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Forecasting the Transmission Trends of
Respiratory Infectious Diseases with an

Exposure-Risk-Based Model at the Microscopic
Level

Ziwei Cui, Ming Cai, Yao Xiao, Zheng Zhu, and Mofeng Yang

Abstract— Respiratory infectious diseases (e.g., COVID-
19) have brought huge damages to human society, and
the accurate prediction of their transmission trends is es-
sential for both the health system and policymakers. Most
related studies concentrate on epidemic trend forecasting
at the macroscopic level, which ignores the microscopic
social interactions among individuals. Meanwhile, current
microscopic models are still not able to sufficiently deci-
pher the individual-based spreading process and lack valid
quantitative tests. To tackle these problems, we propose an
exposure-risk-based model at the microscopic level, includ-
ing 4 modules: individual movement, virion-laden droplet
movement, individual exposure risk estimation, and predic-
tion of new cases. First, the front two modules reproduce
the movements of individuals and the droplets of infectors’
expiratory activities. Then, the outputs are fed to the third
module for estimating the personal exposure risk. Accord-
ingly, the number of new cases is predicted in the final
module. Our model outperforms 4 existing macroscopic or
microscopic models through the forecast of new cases of
COVID-19 in the United States. Specifically, mean absolute
error, root mean square error and mean absolute percent-
age error by our model are 2454.70, 3170.51, and 3.38%
smaller than the minimum results of comparison mod-
els, respectively. In sum, the proposed model successfully
describes the scenarios from a microscopic perspective
and shows great potential for predicting the transmission
trends with different scenarios and management policies.

Index Terms— Respiratory Infectious Diseases, Micro-
scopic Model, Exposure Risk, COVID-19

I. INTRODUCTION

THE unexpected outbreak and rapid spread of Corona
Virus Disease 2019 (COVID-19) have damaged the world
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tremendously and brought a profound influence on people’s
lives [1]–[3]. At present, a growing number of countries
have moved into a post-pandemic phase, i.e., the overall
spread of COVID-19 has been controlled, but there have
been intermittent small-scale outbreaks [4]. COVID-19 is a
respiratory infectious disease (RID) caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) [5]. RID
poses a severe threat to the population and public health, and
recent studies have found that the loss of life expectancy due
to RID stood at 1.29 years in 2017 globally [6]. To live with
the ongoing challenges presented by COVID-19 or the re-
emergence of other respiratory viral infections, people must
take the awareness and measures of infection prevention and
control into daily life [7].

Vaccines and non-pharmaceutical interventions (NPIs) play
essential roles in stopping the spread of respiratory viral
infections. For a new RID, vaccine development needs a long
cycle [8]. The vaccines’ effectiveness would also be reduced
by the side effects of serial vaccination [9]–[11]. Moreover, the
virus of the RID can mutate quickly into many variations, such
as VUI–202012/01 that is just one of many variations of the
SARS-CoV-2, and whether the vaccines are effective against
these new variants is unknown [12]. On the other hand, NPIs
(e.g., maintaining safe social distance, face masks [13], [14])
efficiently respond to emerging epidemics, and they are long-
term approaches to regulate people’s social behavior [15], [16].
In a public place, it is important to find the most critical NPIs
because they bring the lowest number of infected cases. Thus,
a model that can accurately describe diseases’ transmission
process is necessary to help evaluate NPIs by estimating the
corresponding disease transmission risks and trends [17].

Mathematical epidemiological models are helpful to de-
cipher the complex transmission process of epidemics [18],
which generally includes macroscopic level models and micro-
scopic level models [19]. At the macroscopic level, researchers
focus on the infection and recovery process of disease among
the population [20], and have proposed many compartmental
models and computational intelligence methods: in the former,
there are susceptible–infected–removed, or recovered (SIR)
model [21], the susceptible–infected–recovered–susceptible
(SIRS) model [22], and their extended modifications [23]–
[25]; in the latter, there are the hybrid intelligent approach
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based on fractal theory and fuzzy logic [26], the multiple
ensemble neural network model with fuzzy response aggre-
gation [27], the hybrid intelligent fuzzy fractal approach [28],
and others. Although the macroscopic models have established
the research discipline of mathematical epidemiology, most
of them need continuously updated data or an enormous
amount of data to obtain optimized system parameters, and
they may ignore details in modeling the social interactions
among individuals. Therefore, macroscopic approaches can be
insensitive in evaluating NPIs or require strong assumptions
to overcome the incapability. Fortunately, microscopic models
partially address these limitations because they focus on the
disease spreading between individuals. For example, scholars
have estimated individual-level spatiotemporal travels between
several locations based on daily activities (such as work, study,
or shopping) [29]. In these models, RIDs can transmit between
individuals in the exact location simultaneously and spread
between locations due to individuals’ movements. It should be
noted that the location mentioned here is a particular area likes
a school or shopping mall, not the exact physical location of
the individual. Unlike these activity-based models, some stud-
ies focus on respiratory viruses’ transmission and construct
the Well-Riley models and aerosol infectious dose-response
models [30], [31]. These models assume that infectious parti-
cles are distributed homogeneously, which results in the same
infection risks among individuals regardless of their physical
distance from the infector. Recent studies have considered the
spatiotemporal distribution of pathogens in the environment
under different transmission routes, and the personal exposure
risk is determined based on the duration and distance of infec-
tious contacts [32], [33]. However, transmission is modeled as
a static event between infectors and susceptible individuals.
Thus, these models cannot describe the epidemic spreading
process with time-varying individual physical distances during
individual movements. Nevertheless, pedestrian dynamics is
suitable for describing individual decisions and actions in
mass gathering scenarios. Previous studies have integrated
these decisions and actions into epidemic spreading models
to counter the aforementioned problems [34], [35].

