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Abstract 11 

Moderate to high (M-H) severity wildfire can abruptly alter watershed properties and enhance 12 

extreme hydrologic responses such as debris flows and floods. The compounding effects of 13 

wildfire on flood hazard, represented here via flood frequency analysis (FFA; e.g. 100-year flood) 14 

are of growing importance. Standard statistical FFA approaches are ill-suited to examining this 15 

issue because wildfire-affected flood peak observations are limited in number and violate the 16 

assumption of independent and identically distributed events. Here, we developed a process-based 17 

FFA framework that integrates a stochastic rainfall generator, wildfire simulation, inverse 18 

modeling, and a physics-based hydrological model to directly simulate the impacts of wildfire on 19 

FFA. We applied this framework in the upper Arroyo Seco (uAS) watershed in Southern California, 20 

which experienced M-H burn during the 2009 Station Fire. An FFA analysis, performed with 21 

simulated peak flows from the first year since fire demonstrates the 100-year flood can be three 22 

times larger than simulations that only consider peak flows in non-fire-affected years. On the other 23 

hand, coupling process-based FFA with stochastically-simulated wildfire events and watershed’s 24 

time-varying hydrologic recovery yields “fire continuum FFA”, a concept introduced here for the 25 

first time. Fire continuum FFA accounts for multiple wildfires within very long synthetic time 26 

series. Variability in upper tail flood peaks is substantially higher in fire continuum results as 27 

compared with pre-wildfire FFA. This result highlights the importance of wildfire inter-arrival 28 

time and post-wildfire recovery processes, both of which are expected to change as a result of 29 

climatic change and evolving fire management strategies.  30 
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1 Introduction 31 

Wildfire with moderate and high soil burn severity (hereafter referred to as M-H wildfire) abruptly 32 

alters hydrologic and soil properties of watersheds by removing vegetation, depositing ash, 33 

decreasing infiltration capacity, and changing soil surface structure (e.g., Bowman et al., 2009; 34 

Santi et al., 2013; Shakesby, 2011; Shakesby & Doerr, 2006). For example, an ash layer on the 35 

soil surface can absorb water rapidly unless it forms an “ash crust” (Balfour et al., 2014; Bodí et 36 

al., 2014; Onda et al., 2008), whereas the underlying soil can become water repellent due to a 37 

hydrophobic layer of burned organic matter (e.g., DeBano, 1981, 2000; Ebel, 2012; Ebel & 38 

Moody, 2013; Moody & Ebel, 2012). Fire can also weaken aggregation of the soil surface, leading 39 

to soil crust formation (Albalasmeh et al., 2013; García-Corona et al., 2004; Jian et al., 2018; 40 

Larsen et al., 2009; Mataix-Solera et al., 2011). Intense rainfall after wildfire can thus result in 41 

substantial overland flow and potential for flash floods and debris flows (e.g., Kean et al., 2016; 42 

Liu et al., 2022; McGuire et al., 2017).  43 

This wildfire-flood connection can be understood as a temporally compounding or cascading 44 

hazard, in which a particular sequence of events that leads to elevated impacts relative to those 45 

same events in isolation (Pescaroli & Alexander, 2015; Zscheischler et al., 2020). Previous 46 

empirical studies have focused on quantifying changes in peak flows and sediment yields for the 47 

wildfire-affected period, typically the first several years following fire (e.g., Canfield et al., 2005; 48 

Chen et al., 2013). After that time, watershed hydrologic and hydraulic properties can recover to 49 

the pre-wildfire conditions via vegetation growth, litter deposition, reduction in soil water 50 

repellency, recovery of soil surface aggregation and breakdown of fire-induced soil or ash crusts. 51 

Studies have shown this recovery time to typically be three to four years, though instances of 52 



recovery times up to 30 years have been documented (Kinoshita & Hogue, 2011; Riaño et al., 53 

2002).  54 

Over multidecadal timescales, watersheds can experience multiple wildfires as well as a variety of 55 

storms. This can result in floods influenced by and ranging along the “fire continuum”—a concept 56 

that emerges from wildland fire science and management that refers to a continuum from pre-57 

wildfire fuel treatments to seasonal wildfire planning to post-wildfire rehabilitation (Hood et al., 58 

2020). We borrowed this idea and defined “fire continuum FFA” herein as a concept of derived 59 

flood frequency that accounts for the range of possible flood responses to a continuum of 60 

watershed conditions, from pre-wildfire to abrupt perturbation due to wildfire to post-wildfire 61 

recovery (Fig. 1). To the best of our knowledge, there is no existing methodological framework 62 

for estimating the frequency and severity of flooding along this fire continuum.  63 



 64 

 65 

Figure 1. Conceptual schematic for floods occurring along the fire continuum, including the pre-wildfire watershed 66 
condition, watershed perturbation due to wildfire, and post-wildfire watershed recovery. 67 

The extent and severity of wildfire is expected to increase in the future, mainly because of fuel 68 

accumulation and climate change (Abatzoglou & Williams, 2016; Flannigan et al., 2009; 69 

Kitzberger et al., 2007; Westerling et al., 2006). Consequently, watersheds, especially in the 70 

western United States (US), are expected to become more vulnerable to the compound wildfire-71 

flood hazards (AghaKouchak et al., 2020; Zscheischler et al., 2020). Therefore, better 72 



understanding is needed of how wildfires impact the long-term likelihood and severity of flooding, 73 

accounting for the complex interactions of wildfire, vegetation recovery, rainfall, and watershed 74 

antecedent conditions (Fig. 1).  75 

The broad family of procedures typically used to assess long-term flood hazards—at least in terms 76 

of streamflow—is known as flood frequency analysis (FFA). The goal of FFA is to estimate the 77 

annual exceedance probability (AEP) that extreme flows at a particular location along a stream 78 

will exceed a given magnitude in a year (e.g., England et al., 2019; NRC, 1988). The reciprocal of 79 

