 feature templates, we still need to examine whether its
performance is good enough to effectively distinguish between
the Earth and Mars. To do so, we look into its κ scores across
all 200 configurations, whose mean, standard deviation, min-
imum and maximum values are 0.139, 0.114, 0.478,−0.240,
respectively. Unfortunately, while there is no universally ac-
cepted way to interpret the ”goodness” of κ scores, the
aforementioned values are most certainly not good.

This assessment is corroborated by the F1-scores on
the two target labels and the feature visualization results:
For the F1-scores, the mean, standard deviation, mini-
mum and maximum values for the F1-scores on Mars are
0.793, 0.143, 0.953, 0.168, respectively, while those on Earth
are 0.183, 0.113, 0.496, 0.003. The F1-scores on Mars seem
reasonably good, but those on Earth are poor. For the feature
visualizations, the results are shown in Fig. 10. For brevity,
we only present the results with IDW α = 1, relegating the
remaining results to Fig. 18 and 19 in the Appendix. As is
shown, in neither the visualizations of raw and aggregated
features are the two target labels well-separated. Moreover, in
most cases, the intra-class distribution is highly heterogeneous,
which indicates that PCA − 2D − small can not lead to
low-variance representations for either the target labels. These
observations also hold true for cases where IDW α ̸= 1.

In conclusion, PCA− 2D− small, and thus all 12 feature
templates, have so far failed to produce features that meet our
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Fig. 8. Raw cross validation results of the 12 feature templates across 200 FARMYARD configurations. The name of the configurations has been omitted
for visual clearance.

Fig. 9. Critical difference diagram of the cross validation κ scores of the
12 feature templates across 200 FARMYARD configurations. The more to
the right, the better results a feature template has yielded. Those in the same
clique (indicated by bold bars) have no statistically significant differences.

criterion when it comes to distinguishing between the Earth
and Mars. Again we note that none of the 12 feature templates
in question should be considered contributions of our paper.

Rather, our main contribution is a novel FARMYARD pipeline
that has worked as expected, helping us discover that none of
the 12 templates we have currently considered are likely to
lead us to further insights into the inter-planetary topographical
differences related to life activities. That being said, we are
encouraged by the superior performance of PCA to STAT .
As will be discussed in the next section, we now have a
preliminary hypothesis on why PCA has led to poor results
and are working to improve it accordingly.

3) Bias analysis: While PCA−2D−small has generally
led to underwhelming results, we are curious to see whether
these have to do with its bias towards one of the two target
labels. As was previously mentioned, the average F1-scores for
Earth and Mars are 0.183 and 0.793. This strongly suggests
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Fig. 10. Feature visualization for the feature template PCA− 2D− small with IDW α = 1. See Fig. 18 and 19 in the Appendix for cases where α is set
to 2, 3, 4, 5.

that there is a bias towards Mars. In fact, this observation is
not only true to PCA − 2D − small, but also true to the
other feature templates. The reason behind this is likely to
be the fact that we have far more training examples for Mars
than Earth, and the data balancing techniques have failed to
compensate for this.

B. Discussions

From the results shown in the last section, we identify the
following issues that future researches on planetary LiDAR
may address.

1) The need for novel core methods: From the generally
poor results yielded by the 12 feature templates we have
considered, it is obvious that there is a need for novel core
feature extraction methods for planetary LiDAR, at least for
discovering the differences between the Earth and Mars. In
fact, we are surprised to find that there are very few researches
(if not none) for feature extraction from planetary LiDAR. The
most closely related work we could find was by Brodu and
Lague [12] who proposed the PCA method. However, that
work was not originally dedicated to space-borne planetary
LiDAR. Rather, it was intended for close-up terrestrial laser
scanning (TLS) of natural scenes such as rivers and cliffs. We
believe there is an urgent need for novel feature extraction
methods that are more adaptive to the characteristics of
planetary LiDAR.