Several studies have explored pedestrian-based epidemic
spreading models, which are composed of the individual move-
ment module (e.g., the social force model [19], the nomad
model [15], a social force model coupled with an Eikonal
equation [36]) and the disease transmission module (e.g., the
model based on the cut-off distance [19], the QVEmod [15],
the non-local SEIS contagion model [36]). The former module
simulates the general individual crowd movement and outputs
time series of personal positions. Based on the outputs from
the first module, the second module evaluates the disease
transmission risk from the infectors to susceptible individuals.
However, these models ignored critical factors for simplifi-
cation, e.g., the exposure risk is an invariable value when
the individual is exposed to the infector’s influence area [19],
and they potentially overestimate or underestimate the number
of high-risk exposed people. Besides, only specific situations
are analyzed, such as the cruise [37], the supermarket [38],
and the academic building [39]. Moreover, different scenarios
have various scales and geometries, e.g., a restaurant whose

dimensions are 10 m × 9 m has tables, chairs, the cash
register, and other objects in the case of [15]. These changeable
settings affect the virus transmission risks and bring more
model inputs and computation costs. On the other hand, a
general public place can represent all scenes, e.g., an empty
room of 10 m × 9 m represents a restaurant or store of the same
scale without considering the indoor geometries. Meanwhile,
most outputs of existing microscopic-level models are results
without actual values to verify, such as the personal exposure
risk and the number of high-risk exposed people. Then, these
models are used directly or after the qualitative analysis but
lack quantitative tests [19], [40]. Hence, building a model for
a general public place that can be validated and applied to all
scenes is necessary and practical.

In this study, an exposure-risk-based model at the micro-
scopic level is developed, and the principal contributions can
be described as follow. First, the movements of individuals as
well as the dynamics of droplets are respectively modeled and
coupled to calculate the personal exposure risk, hence an inte-
grated transmission process of the RID at the individual level is
formulated. Second, our model can predict the spreading trends
from a microscopic perspective of individuals, which indicates
that many specific factors like scene (e.g., geometry), activity
(e.g., point of interest) and strategy (e.g., travel restriction)
in the real-word scenarios can be captured and further inves-
tigated. Third, a bridge between the macroscopic epidemic
transmission data and our microscopic model at individual
level is built. As a result, our model can be quantitatively
calibrated and validated through the macroscopic data, such
as the number of new cases.

The rest of the paper is organized as follows. Section II
introduces our model, and Section III manifests applications
of the model based on real-world data in the COVID-19 of the
United States. Section IV discusses the comparison models and
ours. Finally, we summarize this paper and present suggested
directions for future work in Section V.

II. MODEL

To construct the microscopic level exposure-risk-based
model, we should define the exposure risk of individuals. RIDs
are transmitted through viral droplets produced by respiratory
activities such as breathing, talking, coughing, and sneezing.
Here, the typical symptom of most RIDs, i.e., coughing, is
adopted in our model. Thus, we define the instantaneous
personal exposure risk as the maximal mass of virion-laden
droplets produced by a typical cough exposed to infectors
at a certain moment. Then, the personal exposure risk can
be calculated by directly summing up instantaneous personal
exposure risks during the dwell time.

The components of our model are shown in Fig. 1. There
are three important parameters (i.e., number of individuals
C total, number of infectors among individuals C inf, and mean
dwell time of individuals T dwell) as the input. Besides, the
output includes not only the result of existing pedestrian-based
spreading models (i.e., number of high-risk exposed people
C risk), but also the key outcome (i.e., number of new cases
Cnew). In addition, personal exposure risk is obtained as the
intermediate output.
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Fig. 1. The flowchart of our model.

A. Individual Movement
In this part, the movements of individuals are modeled

within a general public place. First, we simulate the space
and individuals of the reality. Second, the pedestrian dynamic
model (i.e., the social force model) to reproduce individuals’
movements is introduced. Finally, time series of individual
positions can be estimated for Section II-C.