AEP is referred to as average recurrence interval (ARI) or the return period (e.g., the 100-year 80 

flood). Conventional statistical FFA approaches are poorly suited to estimating wildfire-induced 81 

changes in flood frequency for two main reasons. First, flood peaks during the wildfire influenced-82 

period violate the central FFA assumption that flood samples at a given site must be independent 83 

and identically distributed (i.i.d.). Because wildfire alters the runoff generating processes of 84 

watersheds and because the extent of this alteration depends both on burn severity/extent and time 85 

elapsed since the last burn, post-wildfire flood peaks in principle follow a unique distribution and 86 

should not be “mixed” with pre-wildfire observations (see Barth et al., 2017; Smith et al., 2011; 87 

Yu et al., 2022 for the impacts of other “flood mixtures” on FFA). The violation of i.i.d for post-88 

wildfire flood peaks relates to the second challenge in conventional FFA approaches—limited 89 

sample sizes due to relatively long wildfire inter-arrival times. Consider, for example, that 662 of 90 

the 1211 (55%) watersheds in the GAGES-II dataset (Falcone, 2011) in the western US have 91 

experienced at most one major wildfire event over the past four decades (Yu et al., 2022). This 92 

means that wildfire-influenced flood observations will be too few to provide reliable estimates of 93 

post-wildfire flood quantiles, especially for upper tail events (e.g., the 100-year flood).  94 



Process-based FFA is a bottom-up alternative to more conventional approaches which provides a 95 

different pathway toward quantifying compounding wildfire impacts on flood frequency. It 96 

requires simulation of either large numbers of flood events or of time periods long enough to 97 

include many such floods (e.g., Lamb et al., 2016; Sivapalan & Samuel, 2009; Yu et al., 2019), 98 

typically using some combination of stochastically-generated forcings (e.g., rainfall) and 99 

numerical modeling (e.g., rainfall-runoff models to translate these forcings into flood responses). 100 

The fundamental aim of process-based FFA is to reconstruct the complex joint relationships among 101 

different flood drivers (e.g., rainfall, snowpack, soil moisture, and, in this case, fire impacts on 102 

runoff production) via Monte Carlo simulation to produce large simulated flood samples, from 103 

which a flood probability distribution can be derived. We have previously developed and applied 104 

process-based FFA approaches to understand the impacts of rainfall spatiotemporal structures 105 

(Wright et al., 2014; Zhu et al., 2018), different runoff generation processes (Yu et al., 2021), and 106 

nonstationary flood seasonality (Yu et al., 2019, 2020) on derived flood frequencies for different 107 

watersheds across the US. These previous studies established the core of the fire continuum FFA 108 

framework that is used herein. 109 

Process-based approaches are well suited to quantifying the likelihood of compound events 110 

because they can represent the causal relationships between multiple drivers and events; this makes 111 

it possible to simulate the likelihood of such compound events using the Monte Carlo simulation 112 

with a wide range of combinations of driving factors (Zscheischler et al., 2018, 2020). Here, we 113 

apply process-based FFA to the upper Arroyo Seco (uAS) watershed in the San Gabriel Mountains, 114 

California, which burned primarily at M-H severity during the 2009 Station Fire. Incorporating 115 

wildfire impacts requires two new “ingredients” not considered in previous process-based FFA 116 

studies: 1) knowledge of the probability of wildfire, and 2) quantitative representation of 117 



hydrological impacts of wildfire and its recovery processes. To address the first ingredient, we 118 

leverage recent work by the US Forest Service (USFS; Finney et al., 2011; Short et al., 2020), who 119 

modeled wildfire occurrence of different severity using fuel type, historical weather data, and 120 

simplified fire growth processes (see Section 3.4). To address the second, we use time-varying 121 

hydrologic parameters for the uAS watershed developed by Liu et al. (2021) using an inverse 122 

modeling approach (Section 3.3).  123 

This study shares some similarities with the recent work in debris-flow modeling which has 124 

integrated probabilistic understanding of wildfire occurrence and severity, as well as physical or 125 

empirical representations of fire impacts on hydrological and soil hydraulic processes. Kean & 126 

Staley (2021) calculated gridded post-wildfire debris flow susceptibility over a 40,000 km2 area 127 

across southern California as a product of historical mean annual probability of wildfire and 128 

rainfall recurrence intervals from the National Oceanic and Atmospheric Administration (NOAA) 129 

Atlas 14 (Perica et al., 2014). Thomas et al. (2021) developed a framework for investigating the 130 

changing probability of debris flows throughout post-fire recovery but not over the full fire 131 

continuum. These studies emphasize the need for additional work on cascading rainfall-induced 132 

hazards following fire, particularly in southern CA (e.g., Doehring, 1968; Eaton, 1936; J.W. Kean 133 

et al., 2019). 134 

We add to these prior studies but focus instead on flood frequency and leverage physics-based 135 

wildfire simulations to provide estimates of burn probabilities. We also develop a flexible 136 

framework to estimate flood frequencies for both post-wildfire conditions and the fire continuum 137 

(i.e., probabilistic estimation; Fig. 1). For the post-wildfire condition, we designed a deterministic 138 

experiment that can simulate flood frequency as a function of time after wildfire and percentage 139 

of burn area. For the fire continuum, we stochastically combine wildfire occurrence, rainfall 140 



intensity, and antecedent watershed conditions to produce a large number of hypothetical flood 141 

simulations, which allow us to study wildfire impacts on long-term annual flood recurrence 142 

intervals, subject to certain limitations described later. We demonstrate the potential of process-143 

based FFA in wildfire-prone watersheds and underscore the importance of interdisciplinary 144 

collaboration among wildfire scientists, soil physicists, and hydrologists to understand this 145 

complex and little-understood cascading hazard. To the best of our knowledge, this work 146 

represents the first study to utilize a process-based approach to incorporate the hydrologic impacts 147 

of and recovery from wildfire into FFA at a watershed scale. 148 

2 Study Area 149 

The 42 km2 uAS watershed is located in the San Gabriel Mountains above the US Geological 150 

Survey (USGS) stream gage near Pasadena, California (gage ID: 1109800) (Fig. 2). It is quite 151 

steep, with elevation ranging from 400 to 1900 meters above sea level and an average slope of 30° 152 

(Kean et al., 2011). Soils are coarse textured (e.g., sandy loam) and shallow with partial exposure 153 

of bedrock. The uAS watershed is situated in the NOAA South Coast climate division (Guttman 154 