In particular, we believe there is great room for improve-
ment for PCA. Specifically, a critical difference between
planetary LiDAR and close-up TLS is that for a given pair of

(x, y) values, planetary LiDAR only allows for one z value,
which is the elevation of the highest point at that coordinate.
Close-up TLS, on the other hand, allows for multiple readings
for the object at that particular coordinate. For example,
suppose there is a tree at the coordinate, we can obtain a series
of readings from the top of the tree to its trunk all the way to
ground level. The extra readings provide more information
than the single elevation reading of planetary LiDAR. We
are currently working on improving PCA to adapt to this
difference. The general idea is that for each (x, y) coordinate,
apart from keeping the original elevation value, we add more z
values below the elevation of the highest point, thus mimicking
the characteristics of close-up TLS.

2) The need for denser raw data: As was mentioned
previously, the results we have obtained are highly biased
towards Mars, which is likely caused by far fewer examples
from the Earth than Mars. Admittedly, the inclusion of very
large Martian geo-objects such as Olympus Mons has played a
row in such data imbalance. However, in the meantime, we find
it very hard to obtain enough terrestrial data from the GEDI [4]
repository due to the sparsity of raw data in many regions.
For example, we originally intended to include the terrestrial
Ambrym Volcano in our dataset. However, after inspecting its
raw 3D point cloud (Fig. 11), we decided that the data was
so sparse that it was impossible to conduct raster interpolation
to it that was faithful to the groundtruth. We note that this is
not an isolated case. Rather, we have faced such difficulties
for many regions on the Earth that would have been included
were not for data sparsity.
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Fig. 11. The raw 3D point cloud of the terrestrial Ambrym Volcano from
the GEDI [4] repository, which is so sparse that we were not able to conduct
raster interpolation to it that was faithful to the groundtruth.

Moreover, even with the current dataset with relatively
dense raw data, raster interpolation still has a significant
impact on the CV results. To illustrate, the CDD of the CV
scores of PCA− 2D − small with different IDW α settings
is shown in Fig. 12. As is indicated, different interpolation
configurations can lead to significantly different CV scores.
This is also true for the majority of the remaining 11 feature
templates. To address both this problem and the previously
mentioned problem with downright invalid data due to sparsity
issues, it is advisable to improve the raw data density in the
GEDI [4] repository for certain regions on the Earth, thus
making raster interpolation produce more accurate and robust
results.

Fig. 12. Critical difference diagram of the cross validation κ scores of the
feature template PCA − 2D − small with different IDW α settings. See
Fig. 20 in the Appendix for diagrams of other feature templates.

Fig. 13. Critical difference diagram of the cross validation κ scores of the
feature template PCA−2D−small with different data balancing methods.
See Fig. 21 in the Appendix for diagrams of other feature templates.

3) The need for novel data balancing techniques: While
denser raw data can help mitigate data imbalance, it is unlikely
to fix the problem entirely. In many cases, data imbalance is
almost inevitable, especially when we deal with supersized
geo-objects such as Olympus Mons. Therefore, we still need

Fig. 14. Critical difference diagrams of the cross validation κ scores of
the feature templates PCA− 2D− small and STAT − 2D− large with
different classifiers. See Fig. 22 in the Appendix for diagrams of other feature
templates.

explicit data balancing in CV. However, as was shown in the
previous section, the classic data balancing methods we have
considered so far have failed to address the aforementioned
bias issue. Moreover, different data balancing methods have
led to significantly different CV results, as is shown in Fig. 13.
Based on these observations, we contend that there is a need
for novel data balancing techniques for planetary LiDAR,
especially one adaptive to our DSP strategy.

4) The need for attention to classification decision bound-
aries: Last but not least, as is shown in Fig. 14, we have no-
ticed that different classifiers can lead to significantly different
CV results for a single feature template. In addition, different
feature templates can correspond to different classifiers when
the best results are achieved. It is likely that the decision
boundaries between the target labels under different feature
templates are different, and only the classifiers that can best
detect these boundaries can lead to the best results. We believe
that the characteristics of the decision boundaries may encode
deep geoscientific knowledge that is worth looking into, and it
is thus advisable for researchers to pay attention to the decision
boundaries which can be obtained by feature visualization (see
Section III-E).