Herein, the simulation space is a general place without
obstacles, but it has boundaries like an empty indoor room.
Whether individuals from model inputs are infected or not,
their movement modelings are the same, as shown in Fig. 2,
where each person is represented as a circle with a radius
rped . Thus, when we model the motion of one person during
the dwell time, the movements of all others can be determined
in the same way.

The social force model is one of the most widely used
microscopic models, and it is also the basic model to sim-
ulate pedestrian dynamics in commercial software (e.g., PTV-
Vissim, MassMotion) [41], [42]. Hence, the social force model
is applied here, and the movement of individual i (with a mass
of mi) at time t is driven by the resultant force f i(t) as

f i(t) = f drv
i (t) +

∑
inear

f ped
i,i near(t) +

∑
w

f obs
i,w(t), (1)

where f drv
i (t) reflects the desire of individual i to maintain

a certain walking speed v0i towards a certain direction in a
relaxation time τi; f

ped
i,i near(t) is the interaction force between

Infectors             Susceptible Individuals           Boundaries  

Simulation Space 

𝑟𝑝𝑒𝑑

𝑟𝑝𝑒𝑑
𝑗

𝒆𝑗 𝑡
𝑖

𝒆𝑖 𝑡

Fig. 2. The sketch map of the individuals moving in the
simulation space.

the objective individual i and the neighboring individual
inear; f obs

i,w(t) means the instant interaction force between the
objective individual i and the wall/obstacle w. More details
about the social force model can be found in the literature
[43]–[45].

As the motion of individual i is driven under Newton’s
second law with a second-order dynamics function, the ve-
locity vi(t) and the unit direction vector ei(t) of individual i
is determined in

dvi(t)ei(t)

dt
=

f i(t)

mi
, (2)

based on which the location pi(t) of individual i is finally
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obtained as
dpi(t)

dt
= vi(t)ei(t). (3)

In addition, to simulate the crowd movements, a random
walking process is set by adjusting the desired initial direction
e0i . Then, when individual i is close to hitting the boundary,
the model will force the person to change the desired direction
to any direction ebi that is away from the boundary.

B. Virion-Laden Droplet Movement
Virion-laden droplet transmission of a typical cough is

modeled through Computational Fluid Dynamics (CFD) sim-
ulations within a closed environment. First, the computational
domain and grids are simulated. Second, we choose the
appropriate methods and parameter settings from literatures
for the numerical simulation. Finally, after completing the
simulation with the commercial CFD solver ANSYS Fluent
release 2020 R2, time series of positions and masses of each
cough droplet can be determined for Section II-C.

Height

Tall 1.7 m

Mouth 1.5 m

Tall 1.4 m

Tall 2.0 m

0.6 m

3.0 m

Floor

Susceptible 

manikin A

Susceptible 

manikin B

Source 

manikin

𝑦

𝑧

(a)

𝑦
𝑧

𝑥

0
.3

 m

Inlet

(b)

Fig. 3. Schematic diagram of (a) the computational domain
with source and susceptible manikins, and (b) the numerical
simulation computational domain.

An infector is represented by a source manikin 1.70 m tall,
representing an average-sized human as Fig. 3(a) [46]. The
mouth of the infector is 1.50 m from the ground, and the
mouth outflow is roughly horizontal. For susceptible people
whose height ranges from 1.40 m to 2.00 m, we take 1.20 m
to 1.80 m as the breathing height area, as shown in the blue
area of Fig. 3(a). The computational domain is in a cuboid

shape and is illustrated by Fig. 3(b), in which “x”, “y”, and
“z” axes represent the lateral, axial (streamwise), and vertical
directions, respectively. The length of the computational do-
main in the “y” axis is set to be 3.00 m to consider the scope
of a cough fully. Now, the blue area of Fig. 3(a) is the view of
Fig. 3(b) along the “x” axis. The inlet is a square with an area
of 3.70×10−4 m2, representing the human mouth [47]. The
center of the inlet is denoted by (0, 0, 0), which is also the
origin of the coordinate system. The computational domain
and grids are generated by using Gambit 2.4.6. The grid
resolution is 0.01 m, and the total number of computational
cells is approximately 1.80 million.

To accurately estimate the consequences of the coughing
event, reliable modeling methods and settings of numerical
simulation are important. The transmission medium of the
cough is modeled as an incompressible ideal gas with constant
properties calculated at ambient conditions. The flow field
evolution of coughing is time-dependent, so the simulations
are conducted under a transient condition. The gravitational
acceleration is -9.81 m/s2 along the “z” axis, and the energy
equation is required. Since the droplet volume fraction is very
low in the cough flow, the Eulerian-Lagrangian method is
used in this study [48], [49]. Similar to the study [47], a
time step size of 0.01 s is used, with 10 sub-iterations. The
total flow time of the transient simulation is 15.00 s, which
is enough to investigate the dynamic characteristics of the
droplets produced by coughing. More detailed settings are
determined based on literature [50]–[56].