& Quayle, 1996; hereafter referred to as South Coast), which has a semi-arid Mediterranean 155 

climate, with moderately wet winters and dry summers. Based on the Landfire 2020 data (Rollins, 156 

2009), the vegetation type across the South Coast, including the uAS watershed, is predominantly 157 

shrub, conifer, and hardwood (Fig. 2c and 2d).  158 

Because of the dry climate and abundant fuel, the area is susceptible to seasonal wildfires as shown 159 

by observed burn extents (Fig. 2a). Between late August and mid-October 2009, the Station Fire 160 

affected the Angeles National Forest in Los Angeles County, resulting in approximately 82% of 161 

the uAS watershed being burned at moderate and high (M-H) soil burn severity (Fig. 2b). 162 



According to the California Department of Forestry and Fire Protection, more than half of the 163 

watershed area has previously burned twice, in 1896 (unnamed fire) and in 1959 (Woodwardia 164 

Fire on October 14th). Based on the nature of the chaparral ecosystem that is characterized by a 165 

crown fire, these fires are assumed to burn at similar patterns of M-H severity as the Station Fire 166 

(e.g., Haas et al., 2016; Krammes, 1960). 167 

Runoff in unburned areas of the San Gabriel Mountains is a combination of infiltration 168 

(Hortonian)- and saturation-excess (Dunne) overland flow and lateral subsurface flow (Doehring, 169 

1968; Valeron & Meixner, 2009). After wildfires, however, the reduction in litter and canopy cover 170 

along with lower effective infiltration rates (i.e., basin-averaged infiltration rate) promote 171 

infiltration excess overland flow, leading to rapid runoff generation in response to even modest 172 

rainfall intensities (Liu et al., 2021, 2022; Schmidt et al., 2011). 173 

 174 

 175 

Figure 2. (a) Locations of uAS watershed and South Coast NOAA climate division and spatial distribution of the 176 
Monitoring Trends and Burn Severity (MTBS; Finco et al., 2012) wildfire perimeters for the 1984-2021 period. Inset 177 
map in (a) shows the relative location of uAS watershed and South Coast with respect to California. (b) The burn 178 
severity for the uAS watershed after the 2009 Station fire. The spatial distribution of Landfire vegetation type and 179 



USFS simulated burn probability for the (c; e) South Coast and (d; f) uAS watershed, respectively. The watershed 180 
outlet and Clear Creek and Inspiration Point rain gages are shown in (d).  181 

3 Data and Methods 182 

In this section, we provide a detailed description of the multiple data sources and the methods used 183 

in this study. Our process-based FFA approach is a modularized framework whose overall 184 

functionality is divided into separate components (Fig. 3) 185 

3.1 Data 186 

Precipitation observations were obtained from two tipping bucket rain gages near the uAS 187 

watershed (Fig. 2d). These were aggregated into 15-min resolution timeseries. The Clear Creek 188 

gage has a longer and more complete record than the Inspiration Point gage; the former was used 189 

for October 2000-September 2021 except for a gap from October 2001 to September 2002, during 190 

which observations were used from the Inspiration Point gage. (For overlapping periods between 191 

gages, their rainfall values have a Spearman’s rank correlation of 0.93 with p < 0.001.) Rainfall is 192 

assumed to be uniform over the watershed, which is defensible given the high correlation between 193 

two rain gages and small watershed size. These rainfall observations were used for calibrating both 194 

the stochastic rainfall generator (Section 3.2.1) and rainfall-runoff model (Section 3.2.3). 195 

Continuous streamflow measurements from the USGS were used for rainfall-runoff model 196 

calibration, while USGS annual peak flows were used for comparison against process-based FFA 197 

results.  198 

To understand the probability of M-H wildfire occurrence in the watershed, data on burn 199 

probability and conditional probability of flame-length exceeding four feet (i.e., M-H fire 200 

intensity) were obtained from the USFS (Short et al., 2020; Fig. 2e and 2f). This dataset was 201 

generated by using the geospatial Fire Simulation model (FSim; Finney et al., 2011), which 202 



includes modules for weather generation, wildfire occurrence, fire growth, and fire suppression. 203 

Short et al. (2020) simulated the occurrence and growth of wildfires for more than 10,000 204 

hypothetical present-climate fire seasons to estimate burn probabilities at 270-m resolution across 205 

the US.  206 

3.2 Process-based FFA  207 

Our process-based FFA approach involves the Complete Stochastic Modelling Solution stochastic 208 

rainfall generator (CoSMoS; Papalexiou, 2018; Papalexiou et al., 2020), simulated soil moisture 209 

from the Noah land-surface model forced by the Phase 2 of the North American Land Data 210 



Assimilation System forcings (referred to as NLDAS-Noah; Xia et al., 2012), and the event-based 211 

K2 hydrological model (Goodrich et al., 2012; Fig. 3).  212 

 213 

Figure 3. Flowchart of process-based framework for post-wildfire and fire continuum FFA.  214 



3.2.1 CoSMoS 215 

CoSMoS is an R-based tool for stochastically simulating univariate and multivariate non-Gaussian 216 

time series. It can reproduce marginal distributions, intermittency, and cross- and auto-correlation 217 

structures of various hydrometeorological variables (Papalexiou, 2018). Here, we fit CoSMoS to 218 

21 years of gage-based rainfall observations to determine the marginal distribution, autocorrelation 219 

structure, and dry-period distribution of 15-minute rainfall for each month of the year (see Fig.  220 

S1-S2 for the fitted distributions for rainfall intensities and autocorrelation structures, 221 

respectively). CoSMoS is then used to generate long-term (e.g., 500 synthetic years) continuous 222 

15-minute synthetic rainfall timeseries. Based on the estimated time of concentration for the uAS 223 

watershed (Liu et al., 2021), the largest 12-h rainfall accumulations from each synthetic year were 224 

selected as annual rainfall maximum and were used to force the K2 hydrological model to simulate 225 

the annual streamflows maxima. Thus, we assume annual maximum precipitation drives the annual 226 

maximum flood.   227 

3.2.2 Antecedent Soil Moisture 228 

The K2 hydrological model is event-based and requires antecedent volumetric moisture conditions 229 

for initialization. We used the NLDAS-Noah simulated top-layer (0-10 cm) volumetric soil 230 

moisture for the single NDLAS grid that encompasses the uAS watershed. For each day of the year 231 

