References
Ahmad, R., Raina, D., Meyer, C., Kharbanda, S., & Kufe, D. (2006).
Triterpenoid CDDO-Me blocks the NF-kappaB pathway by direct inhibition
of IKKbeta on Cys-179. J Biol Chem, 281 (47), 35764-35769.
doi:10.1074/jbc.M607160200
Alexander, S. P. H., Roberts, R. E., Broughton, B. R. S., Sobey, C. G.,
George, C. H., Stanford, S. C., … Ahluwalia, A. (2018). Goals and
practicalities of immunoblotting and immunohistochemistry: A guide for
submission to the British Journal of Pharmacology. Br J Pharmacol,
175 (3), 407-411. doi:10.1111/bph.14112
Bataille, A. M., & Manautou, J. E. (2012). Nrf2: a potential target for
new therapeutics in liver disease. Clin Pharmacol Ther, 92 (3),
340-348. doi:10.1038/clpt.2012.110
Bellentani, S. (2017). The epidemiology of non-alcoholic fatty liver
disease. Liver Int, 37 Suppl 1 , 81-84. doi:10.1111/liv.13299
Berge, K. E., Tian, H., Graf, G. A., Yu, L., Grishin, N. V., Schultz,
J., … Hobbs, H. H. (2000). Accumulation of dietary cholesterol in
sitosterolemia caused by mutations in adjacent ABC transporters.Science, 290 (5497), 1771-1775. doi:10.1126/science.290.5497.1771
Chin, M. P., Bakris, G. L., Block, G. A., Chertow, G. M., Goldsberry,
A., Inker, L. A., … Meyer, C. J. (2018). Bardoxolone Methyl
Improves Kidney Function in Patients with Chronic Kidney Disease Stage 4
and Type 2 Diabetes: Post-Hoc Analyses from Bardoxolone Methyl
Evaluation in Patients with Chronic Kidney Disease and Type 2 Diabetes
Study. Am J Nephrol, 47 (1), 40-47. doi:10.1159/000486398
Chowdhry, S., Nazmy, M. H., Meakin, P. J., Dinkova-Kostova, A. T.,
Walsh, S. V., Tsujita, T., … Hayes, J. D. (2010). Loss of Nrf2
markedly exacerbates nonalcoholic steatohepatitis. Free Radic Biol
Med, 48 (2), 357-371. doi:10.1016/j.freeradbiomed.2009.11.007
Cleasby, A., Yon, J., Day, P. J., Richardson, C., Tickle, I. J.,
Williams, P. A., … Davies, T. G. (2014). Structure of the BTB
domain of Keap1 and its interaction with the triterpenoid antagonist
CDDO. PLoS One, 9 (6), e98896. doi:10.1371/journal.pone.0098896
Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C.
H., Giembycz, M. A., … Ahluwalia, A. (2018). Experimental design
and analysis and their reporting II: updated and simplified guidance for
authors and peer reviewers. Br J Pharmacol, 175 (7), 987-993.
doi:10.1111/bph.14153
Daemen, S., Gainullina, A., Kalugotla, G., He, L., Chan, M. M., Beals,
J. W., … Schilling, J. D. (2021). Dynamic Shifts in the
Composition of Resident and Recruited Macrophages Influence Tissue
Remodeling in NASH. Cell Rep, 34 (2), 108626.
doi:10.1016/j.celrep.2020.108626
Fahey, T. J., 3rd, Tracey, K. J., Tekamp-Olson, P., Cousens, L. S.,
Jones, W. G., Shires, G. T., … Sherry, B. (1992). Macrophage
inflammatory protein 1 modulates macrophage function. J Immunol,
148 (9), 2764-2769.
Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M., & Sanyal, A.