The droplet dispersion process in the computational domain
is obtained after the simulation. The results show that the drop
velocity increases with a larger diameter, and the droplet can
be suspended for a longer period when the diameter is less
than or equal to 1.00×10−5 m, as the same in [47].

C. Individual Exposure Risk Estimation

In this part, we first give the mathematical presentation of
the instantaneous personal exposure risk. As mentioned above,
when the person and the cough droplets meet in the same
simulation place, the instantaneous exposure risk is defined as
the possible maximal mass of droplets suffered. Then, based
on the numerical simulation results of the typical cough, we
count the mass of droplets vary with the time at several
fixed distances planes, and analyze the data distribution to
determine the model function, which is the final formula of
the instantaneous exposure risk. Finally, the total exposure risk
during the visiting time for each person is estimated.

It should be noted that, according to a few studies that
analyze the dispersion of cough-generated droplets in the
wake of a walking person [57], the situation can be more
complicated when there are more individuals. Besides, the
direction of the cough is likely to be different from that of the
individual’s movement, so the impact of walking on cough
transmission is unpredictable. Therefore, in this model, we
assume that the infector j is stationary when he/she starts the
g-th cough in the position pstart

j,g at time tstart
j,g . Then, cough

droplets’ movements are only determined by the physical
distance from pstart

j,g and the time interval from tstart
j,g .
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All positions needed here can be determined based on the
crow simulation in Section II-A. When individual i in the
position pi(t) at time t(≥ tstart

j,g ), the instant distance from the
position pstart

j,g is di,j,g(t) and the time interval from tstart
j,g is

tinterval
j,g = t− tstart

j,g . If di,j,g(t) and tinterval
j,g are both in the cough

infectious distance Dinf and infectious time T inf respectively,
based on the definition, we have

Ei,j,g(t) = Mj,g

(
di,j,g(t), t

interval
j,g

)
, (4)

where Ei,j,g(t) is the instantaneous exposure risk of the
individual i exposed to individual j′s g-th cough, and
Mj,g

(
di,j,g(t), t

interval
j,g

)
is the maximal mass of droplets gen-

erated from individual j′s g-th cough when spreading to the
distance di,j,g(t) after tinterval

j,g .
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𝑥
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Fig. 4. 15 representative x-z planes in the three-dimensional
schematic diagram of the computational domain.
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Fig. 5. Ms (tcg) versus tcg at different times: (a) T step = 0.02s;
(b) T step = 0.03s; (c) T step = 0.04s; (d) T step = 0.05s.

On the assumption that all coughs are typical, to get the
deterministic mathematical formula of Mj,g

(
di,j,g(t), t

interval
j,g

)
,

it is sufficient to analyze the change of droplet mass during
the transmission of one typical cough. Since the density of all
droplets in Section II-B is set to the same value, the larger
the diameter, the greater the droplet mass. Droplets with a
large mass fall quickly, and their destinations are always close
to the injector. In contrast, others with small mass exist in

the computation region for a long time, and their physical
distances from the injector are random. Hence, it is hard to
find a suitable deterministic formula to describe the change
of droplet mass with the time-varying distance. To solve this
problem, we select representative x-z planes and model the
arriving droplet mass varies with time for each plane. For a
typical cough, the mass of droplets Ms (tcg) passing through
the x-z plane along “y” axis in distance s m at time tcg(≤
T inf ) can be counted. Since the individual is represented as a
circle of 0.2 meters (i.e., rped = 0.1 m) [19], the calculation
domain in the simulation is divided with a length of 0.20 m
along the “y” axis, and the x-z plane at the center of each
segment is taken as the representative of each region. More
exactly, the value of s starts from 0.10 m to 2.90 m with an
interval of 0.20 m, and there are 15 representative x-z planes
Φ = {φ1, φ2, . . . , φs, . . . , φ15} as shown in Fig. 4. Moreover,
to avoid reducing the counted droplet mass caused by the
setting of timestep T step in pedestrian dynamics simulation,
the module uses the total mass of droplets passing through
φs during

⌈
tcg

T step

⌉
timesteps as Ms (tcg). As settings in the

second module (Section II-B), the simulation time step size of
cough droplet transmission is 0.01 s. Therefore, the simulation
time step size of pedestrian dynamics T step should be bigger
than 0.01 s. When we set T step=0.02 s, 0.03 s, 0.04 s, 0.05
s, respectively, the statistical results show that the distribution
of Ms (tcg) varies with tcg and it conforms to the Gaussian
distribution (see Fig. 5). Thus, for the φs, Ms (tcg) is obtained
by

Ms (tcg) = as ∗ exp

(
−
(
tcg − bs
cs

)2
)
, (5)

where as, bs and cs are parameters of the fitted Gaussian
distribution function for specific φs.