(i.e., 1 to 365), we fit a normal distribution to the NLDAS-Noah simulated daily mean soil moisture 232 

for the 1979-2021 period. When performing an event-based hydrological simulation, the initial 233 

soil moisture is randomly generated using the fitted parameters based on the day of the year when 234 

the CoSMoS simulated annual maximum rainfall occurs (Fig. S3). This pairing approach ensures 235 

both realistic seasonality and interannual variability in watershed conditions.  236 



3.2.3 K2 Hydrological Model, Flood Simulation and Derived FFA 237 

K2 is a spatially distributed, physics-based model designed for simulating event-based rainfall-238 

runoff processes in small-to-medium watersheds. It conceptualizes a watershed as a cascade of 239 

hillslopes and channels and simultaneously represents interception, infiltration, and surface runoff 240 

on the hillslope as well as flow routing and transmission losses in the river channels (Goodrich et 241 

al., 2012; Smith et al., 1995). Liu et al. (2021) set up a K2 model for the uAS watershed with 1,289 242 

hillslope and 519 channel elements; the same model setup was used for this study. Liu et al. (2021) 243 

performed sensitivity analyses of K2 model parameters and identified hillslope saturated hydraulic 244 

conductivity (Ksh) and channel roughness (nc) to be the most sensitive parameters to streamflow.  245 

Ksh and channel roughness, nc, were further automatically calibrated for both pre- and post-wildfire 246 

conditions using the Progressive Latin Hypercube Sampling scheme, which systematically 247 

generates representative samples while ensuring coverage of the entire parameter space in a 248 

progressive manner (Sheikholeslami & Razavi, 2017).  249 

While K2 is designed to simulate infiltration-excess overland flow, floods in the San Gabriel 250 

Mountains have been associated with a combination of infiltration-excess and saturation-excess 251 

runoff-generation mechanisms. Here, we use K2 to estimate peak flows rather than details of flood 252 

dynamics, runoff-generation, or flow volume. We assume that K2 can provide a reasonable 253 

estimate of annual flood peaks (i.e., high flow events in which infiltration-excess flow will be 254 

presented). See Fig. S4a for the Kling-Gupta Efficiency (KGE) values for the simulated 11 255 

historical flood events using the top 100 parameter sets. 256 

Coupling the calibrated K2 model with a CoSMoS-simulated annual rainfall maximum (Section 257 

3.2.1) and a seasonally-realistic watershed antecedent soil moisture (Section 3.2.2) yields a 258 

synthetic annual peak flow maxima. We repeat this procedure n times to create one realization of 259 



n synthetic years of annual maximum flows. These are then ranked in descending magnitude. The 260 

AEP of each streamflow maxima is calculated by dividing its rank by the total number of simulated 261 

annual maximum flows. For example, the AEP for the largest flood event if n = 500 is 0.02 and its 262 

ARI is 500-year.   263 

3.3 Inverse Modeling Approach for Quantifying Hydrological Impacts of Wildfire 264 

Inverse modeling approaches have been used for quantifying changes in hydrologic and soil 265 

properties after wildfires at watershed scales (e.g., Chen et al., 2013; Ebel & Martin, 2017; Liu et 266 

al., 2021; Shakesby et al., 1993). Such approaches typically involve two steps: 1) calibrating the 267 

relevant model parameters against streamflow observations for several post-wildfire storm events, 268 

and 2) fitting a curve to the calibrated model parameters with respect to time after wildfire. Liu et 269 

al. (2021) used such an approach to demonstrate that Ksh and nc are the most sensitive and 270 

physically reasonable parameters for controlling the post-wildfire hydrologic processes in K2 for 271 

the uAS watershed. This is supported by other work showing that runoff generating mechanisms 272 

for burned watersheds are typically Hortonian (Schmidt et al., 2011) and thus sensitive to the 273 

saturated hydraulic conductivity of the near-surface (McGuire et al., 2018). Additionally, hydraulic 274 

roughness in channels is expected to decrease following fire in the uAS because observations 275 

suggest that fine grained post-wildfire dry ravel deposits likely obscure channel boulders (DiBiase 276 

& Lamb, 2019; Florsheim et al., 2017; M. P. Lamb et al., 2011; Tang et al., 2019). 277 

Liu et al. (2021) auto-calibrated Ksh and nc in K2 simulations for three pre-wildfire events from 278 

2000 to 2008 and eight post-wildfire events ranging from <1 to 10 years after the 2009 Station 279 

Fire. For each event, the top 100 best-fit parameters sets out of 2,500 simulations were retained 280 

for fitting logistic regressions to quantify their temporal changes. These parameter sets exhibit 281 

KGE values mostly ranging between 0.6 and 0.8 (Fig. S4a). The best-fit model parameter set result 282 



in the “best” logistic regression, whereas the top-100 values provide an ensemble of regressions 283 

representing the uncertainty in the parameters (Fig. S4).  284 

3.4 Modeling M-H Wildfire Probability 285 

Because the temporal changes in model parameters derived by Liu et al. (2021) were primarily 286 

driven by M-H soil burn severity (e.g., Fig. 2b), it was necessary to estimate the annual occurrence 287 

probability of M-H severity burn conditions. Fire intensity, represented by the amount of energy 288 

released by a burning fuel, is highly correlated with soil burn severity, especially in forested 289 

landscapes of southern California (Keeley, 2009). In forested landscapes, like the San Gabriel 290 

Mountains, high fire intensity will result in crown fire, which typically causes spread of wildfire 291 

and high levels of vegetation consumption and mortality (Alexander et al., 2011; Scott, 2005). 292 

Therefore, high-intensity crown fire is a useful proxy for moderate-high burn severity. We thus 293 

assumed an equivalent relationship between fire intensity and soil burn severity in this study; this 294 

assumption has been previously applied in both research (Haas et al., 2016; Tillery et al., 2014; 295 