C. Efficiency of Raw Feature Selection

We now turn to a key design highlight of our GPU-based
FARMYARD pipeline: the Pseudo-One-Pass Sweep (POPS)
framework for raw feature extraction, which promises much
higher efficiency than its CPU-based counterpart1. We now
validate this promise using both simulated and real data. For
the rest of the section, the number of threads per GPU block
is set to 256.

1) Efficiency on simulated data: We begin with experi-
ments on simulated data which is randomly-generated rasters.
First, we examine how our POPS framework compares against
the following 3 rivals:

1Note that in for the rest of the section, the CPU-based implementation
heavily relies on the NumPy package, whose vectorization capability usually
makes CPU-based operations much faster than naı̈ve implementations. This
makes it fairer to our CPU-based rival when compared with our POPS
framework.
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Fig. 15. Raw feature extraction time on simulated rasters with varying numbers of points. Note that the time axis is in log scale.

• CPU: the CPU-based (single-core) sequential framework;
• MPI: a CPU-based parallel framework with the Message

Passing Interface (MPI) [15], which uses 20 coresWe use
20 cores, instead of all 24 cores, to avoid interfering with
other users’ jobs running on the same server. with each
core processing roughly the same number of examples;

• POPS-NMS: a variant of POPS without its ability to
simultaneously process multiple feature scales1,

For POS and the 3 rival frameworks in question, we
conduct raw feature extraction using both PCA and STAT on
randomly-generated square rasters. These rasters have different
numbers of points along each edge ranging from 1000 to
10000 with a step size of 10002. On all rasters, we fix the
example scale exScale to 300 data points. As with the feature
scales fScales, we set it as the union of 3 groups: small
where the scales are 5-10 points, medium where the scales
are 15-20 points, and large where the scales are 25-30 points3,
thus we have a total of 3× 6 = 18 feature scales. The feature
stride-to-scale ratio stsRatio is fixed to 0.5.

The results are shown in Fig. 15. Note that we have set
a timeout threshold of 3h (10,800s) to avoid excessively long
runs. From the results, we can draw the following conclusions.

• CPU is the slowest of all frameworks, running out of time
for both PCA and STAT . This comes as no surprise as
it exploits no parallelism at all.

• In most cases, MPI is just below 20x as fast as CPU.
This is also unsurprising as we have used 20 cores for
MPI, and the overhead time of MPI makes its actual
acceleration a little short of its theoretical 20x speed
boost.

• Both GPU-based frameworks, namely POPS and POPS-
NMS, are significantly faster than their CPU-based rivals.
For PCA, the GPU-based frameworks are 2-3 orders of
magnitude faster than CPU, and 2 orders of magnitude

1We disable simultaneous multi-scale processing for POPS-NMS using the
syncthreads() function (see Section IV-A)

2Note that these numbers are NOT the numbers of points in the rasters. In
fact, the latter is the square of the former.

3Note that the 3 feature scale groups we use for simulated experiments are
different from those used for real data in the previous section, despite the fact
that they share the same naming.

faster than MPI; for STAT , the GPU-based frameworks
are 1-2 orders of magnitude faster than CPU, and 2-
7x as fast as MPI. The reason why the advantage of
the GPU-based frameworks is smaller for STAT is
that they use a memory-efficient implementation with
O(nlgn) time complexity (see Section IV-C) for the
core method, while the CPU-based frameworks use one
with O(n) complexity. Despite this, overall the GPU-
based frameworks remain much faster than their CPU-
based rivals. In particular, their advantage over MPI is
impressive in that in order for the latter to catch up with
the former, we would need to use a cluster of several
(even dozens) of servers with the same specifications as
the one we used in this work, as opposed to a single GPU
for POPS and POPS-NMS. This highlights the efficiency
benefit of exploiting the SIMT architecture of the GPU
(see Section IV-A) for data-intensive tasks.