After determining the function of the Ms (tcg) for a typical
cough, since tcg in the typical cough is the same as tinterval

j,g

of individual j′s g-th cough, if di,j,g(t) ∈ [s − 0.1, s + 0.1)
and tinterval

j,g ≤ T inf , the formular of Mj,g

(
di,j,g(t), t

interval
j,g

)
is

represented by

Mj,g

(
di,j,g(t), t

interval
j,g

)
=as∗exp

−( tinterval
j,g −bs

cs

)2
. (6)

Consequently, if di,j,g(t) ∈ [s−0.1, s+0.1) and t ≤ tstart
j,g +

T inf, there is

Ei,j,g(t) = as ∗ exp

(
−
(
t− tstart

j,g − bs
cs

)2
)
. (7)

Then, the exposure risk of individual i during the visit
follows

Ei =

tenter
i +T dwell

i∑
t=tenter

i

J(t)∑
j=1

JG(t)∑
g=1

Ei,j,g(t), (8)

where tenter
i and T dwell

i respectively denotes the place enter time
and the dwell time of individual i, J(t)(≤ C inf) indicates the
number of infectors in the simulation place at time t, and
JG(t) is the number of infectious coughs of the infector j at
time t.
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D. Prediction of New Cases
In this part, we first determine the number of high-risk

exposed people C risk during the simulation horizon. Then,
based on C risk, we present a novel method to predict the
number of new cases Cnew.

Individual i whose Ei > α is defined as the high-risk
exposed individual, where α is the cut-line of high exposure
risk. When the number of total individuals for the simulation
is C total, the value of C risk changes with the α and we have

C risk(α)=

C total∑
i=1

ψ(Ei, α),whereψ(Ei, α)=

{
1,ifEi > α
0,otherwise . (9)

Admittedly, Cnew always increases with the growth of C risk,
i.e., there is a positive correlation between the Cnew and the
C risk. From the viewpoint of mathematics, Cnew can be set as
a function F of C risk quantitatively as

Cnew = F
(
C risk ) . (10)

We consider the simplest relationship to determine the
function F

(
C risk

)
by assuming that F

(
C risk

)
is a linear

equation. Moreover, in an extreme case, when there are no
infectious diseases, there are no high-risk exposed people and
new cases, i.e., Cnew = C risk = 0. Based on these analyses, the
function F

(
C risk

)
passes through the origin and be defined as

Cnew = F
(
C risk ) = β ∗ C risk (α), (11)

where β is the proportionality coefficient.
To determine the values of parameters α and β in different

scenes, the actual historical numbers of daily new cases are
needed. When Cnew

v and C real
v are the predicted and actual

values of the v(= 1, 2, . . . , V )-th historical observation, re-
spectively, indexes such as mean absolute error (MAE) can be
used to describe the error between Cnew

v and C real
v . Herein, we

select MAE as the index, and the appropriate values of α and
β can be estimated as

α∗, β∗ = arg min
α,β

(
1

V

V∑
v=1

∣∣Cnew
v − C real

v

∣∣) . (12)

Finally, the Cnew in the future can be predicted with the α∗

and β∗ via (9-11).

III. APPLICATIONS IN THE COVID-19 OF THE UNITED
STATES

A. Data Sources
To estimate RID transmission based on the actual situation,

we select data from all 50 states and Washington, D.C. in the
United States (U.S.) during the spreading of COVID-19. From
May 1st to July 25th in 2020, 79 days with complete national-
level data are utilized, and statistics of public data are made
based on days.

There are three inputs in our model, as shown in Fig. 1, and
they are introduced as follows: 1) The number of individuals
C total each day is approximated as the daily population travel-
ing out of home, which is collected from the U.S. Department
of Transportation’s Bureau of Transportation Statistics Trips
by Distance – National data product [58], [59]. 2) The number

of infectors among individuals C inf needs to be determined,
but it cannot be found based on the public data because
whether each infector has a trip in a single day is unknown. In
fact, there are some undiagnosed cases in the travel crowd, so
we present a reasonable assumption, i.e., the ratio of infectors
to individuals is equal to the ratio of the total number of cases
to the population traveling out of home. The total number of
cases in each day is found from the U.S. Centers for Disease
Control and Prevention [60]. 3) Mean dwell time T dwell of
individuals represents the average time spent for each person
in the public space. We collect this data from the University
of Maryland COVID-19 Impact Analysis Platform [19], [59].