J. (2018). Mechanisms of NAFLD development and therapeutic strategies.Nat Med, 24 (7), 908-922. doi:10.1038/s41591-018-0104-9
Guilliams, M., Bonnardel, J., Haest, B., Vanderborght, B., Wagner, C.,
Remmerie, A., … Scott, C. L. (2022). Spatial proteogenomics
reveals distinct and evolutionarily conserved hepatic macrophage niches.Cell, 185 (2), 379-396.e338. doi:10.1016/j.cell.2021.12.018
Herrero-Cervera, A., Soehnlein, O., & Kenne, E. (2022). Neutrophils in
chronic inflammatory diseases. Cell Mol Immunol, 19 (2), 177-191.
doi:10.1038/s41423-021-00832-3
Inouye, K. E., Shi, H., Howard, J. K., Daly, C. H., Lord, G. M.,
Rollins, B. J., & Flier, J. S. (2007). Absence of CC chemokine ligand 2
does not limit obesity-associated infiltration of macrophages into
adipose tissue. Diabetes, 56 (9), 2242-2250. doi:10.2337/db07-0425
Itoh, M., Kato, H., Suganami, T., Konuma, K., Marumoto, Y., Terai, S.,
… Ogawa, Y. (2013). Hepatic crown-like structure: a unique
histological feature in non-alcoholic steatohepatitis in mice and
humans. PLoS One, 8 (12), e82163. doi:10.1371/journal.pone.0082163
Kanda, H., Tateya, S., Tamori, Y., Kotani, K., Hiasa, K., Kitazawa, R.,
… Kasuga, M. (2006). MCP-1 contributes to macrophage infiltration
into adipose tissue, insulin resistance, and hepatic steatosis in
obesity. J Clin Invest, 116 (6), 1494-1505. doi:10.1172/JCI26498
Kitade, H., Sawamoto, K., Nagashimada, M., Inoue, H., Yamamoto, Y., Sai,
Y., … Ota, T. (2012). CCR5 plays a critical role in
obesity-induced adipose tissue inflammation and insulin resistance by
regulating both macrophage recruitment and M1/M2 status. Diabetes,
61 (7), 1680-1690. doi:10.2337/db11-1506
Kleiner, D. E., Brunt, E. M., Van Natta, M., Behling, C., Contos, M. J.,
Cummings, O. W., … Nonalcoholic Steatohepatitis Clinical
Research, N. (2005). Design and validation of a histological scoring
system for nonalcoholic fatty liver disease. Hepatology, 41 (6),
1313-1321. doi:10.1002/hep.20701
Kohno, M., Kobayashi, S., Yamamoto, T., Yoshitomi, R., Kajii, T., Fujii,
S., … Yano, M. (2020). Enhancing calmodulin binding to cardiac
ryanodine receptor completely inhibits pressure-overload induced
hypertrophic signaling. Commun Biol, 3 (1), 714.
doi:10.1038/s42003-020-01443-w
Krenkel, O., Puengel, T., Govaere, O., Abdallah, A. T., Mossanen, J. C.,
Kohlhepp, M., … Tacke, F. (2018). Therapeutic inhibition of
inflammatory monocyte recruitment reduces steatohepatitis and liver
fibrosis. Hepatology, 67 (4), 1270-1283. doi:10.1002/hep.29544
Lian, J., Nelson, R., & Lehner, R. (2018). Carboxylesterases in lipid
metabolism: from mouse to human. Protein Cell, 9 (2), 178-195.
doi:10.1007/s13238-017-0437-z
Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P. H.,
Cirino, G., Docherty, J. R., … Ahluwalia, A. (2020). ARRIVE 2.0
and the British Journal of Pharmacology: Updated guidance for 2020.Br J Pharmacol, 177 (16), 3611-3616. doi:10.1111/bph.15178
Marra, F., & Tacke, F. (2014). Roles for chemokines in liver disease.Gastroenterology, 147 (3), 577-594.e571.