• While POPS has nearly identical performance as POPS-
NMS on PCA, the former is about 2x as fast as the latter
on STAT . The reason why there is no significant per-
formance difference on PCA is likely that with an O(n)
implementation of the core method, both frameworks are
so fast that the actual psuedo-one-pass sweep process
shown in Fig. 5 accounts for very limited time compared
to overhead operations such as communications between
the CPU and the GPU. By contrast, on STAT , because
the O(nlgn) implementation of the core method makes
the overall running time much longer, the performance
benefit of the multi-scale processing capability of POPS
begins to emerge. Moreover, as we will later show in
our experiments on real data, when the volume of data
grows larger, this performance benefit will also emerge
for PCA. This benefit can be especially valuable for
larger rasters and slower core methods such as STAT
as the absolute running time in such cases are longer,
and a 2x speed boost can save plenty of time.

Our next simulated experiment concerns the impact of
different fScales settings on POPS with varying numbers of
examples and number of points in each example. Specifically,
we have randomly generated a raster with 30, 000×30, 000 =
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Fig. 16. Raw feature extraction time of POPS on a simulated raster of 30, 000× 30, 000 with different example and feature scale settings.

9 × 108 points. To put into perspective how large this raster
is, suppose it has a high resolution of 30m, then it covers
an area of (30, 000 × 30/1, 000)2 = 810, 000km2. This is
larger than the entire French territory (excluding Adélie Land
in Antarctica), which is 638, 474km2 including the overseas
territories [43]. We set different values for exScale within a
range of 100 : 100 : 500. Because the size of the raster is fixed,
these different settings lead to different numbers of examples
in the raster. For fScales, we consider the 3 settings of small,
medium and large in our previous simulated experiment,
except that this time we consider them separately, rather than
use their union. With stsRatio fixed to 0.5, we run POPS
under these 3 settings and record the running times.

The results are shown in Fig. 16. First of all, POPS runs
much slower for STAT than PCA, which is likely due to the
higher time complexity of the former. As with the fScales
settings, both small and medium leads to relatively short
running time, while large has significantly longer time. This
reveals a weakness of our POPS framework: it only allows
one thread per patch, no matter how large the patch is, thus
it is relatively inefficient at processing large feature scales. In
particular, despite its optimizations for multi-scale scenarios,
this yields limited gains when all the scales are large. That
being said, the longest running time is a little over 600s
(10min), which is still very impressive given the massiveness
of the raster. Another interesting phenomenon is the zig-zag
pattern of the running time curve for large. This is likely to
be a combined effect of 2 competing factors: On the one hand,
as the number of points in each example increases, so does
the number of patches per example and thus the per-example
processing time. On the other hand, the number of examples
drops as the size of individual examples grows larger, which
decreases the overall running time.

All in all, the aforementioned experiments strongly indi-
cate that our POPS framework can easily defeat its CPU-
based counterparts and can highly efficiently handle very
large rasters. Moreover, its support for simultaneous multi-
scale processing is indeed effective in boosting its efficiency,

especially in cases where the absolute running time is longer.
2) Efficiency on real data: We now further validate the

efficiency of POPS on real data. Specifically, we report the
running time of POPS, POPS-NMS and their CPU-based
counterpart when applied to extracting raw features from the
dataset used in Section V-A, where we have also specified
the parameters for feature extraction. The results are shown in
Fig. 17, which are mostly in line with those on simulated data
(Fig. 15). Specifically, for PCA, POPS is more than 3 orders
of magnitude faster than CPU and 2 orders of magnitude
faster than MPI; for STAT where POPS has higher per-
patch time complexity, it is still over 2 orders of magnitude
faster than CPU and 1 order of magnitude faster than MPI.
What is different from the case with the simulated experiment
in Fig. 15 is that for real data, not only is POPS more
than 2x as fast as POPS-NMS for STAT , it is also about
1.5x as fast as POPS-NMS, as opposed to having nearly
identical performance as the latter on simulated data. This
is likely because the real data volume is larger than that for
the simulated experiment, which makes the actual pseudo-one-
pass sweep process take most of the running time compared
to overhead operations for real data.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a generic and (nearly) entirely
GPU-based pipeline for Feature Discovery From Planetary
LiDAR Data (FARMYARD) with 3 design highlights: a
Pseudo-One-Pass Sweep (POPS) based framework for efficient
raw feature extraction of massive raster data, a two-level ROI
division scheme for multi-scale feature extraction of local
regions, and a Domain-Shifted Partition (DSP) strategy for
robust feature evaluation in the presence of interfering factors.
We validated the utility, effectiveness and efficiency of our
contributions through extensive experiments. Based on our
results on real-world data, we have also made suggestions to
future researches on planetary LiDAR such as developing new
core methods for feature extraction (especially improving upon