The study period (79 days selected from May 1st to July
25th) is divided into a training set (the first 60 days, i.e.,
selected from May 1st to July 6th) and a testing set (the
rest 19 days, i.e., from July 7th to July 25th), as shown in
Fig. 6. Besides, to reduce the computational cost, the number
of individuals C total and the number of infectors among
individuals C inf are scaled down with a proportion ρ for the
simulation in both the training and testing sets. Consequently,
the main outputs of the simulation, i.e., the number of high-
risk exposed people C risk and the number of daily new cases
Cnew, will be expanded with the same proportion ρ after the
simulation is finished. We use the first day in the study period
(May 1st, 2020) as the benchmark, then 245469060 individuals
who have at least one trip at that day can be scaled down
to 10000 individuals for the simulation, thus the proportion
ρ = 10000

245469060 = 4.07 × 10−5. The values of α∗ and β∗ can
be estimated in the training set, and then be adopted in the
testing set to evaluate the model.

B. Simulation Setups

Considering the fact that realistic indoor scenes vary in
different places (e.g., restaurant, cinema and subway hub), and
the specific geometry or activity might impact the transmission
process. Besides, the geometries and activities can be de-
scribed by our microscopic model. Even so, paying too much
attention on the heterogenous settings is not necessary, since
the consideration of all specific settings is not practicable, and
a more practical way is to formulate a general public space.
Accordingly, a 22 m × 22 m indoor room without obstacles is
formulated, and there is an entrance on one side of the room
and an exit on the opposite side (see Fig. 7). The red and blue
dots represent the infectors and the susceptible individuals,
respectively.

In the simulations, the specific individual number, the infec-
tor number and the mean dwell time are determined according
the realistic data introduced in Section III-A. Initially, no
individual exists in the room, and the crowd are designed
to enter the indoor room through the entrance in sequence.
The individual follows a random walking pattern in the room
during the dwell time and leave the room through the exit.
The individual is represented by a circle of 0.2 meters, and
the relaxation time and the desired speed are τi =0.50 s and
v0i =1.34 m/s, respectively. The infector averagely coughs
every 15 s after entering the room, and the infectious time
of a cough follows a uniform distribution from 0 to 15 s. The
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All 79 Days Selected From May 1st to July 25th

Actual Results:

Number of Daily New Cases

𝐶real

Input 1:

Number of Individuals 

𝐶total
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𝑇dwell

Fig. 6. Schematic diagram of data relations used in this case.

Entrance Exit

Simulation Space 

Infectors Susceptible Individuals         Boundaries  

Fig. 7. The sketch map of the simulation space in this case.

TABLE I
EXAMPLES OF SIMULATION INPUTS AND

STATISTICAL RESULTS

Date
Simulation Inputs Statistical Results

C total C inf T dwell

/minutes
Csus

with Ei=0
Csus

with Ei>0

May 1st 10,000 39 26.29 1,092 8,869
May 17th 10,210 55 24.56 724 9,431
July 10th 10,210 128 25.64 225 9,857
July 25th 9,844 169 23.86 138 9,537

infectious distance Dinf of a typical cough is set at 1.70 m
since Ms (tcg) equals almost 0 at a greater distance according
to Fig. 5(c).

C. Simulation Outputs
1) Individual Exposure Risk Estimation: The exposure risk of

each person in a single day is obtained from the simulation.
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Fig. 8. The number of individuals varies in different exposure
risk segments.

Picking 4 days (May 1st, May 17th, July 10th, July 25th) as
examples, the inputs of the simulation (i.e., C total, C inf , and
T dwell) and the statistical results of simulation outputs (i.e.,
the number of susceptible individuals Csus with Ei = 0 or
Ei > 0) are shown in Table I and Fig. 8.

According to Table I and Fig. 8, simulation results of our
model show that Csus with Ei ∈ (0.00, 0.50] µg on May 1st is
2722 more than that on July 25th. However, Csus with Ei >
13.00 µg on May 1st is 1652 less than that on July 25th. In
other words, with the increase of virus transmission time, more
and more individuals have higher exposure risks. This trend is
consistent with existing cognition and in line with the reality,
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TABLE II
RESULTS OF DIFFERENT MODELS

Level Model MAE RMSE MAPE

Macroscopic
SIR Model 11589.07 13638.09 16.84%
Grey Model 10594.7 12768.68 15.39%

Microscopic
Xiao’s Model 38965.99 39468.87 58.46%
Hernández-
Orallo’s Model

34989.95 35537.92 52.41%

Our Model 8140 9598.17 12.01%

NOTE. MAE, mean absolute error; RMSE, root mean square error;
MAPE, mean absolute percentage error.

which demonstrates the validity of the proposed model.
2) Prediction of New Cases: To predict the daily new cases

Cnew in the testing set, parameters α∗ and β∗ should be
estimated first. According to the previous results of personal
exposure risk, the variation range of α is between 0.50 µg
and 100.00 µg. Besides, β is set to change from 1.00× 10−5

to 2.00 × 10−3 through numerous tests. After expanding the
predicted results with the proportion ρ (4.07×10−5 in Section
III-A), MAE varies with α and β can be seen from Fig. 9.
Herein, we find α∗ = 7.00 µg and β∗ = 6.20 × 10−4

(corresponding MAE is 6080.89) based on the training set
according to (12). Note that the dark blue curve in Fig. 9(a)
indicates that β increases with the growth of α as expected.