doi:10.1053/j.gastro.2014.06.043
Matsumoto, M., Hada, N., Sakamaki, Y., Uno, A., Shiga, T., Tanaka, C.,
… Sudoh, M. (2013). An improved mouse model that rapidly develops
fibrosis in non-alcoholic steatohepatitis. Int J Exp Pathol,
94 (2), 93-103. doi:10.1111/iep.12008
Mussbacher, M., Derler, M., Basílio, J., & Schmid, J. A. (2023). NF-κB
in monocytes and macrophages - an inflammatory master regulator in
multitalented immune cells. Front Immunol, 14 , 1134661.
doi:10.3389/fimmu.2023.1134661
Muto, J., Fukuda, S., Watanabe, K., Dai, X., Tsuda, T., Kiyoi, T.,
… Sayama, K. (2023). Highly concentrated trehalose induces
prohealing senescence-like state in fibroblasts via CDKN1A/p21.Commun Biol, 6 (1), 13. doi:10.1038/s42003-022-04408-3
Oh, C. J., Kim, J. Y., Min, A. K., Park, K. G., Harris, R. A., Kim, H.
J., & Lee, I. K. (2012). Sulforaphane attenuates hepatic fibrosis via
NF-E2-related factor 2-mediated inhibition of transforming growth
factor-β/Smad signaling. Free Radic Biol Med, 52 (3), 671-682.
doi:10.1016/j.freeradbiomed.2011.11.012
Park, E. J., Min, H. Y., Park, H. J., Chung, H. J., Ahn, Y. H., Pyee, J.
H., & Lee, S. K. (2011). Nuclear factor E2-related factor 2-mediated
induction of NAD(P)H:quinone oxidoreductase 1 by
3,5-dimethoxy-trans-stilbene. J Pharmacol Sci, 116 (1), 89-96.
doi:10.1254/jphs.11024fp
Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T.,
Baker, M., … Würbel, H. (2020). The ARRIVE guidelines 2.0:
updated guidelines for reporting animal research. BMJ Open Sci,
4 (1), e100115. doi:10.1136/bmjos-2020-100115
Prestigiacomo, V., & Suter-Dick, L. (2018). Nrf2 protects stellate
cells from Smad-dependent cell activation. PLoS One, 13 (7),
e0201044. doi:10.1371/journal.pone.0201044
Remmerie, A., Martens, L., Thone, T., Castoldi, A., Seurinck, R., Pavie,
B., … Scott, C. L. (2020). Osteopontin Expression Identifies a
Subset of Recruited Macrophages Distinct from Kupffer Cells in the Fatty
Liver. Immunity, 53 (3), 641-657 e614.
doi:10.1016/j.immuni.2020.08.004
Resham, K., Patel, P. N., Thummuri, D., Guntuku, L., Shah, V., Bambal,
R. B., & Naidu, V. G. (2015). Preclinical drug metabolism and
pharmacokinetics of salinomycin, a potential candidate for targeting
human cancer stem cells. Chem Biol Interact, 240 , 146-152.
doi:10.1016/j.cbi.2015.08.007
Seidman, J. S., Troutman, T. D., Sakai, M., Gola, A., Spann, N. J.,
Bennett, H., … Glass, C. K. (2020). Niche-Specific Reprogramming
of Epigenetic Landscapes Drives Myeloid Cell Diversity in Nonalcoholic
Steatohepatitis. Immunity, 52 (6), 1057-1074 e1057.
doi:10.1016/j.immuni.2020.04.001
Sharma, R. S., Harrison, D. J., Kisielewski, D., Cassidy, D. M.,
McNeilly, A. D., Gallagher, J. R., … Hayes, J. D. (2018).
Experimental Nonalcoholic Steatohepatitis and Liver Fibrosis Are
Ameliorated by Pharmacologic Activation of Nrf2 (NF-E2 p45-Related
Factor 2). Cell Mol Gastroenterol Hepatol, 5 (3), 367-398.
doi:10.1016/j.jcmgh.2017.11.016
Shimozono, R., Asaoka, Y., Yoshizawa, Y., Aoki, T., Noda, H., Yamada,
M., … Mochizuki, H. (2013). Nrf2 activators attenuate the
progression of nonalcoholic steatohepatitis-related fibrosis in a
dietary rat model. Mol Pharmacol, 84 (1), 62-70.
doi:10.1124/mol.112.084269
Suh, N., Wang, Y., Honda, T., Gribble, G. W., Dmitrovsky, E., Hickey, W.