Tillery & Haas, 2016) and practice (Napoli et al., 2022; Scott et al., 2020). 296 

We calculated the annual probability of M-H wildfire by multiplying burn probability and the 297 

conditional probability of M-H fire intensity (Fig. 2e and 2f). The basin-averaged probability of 298 

M-H wildfire for the uAS watershed is 0.00862, corresponding to 116 years of wildfire inter-299 

arrival time (Fig. 2f). To quantify the uncertainty of M-H wildfire probability for the uAS 300 

watershed, we leveraged a spatial bootstrap technique and regional estimates of M-H wildfire burn 301 

probability. Specifically, we repeatedly uniformly transposed the uAS watershed outline to other 302 

non-developed areas within the South Coast homogenous wildfire regime region to calculate a 303 

new probability; repeating this procedure a large number of times can provide an estimate of 304 

uncertainty in the probability of M-H wildfire for the uAS watershed. Furthermore, the distribution 305 



of USFS-derived fire size for the South Coast shows that simulated fire sizes are typically much 306 

larger than the 42 km2 size of uAS watershed (Finney et al., 2011).  Therefore, it is reasonable to 307 

assume that the probability of M-H fire that we derive here is a probability associated with burning 308 

the entire watershed. We make this assumption in our fire continuum FFA, but also explore the 309 

impact of partially burning the watershed in the post-wildfire FFA. (We were unsuccessful in 310 

obtaining the fire size distribution from the USFS and thus were unable to consider it 311 

probabilistically.) 312 

3.5 Post-wildfire and Fire Continuum FFA 313 

In this study, we distinguish between post-wildfire and fire continuum FFA: the former refers to 314 

flood frequencies for the relatively short post-fire period in which hydrologic processes are most 315 

affected, whereas the latter refers to long-term flood frequency that considers both post-fire 316 

recovery and less hydrologically dynamic pre-fire periods. Post-wildfire FFA were used to 317 

estimate the changes in flood frequencies with respect to different percentage burn area and time 318 

after wildfire. On the other hand, fire continuum FFA reflects the underlying flood frequency 319 

stemming from hydroclimatologic and wildfire variability, including fire occurrence and 320 

watershed recovery.   321 

3.5.1 Post-wildfire FFA 322 

Here, we used deterministic numerical experiments to quantify the changes in FFA as a function 323 

of time after wildfire and percentage burn area. We designed 20 scenarios to represent 20 different 324 

combinations of percentage burn area and time after wildfire. The results of these experiments are 325 

referred to as post-wildfire FFA (Fig. 3). Experiments considered different burn area percentages 326 

by randomly selecting contiguous hillslopes, which total percentage area exceeds the threshold: 327 

20%, 40%, 60%, 80%, and 100%. The average historical time between fire occurrence and the 328 



next heavy rainfall is 47 days and is tied to the seasonality of precipitation in the region; this 329 

interval was used to approximate the ‘within 1 year’ post-wildfire FFA time horizon.” Additional 330 

horizons of 2, 3, and 4 years after the wildfire were also modeled. In each scenario, we ran 10 331 

ensemble members of 500 synthetic annual maximum flood simulations each, with the ensemble 332 

reflecting stochastic uncertainties in rainfall intensities, antecedent soil moisture, model 333 

parameters, and randomly-selected locations of burn area.   334 

3.5.2 Fire Continuum FFA 335 

Fire Continuum (stochastic) FFA was used to resolve the impacts of the joint variabilities of 336 

rainfall, soil moisture, wildfire impact, and post-wildfire recovery on flood frequency. We derived 337 

annual rainfall maxima and associated antecedent soil moisture for 500 synthetic years, during 338 

which wildfire occurrence (i.e., inter-arrival time) is modeled using regional wildfire probabilities 339 

(Fig. 2e) and a spatial bootstrap scheme (Section 3.4). As mentioned in Section 3.4, we were forced 340 

to assume that the entire watershed is burned due to lack of supporting data. Between two wildfire 341 

events, Ksh and nc are spatially uniform and are functions of time since fire (Section 3.3). The 342 

resulting 500 simulated annual peak flows yield one ensemble member; 100 such ensembles of 343 

500 peak flows each were conducted for a total of 50,000 simulated peak flows.  344 

4 Results 345 

4.1 Historical Floods and Pre-wildfire FFA 346 

Process-based estimates of flood frequency for the uAS watershed under pre-wildfire conditions 347 

are compared with 1914–2021 USGS observed annual peak flows (Fig. 4a). The four post-wildfire 348 

flood peak observations vary over two orders of magnitude (131 m3 s-1 for one year after to <1 m3 349 

s-1 four years after) and have ARIs that decrease from 20-year (AEP=0.05) to ~1-year (AEP≈1.0) 350 



from one to four years after the 2009 Station Fire (Fig. 4a). This points to the role of watershed 351 

recovery in counteracting the wildfire impacts on flooding, given that maximum hourly rainfall 352 

intensities associated with post-wildfire floods exhibit smaller differences (Fig. 4b). Process-based 353 

flood frequency curves agree well with observed peak flows for ARI ≥ 3-year—i.e., the magnitudes 354 

of floods that are important for most flood management applications—but underestimate for ARI 355 

< 3-year (Fig. 4a). Differences between simulated FFA and USGS observations for the small ARI 356 

can be associated with two factors: (1) small flood events can be driven by variables other than 357 

annual maximum rainfall, such as long duration, low intensity rainfall; (2) small floods can be 358 

driven by subsurface flow, which is not well represented by the K2 model (Canfield et al., 2005; 359 

Goodrich et al., 2012; Liu et al., 2021). 360 

Recent observations demonstrate that debris flows and extreme floods across the San Gabriel 361 

Mountains are associated with high intensity, short duration rainfall events following wildfire (e.g., 362 

Liu et al., 2022; Oakley et al., 2018). More generally, observed flood peaks for the 1979-2021 363 

period and their associated maximum hourly rainfall intensities are strongly correlated, with a 364 