Then, with parameters α∗ and β∗, the prediction Cnew in the
testing set can be calculated and expanded with the proportion
ρ. As a result, our model achieves a good prediction effect
under different evaluation indexes: mean absolute error (MAE)
is 8140.00, root mean square error (RMSE) is 9598.17, and
mean absolute percentage error (MAPE) is 12.01%.

For some machine learning models, the number of training
samples with only 60 days is small, which cannot reflect the
optimal performance of the model [61]. To verify whether 60
days are enough for training our model, we randomly select
several days (e.g., 1 day, 2 days, . . . , 59 days) from 60 days
as new training sets, and analyze the changes of prediction
effects on the same testing set (i.e., the rest 19 days). We
estimate α∗ and β∗ in the same way as before for different
new training sets, and the evaluation results on the testing set
are shown in Fig. 10. The values of MAE, RMSE, and MAPE
decrease with the increase of the number of days in training
sets, and each of the indexes converges to a stable value within
60 days. Hence, 60 days are sufficient to be the training set,
based on which the parameters obtained are reliable, and the
corresponding prediction results can represent the best effect
of our model.

IV. COMPARISON WITH OTHER MODELS

In this section, following the study region and period in
Section III, we predict transmission trends via our model
and several existing models from macroscopic or microscopic
levels and then compare their performances.

A. Microscopic-Level Models
Since the proposed model focuses on the general place and

determines the personal exposure risk at the microscopic level,

comparison methods should have the same central points, thus
Xiao’s model [19] and Hernández-Orallo’s model [40] are
adopted. Besides, as there is no direct prediction of daily new
cases in these two comparison models, we follow Section II-D
to make the forecast after determining the personal exposure
risk by these two models, respectively.

The input data fields required by the two models are the
same as our proposed model, and they have the same training
and testing sets as Section III. For the contact approach and
cough approach of Xiao’s model, the cut-off distance of the
exposure is 1.00 m and 2.50 m, respectively, as the same
settings in [19]. In Hernández-Orallo’s model, the contact cut-
off distance is also 1.00 m, and the parameter for adjusting the
model is set at the same value 1/30 as in [40]. The simulation
place is an indoor room, as shown in Fig. 7, which has low
air renewal, high temperatures, and low solar radiation, so
the value of the quality of the medium in Hernández-Orallo’s
model is 7/9 = (1+1/3+1)/3. Based on the training set, we
follow (12) to find the α∗ and β∗ for each model: α∗ =10.00
s and β∗ =1.19×10−4 in Xiao’s Model (corresponding MAE
is 7205.67); α∗ =0.60 MEMs and β∗ =1.41×10−4 in
Hernández-Orallo’s Model (corresponding MAE is 7172.78).
Hence, based on (9-11), the prediction results of the testing set
by the two microscopic-level models are reported in Fig. 11
and Table II.

B. Macroscopic-Level Models

The typical SIR model [21], [62] and grey model [61],
[63] are adopted as comparison macroscopic-level models.
The SIR model is a traditional infectious disease model, and
it works with the assumption that the population NPL in
the study region is uniform and homogeneously mixed. In
the SIR model, the population is divided into three classes,
namely, N sus: susceptible, C inf: infected, and N rem: removed
(by recovery and death) [62]. The time-varying number of
cases in each class is governed by the infectivity rate σi and
the removal rate σr [64]. Thus, when we know the initial
N sus, C inf, N rem, and the constant values of σi and σr, we
can predict the number of infectors in the future, based on
which the number of daily new cases Cnew are calculated. The
grey model, favored for its “simple model, strong adaptability,
and easy parameter changes”, has been widely used in the
field of infectious diseases [61]. Unlike the neural network
methods that need a substantial number of datasets for training
system parameters, the grey model can predict the trend of the
COVID-19 well with limited information. Specifically, only
the historical daily new infected cases are needed to forecast
the Cnew in the following days.