F., … Sporn, M. B. (1999). A novel synthetic oleanane
triterpenoid, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, with potent
differentiating, antiproliferative, and anti-inflammatory activity.Cancer Res, 59 (2), 336-341.
Suzuki, T., & Yamamoto, M. (2017). Stress-sensing mechanisms and the
physiological roles of the Keap1-Nrf2 system during cellular stress.J Biol Chem, 292 (41), 16817-16824. doi:10.1074/jbc.R117.800169
Tacke, F., Puengel, T., Loomba, R., & Friedman, S. L. (2023). An
integrated view of anti-inflammatory and antifibrotic targets for the
treatment of NASH. J Hepatol, 79 (2), 552-566.
doi:10.1016/j.jhep.2023.03.038
Tamura, Y., Sugimoto, M., Murayama, T., Minami, M., Nishikaze, Y.,
Ariyasu, H., … Arai, H. (2010). C-C chemokine receptor 2
inhibitor improves diet-induced development of insulin resistance and
hepatic steatosis in mice. J Atheroscler Thromb, 17 (3), 219-228.
doi:10.5551/jat.3368
Tessari, P., Coracina, A., Cosma, A., & Tiengo, A. (2009). Hepatic
lipid metabolism and non-alcoholic fatty liver disease. Nutr Metab
Cardiovasc Dis, 19 (4), 291-302. doi:10.1016/j.numecd.2008.12.015
Tian, C., Gao, L., Zhang, A., Hackfort, B. T., & Zucker, I. H. (2019).
Therapeutic Effects of Nrf2 Activation by Bardoxolone Methyl in Chronic
Heart Failure. J Pharmacol Exp Ther, 371 (3), 642-651.
doi:10.1124/jpet.119.261792
Tonelli, C., Chio, I. I. C., & Tuveson, D. A. (2018). Transcriptional
Regulation by Nrf2. Antioxid Redox Signal, 29 (17), 1727-1745.
doi:10.1089/ars.2017.7342
Tran, T. A., McCoy, M. K., Sporn, M. B., & Tansey, M. G. (2008). The
synthetic triterpenoid CDDO-methyl ester modulates microglial
activities, inhibits TNF production, and provides dopaminergic
neuroprotection. J Neuroinflammation, 5 , 14.
doi:10.1186/1742-2094-5-14
Weisberg, S. P., Hunter, D., Huber, R., Lemieux, J., Slaymaker, S.,
Vaddi, K., … Ferrante, A. W., Jr. (2006). CCR2 modulates
inflammatory and metabolic effects of high-fat feeding. J Clin
Invest, 116 (1), 115-124. doi:10.1172/jci24335
Xu, L., Chen, Y., Nagashimada, M., Ni, Y., Zhuge, F., Chen, G., …
Nagata, N. (2021). CC chemokine ligand 3 deficiency ameliorates
diet-induced steatohepatitis by regulating liver macrophage recruitment
and M1/M2 status in mice. Metabolism, 125 , 154914.
doi:10.1016/j.metabol.2021.154914
Yoshimoto, K., & Shinya, M. (2022). Use of the Azure Kinect to measure
foot clearance during obstacle crossing: A validation study. PLoS
One, 17 (3), e0265215. doi:10.1371/journal.pone.0265215
Zhang, Y. K., Yeager, R. L., Tanaka, Y., & Klaassen, C. D. (2010).
Enhanced expression of Nrf2 in mice attenuates the fatty liver produced
by a methionine- and choline-deficient diet. Toxicol Appl
Pharmacol, 245 (3), 326-334. doi:10.1016/j.taap.2010.03.016