Spearman rank correlation ρs = 0.69 (p = 0.0005; Fig. 4b). Similarly, the maximum 15-min rainfall 365 

intensity also correlates with observed flood peaks for the 2000-2021 period (ρs = 0.65; p = 0.0057), 366 

when rain gauge data are available.  Regardless of wildfire, there is high variability in peak flows 367 

with respect to the maximum hourly rainfall intensity (Fig. 4b). For instance, storms with a 368 

maximum hourly rainfall intensity of ~15 mm h-1 can lead to flood peaks ranging from 10 to 100 369 

m3 s-1 (Fig. 4b).  370 



 371 

Figure 4. (a) Process-based FFA for pre-wildfire conditions as well as observed flood peaks plotted using Cunnane 372 
plotting positions (Cunnane, 1978). (b) USGS observed flood peaks and their corresponding NLDAS-2- (1979-1999) 373 
and gauge-based (2000-2021) hourly rainfall intensities. Blue line and shade in (a) represent the mean and range of 374 
derived frequencies from 100 ensemble members. Flood peaks within four years after the 2009 Station fire are 375 
highlighted in red on both panels.  376 

To further understand the variability in flood peaks with respect to their dominant drivers, we 377 

leverage the process-based flood simulation that facilitates understanding how different physical 378 

drivers interact to produce floods (Fig. 5). First, maximum hourly rainfall intensities play a first-379 

order role in driving the peak flows. Flood magnitudes increase substantially from < 10 m3 s-1 to a 380 

range between 100-year (241 m3 s-1) to 500-year (345 m3 s-1) floods, as rainfall intensities increase 381 

from 10 to 100 mm h-1 (Fig. 5). Second, high soil moisture can enhance flood magnitudes 382 

regardless of rainfall intensity, mainly for floods less than 20-year ARI (Fig. 5a). However, high 383 

rainfall intensity can result in substantial flood peaks irrespective of initial soil moisture. Lastly, 384 

enhanced flood peaks are associated with relatively low hillslope infiltration and channel 385 

roughness (Fig. 5b and 5c). 386 



 387 

Figure 5. Relationships between CosMoS derived maximum hourly rainfall intensity and K2 model simulated peak 388 
flows with respect to (a) watershed antecedent soil moisture, (b) hillslope saturated hydraulic conductivity (Ksh), and 389 
(c) channel roughness coefficient (nc).  390 

4.2 Post-wildfire FFA  391 

The deterministic simulations show that the post-wildfire FFA depends on both percentage burn 392 

area and in particular time after wildfire (Fig. 6). The difference between the four panels in Fig. 6 393 

can be interpreted as a diminishing role of wildfire in enhancing flood magnitude as the watershed 394 

recovers. For instance, the 10-year flood associated with 100% burn area drops from 300 within 395 

one year to 150 m3 s-1 two years after wildfire (Fig. 6a and 6b). Within two years after wildfire, 396 

flood quantiles for experiments with larger burn areas are consistently higher (Fig. 6a and 6b); 397 

differences are negligible for longer post-fire periods. The first-year post-wildfire FFA for 20% to 398 

80% burn area show a step change where the flood magnitude is approximately constant for a 399 

range of ARIs (Fig. 6a). Such a phenomena is caused by unburned downstream subwatershed areas 400 

and especially the unaffected channels, which act to attenuate the flood waves from the burned 401 

areas upstream (Fig. S5 shows two rainfall events of comparable intensity can cause different 402 

peakflows due to different wildfire burn locations). However, as rainfall intensity and flood 403 

magnitudes increase, the attenuating effects of the unburned downstream subwatersheds diminish. 404 

Once flood magnitudes are larger than 50-year events, they increase again with ARI. 405 



 406 

 407 

Figure 6. Post-wildfire FFA results with respect to different percent burn area and (a-d) years after wildfire.  408 

4.3 Fire Continuum FFA  409 

Post-wildfire FFA provides flood frequencies only for wildfire-affected periods and thus provide 410 

an incorrect picture of the “underlying” long-run flood frequency of the fire-affected watershed. 411 

The process-based fire continuum FFA, in contrast, derives the frequencies of floods by calculating 412 

the joint probability of rainfall, antecedent watershed soil moisture, occurrence of wildfire, and its 413 

impacts and recovery. In this study, the annual probability of M-H wildfire or its reciprocal, 414 



wildfire inter-arrival time in years (T=1/p), is estimated using the USFS derived M-H wildfire 415 

probabilities and a spatial Bootstrap scheme (Section 3.4 and 3.5). The estimated median M-H 416 

wildfire recurrence intervals for the uAS watershed corresponds to 63.8 years (Fig. S6), which is 417 

similar to the duration between its historical large fires: 64 years between 1896 and the 1959 418 

Woodwardia Fire, followed 51 years later by the 2009 Station Fire. However, this estimated M-H 419 

wildfire interval is quite long compared with the ~2-4-year post-fire period during which the flood 420 

frequency estimates in Section 4.2 “feel” the burn effects. 421 

Fire continuum FFA resembles pre-wildfire FFA, as well as the USGS observations for ARI 422 

smaller than 100 years. Beyond that level, it yields slightly higher estimates than pre-wildfire ones 423 

(Fig. 7a). It is significant that fire continuum FFA shows much larger variability than pre-wildfire 424 

FFA, especially for ARIs greater than 50 years, indicating a higher potential for more severe floods 425 

(Fig. 7a). The difference between pre-wildfire and fire continuum FFA, including the mean and 426 

variability, is attributed to the incorporation of wildfire and post-fire recovery into the process-427 

based FFA (Fig. 7a). It must be emphasized that this study does not consider the potential impacts 428 

of climate change or land use management on recent or future wildfire occurrences, nor on the 429 

length of post-fire recovery periods (see Section 5.3 for further discussion of this limitation).  430 

The 50,000 simulated annual peak flows that constitute the fire continuum FFA results (Fig. 7a) 431 

were classified into two categories: fire-affected and non-fire-affected. The former refers to peak 432 

flows that occurred within four years of wildfire events, while the latter pertains to peak flows that 433 

occurred after that time period. This yields 2,184 (4.4% of the total) and 47,816 (95.6%) fire-434 

affected and non-fire-affected annual peak flows, respectively. Empirical (i.e., using Cunnane 435 

plotting positions) distributions as well as 90% confidence intervals for the fire-affected and non-436 

fire-affected peak flows are derived using nonparametric bootstrapping with both sample size and 437 



number of repetitions equal to 100 (Fig. 7b and 7c). The empirical distributions for non-fire-438 

affected flood peaks match the USGS observations and pre-wildfire FFA reasonably well (Figs. 439 