In Section III, only 60 days (selected from May 1st to
July 6th) are used as the training set due to the lack of data.
Fortunately, data required by the SIR model and grey model
in 67 days (from May 1st to July 6th) are available from the
public datasets. Thus, the time-series data from May 1st to
July 6th at the national level of the U.S. are adopted as the
training set here. The testing set is the same as Section III, i.e.,
19 days from July 7th to July 25th. Besides, the parameters of
the SIR model and grey model are set based on the national
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Fig. 9. MAE varies with α and β. (a) The side view of α−β when α ∈ [0.50, 100.00] µg and β ∈ [1.00×10−5, 2.00×10−3].
(b-d) The front view and 2 side views when MAE are less than 6500.

dataset. In SIR model, the population size of the U.S. is
NPL =327167434, which comes from the U.S. Department of
Transportation’s Bureau of Transportation Statistics Trips by
Distance – National data product [58], [59]. The cumulative
number of infected cases C inf is obtained from the U.S.
Centers for Disease Control and Prevention [60]. The number
of removed cases (by recovery and death) N rem is provided
by the record COVID-19 DATA HUB1 [65]. The number of
susceptible individuals is getting as N sus = NPL−C inf−N rem.
After fitting the training set with the ordinary least squares,
we get parameters that minimize the sum of squares of errors:
σi = 0.024 and σr = 0.007. Besides, the basic reproduction
number R0 = σi

σr = 3.43 is reasonable with existing research
[66], and it is in line with the situation when no epidemic
prevention and control policies were implemented in the U.S..
For the grey model, the cumulative number of infected cases

1See websites https://covid19datahub.io/ for more details about
COVID-19 DATA HUB.

C inf is adopted from the U.S. Centers for Disease Control
and Prevention [60], and there are no other parameters to be
set. Thus, the prediction results of the testing set by the two
macroscopic-level models are reported in Fig. 11 and Table II.

C. Comparison of Results
The time series numbers of daily new cases Cnew in the

testing set estimated by the proposed model, macroscopic
models, microscopic models, and obtained via the real-world
dataset are shown in Fig. 11 and Table II. Based on these,
the proposed model achieves the best prediction performance
when compared with the four existing models.

The SIR model and grey model at the macroscopic level
cannot determine the personal exposure risk and the number
of high-risk exposed people, but these can be estimated
by microscopic-level models such as ours. Meanwhile, even
though time series data are used for training the SIR model
and grey model, the number of samples in the training set may
still be too small to guarantee the best performance. However,

https://covid19datahub.io/
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based on the analyses of Fig. 10, the number of samples, in this
case, is enough to show the good performance of our proposed
model, thus our model is more suitable for small sample data.
We admit that these two models are classical and traditional,
and now there are many improved ones based on them, which
may have better prediction performance than our model.

According to the above descriptions, Xiao’s model and
Hernández-Orallo’s model at the microscopic level differ from
our model in determining personal exposure risk. In Xiao’s
model, there are two ways of virus transmission (i.e., physical
contact and cough), and the exposure risk in the influence area
is set to a constant value that cannot change with the physical
distances. On the other hand, Hernández-Orallo’s model only
considers the contact infection but adds the dynamic changes
of physical distance between people into the study. As shown
in Fig. 11 and Table II, Hernández-Orallo’s model adopts
fewer spreading ways but better prediction effects than Xiao’s.
These indicate that choosing an appropriate model is more
important than considering more transmission routes. Based on
this finding, although only the cough infection is considered
in our model, it concerns both the time-varying individuals’
physical distances and the cough droplet dispersion processes,
so as to obtain the best results.

V. CONCLUSION

In this paper, we build a microscopic level exposure-risk-
based model to predict the transmission trends of RIDs in a
general public place. Specifically, to determine the personal
exposure risk, our model couples the motions of individuals
and the time-varying cough droplet dispersion process. Then,
the number of new cases is predicted based on the assumption
that it satisfies a linear function with the number of high-risk
exposed people, and the prediction can be tested quantitatively
when compared with actual values. Based on COVID-19 data
collected in the U.S., we construct real-world simulations and
compare the prediction effect of our model with those of
several existing models. The results show that our proposed
model achieves superior performance than comparison mod-
els and possesses significant advantages in a small sample.
Moreover, there is an interesting finding: when estimating the
personal exposure risk, an appropriate model that describes the
dispersion process can make more contributions than adding
more transmission routes.

In the application part, a general no-obstacle indoor space is
formulated for the reproduction of microscopic epidemic trans-
mission, and by this means, the simulation results of our model
can be compared with the macroscopic epidemic transmission
data. Indeed, there is a hypothesis in the simulation that the
scene geometric characteristics, the activity pattern and many
other heterogeneous settings in these different indoor spaces
are ignored, and the overall results are obtained by simply
expanding the simulation results of the general no-obstacle
spaces. It should be noted that our model is able to simulate
scenes with different obstacles, activities, and other settings,
only if we have the specific scene setting data. Moreover,
the potential impact of the hypothesis is minimized since the
involved models here are all applied in the same scene.
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Nevertheless, there are several limitations of this model.
First, in the actual scenario, some individual factors of sus-
ceptible populations (e.g., age, vaccination) will affect the
exposure risk [9], [67], which can be considered in future
research. Second, to forecast the number of new cases, the
assumption that F

(
C risk

)
is a linear equation has been illus-

trated, and other functional forms (e.g., exponential function,
power function) can be further studied.
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