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 23

Fig. 17. Raw feature extraction time on the real dataset used in Section V-A. Note that the time axis is in log scale.

PCA), enhancing raw data density, improving data balance,
and paying attention to classification decision boundaries for
different feature extraction methods.

For future work, we mainly focus on the following 3 aspects.
1) Improving efficiency on large patches: As was demon-

strated in Fig. 16, the efficiency gain of our POPS-based
feature extraction method decreases for larger patches, due
to its limitation that a patch can only be processed by a single
thread. In response, we plan to extend our current method to
allow for parallel processing of a patch using multiple threads,
thus boosting our efficiency on larger patches. This may only
be possible for some core methods. If so, we plan to propose
generic guidelines that can help the user determine whether
their core method can be executed using multiple threads, and
if this is the case, the optimal number of threads per patch to
use for maximum efficiency.

2) Incorporating deep learning (DL): Throughout this pa-
per, we have limited our discussions to traditional hand-crafted
features, rather than deep features learned by neural networks.

This is primarily out of concerns for feature interpretability, as
the black-box nature of data-driven neural networks can pro-
hibit domain experts from interpreting learned deep features
and thus uncovering equally deep knowledge. However, in
view of the effectiveness of DL, we plan to incorporate it into
our current pipeline, so that the interpretability of handcrafted
features and the efficacy of DL can complement each other.
One possible way of doing this is to first discover potentially
interesting handcrafted features using our current pipeline, and
then apply a neural network to fine-tune these features, e.g.
weighting them using the attention mechanism [44]. Moreover,
recent advances in explainable DL [45] may also shed light on
humanly interpretable knowledge embedded in deep models.

3) Extending to new topics on planetary topography: The
ultimate goal of this work is to provide a new methodology
for comparative studies of planetary topography that can lead
to future geoscientific discoveries. Thanks to the generic and
GPU-based nature of our FARMYARD pipeline, we can now
compare multiple geo-objects with easiness, accuracy and
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efficiency never possible before, which can potentially usher
in a new era of the study of the ”text” provided by topography.
Apart from continuing with our PARKER project (see Section
V-A) which seeks to find topographical life signatures on
the Earth, with FARMYARD, we can extend our research
to other interesting topics. For example, we can study the
influence of life on planetary geomorphology by comparing
biotic and abiotic controlled landscapes (on the same planet);
for similar landscapes at different geolocations, we can study
the influence of the different forming mechanisms of their
topography. We can even ask questions as yet unthought-
of, because once new ways of seeing become available, new
questions emerge.

APPENDIX: ADDITIONAL EXPERIMENTAL RESULTS

We provide additional experimental results that were previ-
ously omitted for brevity, which are shown in Fig. 18-22.
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Fig. 18. Visualization of raw features under the feature template PCA− 2D − small with IDW α set to 1, 2, 3, 4, 5.
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Fig. 19. Visualization of aggregated features under the feature template PCA− 2D − small with IDW α set to 1, 2, 3, 4, 5.
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Fig. 20. Critical difference diagrams of the cross validation κ scores of all 12 feature templates with different IDW α settings.
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Fig. 21. Critical difference diagrams of the cross validation κ scores of all 12 feature templates with different data balancing methods.
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Fig. 22. Critical difference diagrams of the cross validation κ scores of all 12 feature templates with different classifiers.