4a and 7b). However, the empirical distributions for fire-affected peaks, which represent the 440 

combined effects of post-wildfire FFA within four years (Fig. 6), exhibit higher values compared 441 

to both USGS observations and pre-wildfire FFA (Fig. 7c).  442 

 443 



Figure 7. (a) The comparison between pre-wildfire and fire continuum (i.e., stochastic) FFA. 50,000 simulated flood 444 
peaks that constitute stochastic FFA are grouped into fire-affected and non-fire-affected, depending on whether they 445 
occurred within four years after the simulated wildfire events. Note peak flows in (a) are in linear scale whereas are 446 
in log-scale in (b) and (c). Flood peaks within two years after the 2009 Station fire are highlighted in red on all panels. 447 

5 Discussion 448 

5.1 Post-wildfire vs. Fire Continuum FFA 449 

The main objective of our post-wildfire FFA is to examine peak flow distributions in fire-affected 450 

years, considered here to be the first four years following fire (Fig. 7c). In other words, the post-451 

wildfire FFA results are conditional distributions because they focus only on specific fire-affected 452 

years. In contrast, fire continuum FFA attempts to represent the joint probabilities of rainfall, 453 

wildfire occurrence and severity, initial soil moisture, and watershed recovery processes along the 454 

synthetic multidecadal timescales (Fig. 7a).   455 

For the uAS watershed, the post-wildfire FFA for 100% burn area and within 1 year after wildfire 456 

show pronounced increases across the recurrence intervals: 100-year floods can be three times 457 

larger than the pre-wildfire floods (Fig. 6a). While the central tendency of fire continuum FFA 458 

results are roughly comparable to the pre-wildfire FFA (i.e., no wildfire effects) due to the long 459 

wildfire inter-arrival time (roughly 60 years) compared to the short watershed recovery period 460 

(roughly four years), the variability among FFA ensemble members is substantially higher, 461 

particularly for rarer flood events (e.g., >100 years). Indeed, the largest 500-year event from our 462 

100-ensemble fire continuum FFA simulations was nearly 800 m3 s-1, while the largest from the 463 

pre-fire simulations was less than 500 m3 s-1. These findings suggest that wildfire can have 464 

important influences on the upper tail of flood distributions, which is of primary interest in risk 465 

management (England et al., 2019; NRC, 1988). 466 



Furthermore, post-wildfire and fire continuum FFA are appropriate tools for reactive and proactive 467 

flood risk management, respectively. For recently burned watersheds, post-wildfire FFA can help 468 

answer how long post-wildfire flood hazards persist, thus facilitating the evaluation of hazard 469 

mitigation strategies. On the other hand, using fire continuum FFA as a proactive estimator can 470 

better understand flood risks associated with the potential impacts of wildfires as well as flood and 471 

fire mitigation strategies. By doing so, resources can be allocated to locations that have the greatest 472 

overall flood hazards, rather than solely focusing on areas that have recently burned. This will 473 

facilitate more effective flood risk management and help mitigate potential damage. 474 

5.2 Limitations 475 

As the first effort (to our knowledge) to physically model the impact of wildfire on flood 476 

frequency, our study has several limitations. The first and most central is the paucity of streamflow 477 

observations during post-wildfire “recovery” periods, which is central to identifying hydrologic 478 

changes via inverse modeling approaches. The relatively long (and highly approximate) inter-479 

arrival time of wildfire is problematic enough for the application of inverse modeling in our study 480 

basin; application of these techniques to simulate the impacts of wildfire on flood frequencies for 481 

ungauged basins is further complicated by uncertainty in the transferability of model parameters 482 

designed to represent post-wildfire conditions from one watershed to another (e.g., Canfield et al., 483 

2005; Chen et al., 2013; Ebel & Martin, 2017; Liu et al., 2021). We direct readers to the next 484 

subsection for our recommendations on transferring the method employed in this study to other 485 

watersheds.  486 

The second limitation pertains to model process representation and performance. We have 487 

observed an underestimation in process-based pre-wildfire FFA for common flood events (less 488 

than the 3-year event; Fig.4a). This may be because the K2 hydrological model is not designed to 489 



represent the saturation excess overland flow resulting from long duration, low intensity rainfall. 490 

Similarly, the process-based, pre-wildfire FFA based on K2 simulations may not accurately 491 

represent peak flows for extreme events that generate runoff via saturation-excess overland flow, 492 

which have been documented in the San Gabriel Mountains (e.g., Doehring, 1968), though there 493 

is very good agreement between observations and the pre-fire FFA (Fig.4a; Fig. 7). In addition, 494 

saturated hydraulic conductivity and hydraulic roughness are the only two parameters used to 495 

represent the hydrological impacts of wildfire in this study and others (e.g., Canfield et al., 2005; 496 

Chen et al., 2013).  497 

Third, it is not practical to simulate every potential runoff event to determine the annual peak flow, 498 

so we define a criterion (maximum 12-h rainfall total) for selecting the rainfall event that is likely 499 

to produce the peak flow in each simulated year. This criterion is based on the time of concentration 500 

of the watershed, which likely varies with the time since fire. In addition, annual maximum 15-501 

min and hourly rainfall intensities are comparable with the maximum 15-min and hourly rainfall 502 

intensities nested in the annual maximum 12-h rainfall, respectively, based on continuous rainfall 503 

intensities of 50,000 synthetic years (Fig. S7).  504 

Lastly, the USFS used current fuel conditions and historical climate data to simulate occurrence 505 

and severity of large wildfires for the South Coast climate division. Thus, fire activity in this study 506 

does not reflect climate change and its impacts on fuel and vegetation dynamics. As the climate 507 

continues to warm, it is expected that fuel will become drier and that drought periods will become 508 

longer, resulting in increased wildfire activity and longer periods for vegetation to recover (e.g., 509 

Flannigan et al., 2009; Iglesias et al., 2022; Wang et al., 2022). In addition, short duration and high 510 

intensity rainfall is projected to increase in future due to climate change (e.g., Easterling et al., 511 

2017; Fowler et al., 2021; Prein et al., 2017).  512 



5.3 Transferability of the Approach 513 

We hypothesize that the impacts of fire on flood magnitude and frequency will vary considerably 514 

across hydroclimatic regimes and in different plant communities. Prior studies document a wide 515 

range of hydrologic responses following fire, even within the same geographic region (Sheridan 516 

et al., 2015). Application of the proposed method in a wider range of settings will help identify 517 

patterns and lead to a more comprehensive understanding of the impacts of fire on flooding. 518 

Herein, we provide some recommendations for how the methods shown in this study could be 519 

extended to other watersheds. Data availability is a major limiting factor in the transferability of 520 

this work. Because post-wildfire floods are sensitive to short-duration, high-intensity rainfall, 521 

precipitation data at a high resolution for a relatively long period are necessary. Although soil 522 

moisture in this study is derived from a reanalysis dataset, field measurements of soil moisture 523 

(especially for post-fire periods) can help indicate watershed recovery. To perform inverse 524 

modeling to represent the hydrological impacts of wildfire, instantaneous streamflow 525 

measurements for multiple pre- and post-wildfire events are needed. The annual probability of 526 

wildfire is available for the CONUS via USFS (Short et al., 2020), but it could potentially be 527 

refined with additional local data if available. All these required datasets also highlight the 528 

importance of continuously monitoring watershed conditions along the fire continuum.  529 

The second challenge in transferring our method lies in the parameterizations of wildfire impacts 530 

and watershed recovery. To determine which soil hydrologic parameters to use for inverse 531 

modeling, one must be familiar with the watershed properties and hydrological models that will 532 

be used.  When the instantaneous streamflow for both pre- and post-wildfire floods are available, 533 

one can derive the wildfire-related parameters with respect to time via a set of model calibrations 534 

based on Liu et al. (2021).  535 



In locations where post-wildfire streamflow data are not available, two research directions could 536 

prove useful. In the short term, regionalization techniques can be used to transfer field-measured, 537 

post-wildfire soil hydraulic properties from nearby basins to estimate changes in hydrologic 538 

parameters for ungauged basins affected by wildfires (e.g., Ebel & Martin, 2017; Hoch et al., 2021; 539 

Perkins et al., 2022; Prats et al., 2021). In the longer term, field-scale studies (e.g., Araya et al., 540 

2017; Parson et al., 2010; Perkins et al., 2022) that investigate the “chain” of processes from 541 

wildfire to soil heating and the subsequent effects on soil properties and hydrology offer a 542 

promising avenue to establish physically based links between post-wildfire hydrological 543 

parameters and wildfire severity. 544 

6 Summary and Conclusions 545 

In this study, we present a process-based FFA framework that integrates a stochastic rainfall 546 

generator, wildfire simulation outputs, a physics-based rainfall-runoff model, and model 547 

parameters that vary with time after wildfire. Unlike statistical FFA approaches, process-based 548 

FFA approaches that simulate a range of flood generating processes show potential for analyzing 549 

the complex causal chains of wildfire, hydrologic impacts, and flood frequencies. We used the 550 

framework to investigate the cascading effects of wildfire on flood hazard, represented via flood 551 

peak flow distributions that account for the transient impacts of wildfire. We applied this 552 

framework to the recently-burned uAS watershed in San Gabriel Mountains, Southern California, 553 

an area that is affected by extreme post-fire flood and debris-flow activity (e.g., Doehring, 1968; 554 

Eaton, 1936; Kean et al., 2011; Palucis et al., 2021). Here, we present five key findings: 555 

1) The process-based, pre-wildfire FFA closely matches USGS observations for moderate to 556 

rare events (ARI ≥ 3-year; Fig. 4).  557 



2) Process-based results explicitly resolve how different hydrometeorological drivers interact 558 

to produce floods: rainfall intensity plays the first-order role in driving flood magnitudes 559 

while watershed antecedent soil moisture and channel’s roughness can modulate flood 560 

peaks (Fig. 5).  561 

3) Post-wildfire FFA for the uAS watershed shows that flood frequencies are dependent on 562 

the percentage of watershed area burned and time after wildfire (Fig. 6). The hydrologic 563 

impacts of wildfire enhance flood magnitudes across all ARIs for the first two years after 564 

wildfire; however, the effects diminish after two years. 565 

4) Fire continuum FFA, which considers both climatological occurrence of wildfires and their 566 

interactions with watershed infiltration and channel roughness, antecedent conditions, and 567 

rainfall intensity highlights a large increase in the variability of peak flows, especially for 568 

the upper tail of peak flow distribution that is of significance for flood risk management. 569 

5) Climatic nonstationarity, though neglected in this study, can exacerbate the compound 570 

wildfire-flood hazards by affecting each individual driver (e.g., enhanced rainfall intensity 571 

and fire activity) and their interdependency (e.g., the longer vegetation recovery period the 572 

larger probability to experience extreme rainfall). Our process-based framework holds the 573 

promise to flexibly incorporate understanding of changes in drivers and interdependencies 574 

into the simulation of future fire continuum flood frequencies.  575 

Software and Data Availability Statement 576 

The stochastic rainfall generator, CoSMoS can be download from its Github repository via 577 

https://github.com/TycheLab/CoSMoS.  The K2 hydrological model can be download from US 578 

Department of Agriculture via https://www.tucson.ars.ag.gov/kineros/. Precipitation data can be 579 

obtained from the Los Angeles County Department of Public Works 580 

https://github.com/TycheLab/CoSMoS
https://www.tucson.ars.ag.gov/kineros/


(https://dpw.lacounty.gov/wrd/Precip). The wildfire burn probability data can be downloaded from 581 

US Department of Agriculture, Research Data Archive, via 582 

https://www.fs.usda.gov/rds/archive/Catalog/RDS-2016-0034-2.  583 
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