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Key Points 29 

 Physically based representative hillslope models resolve the main gradients 30 

controlling overland flow, a key requirement for modelling flash floods in small, 31 

data-scarce and rural catchments.  32 

 Climate reanalysis data enable the initialization of a process-based model, 33 

establishing plausible initial conditions for event-based flash flood modelling that 34 

can guide the design of retention basins in small to medium sized catchments. 35 

 Transfer of model parameters from past experiments to data-scarce catchments 36 

within the same hydrological landscape is feasible and water level measurements 37 

at flood defense reservoir can be used for model building and testing.  38 

Abstract 39 
It is increasingly acknowledged that the acceleration of the global water cycle, largely 40 

driven by anthropogenic climate change, has a disproportionate impact on sub-daily and 41 

small-scale hydrological extreme events such as flash floods. These events occur thereby 42 

at local scales within minutes to hours, typically in response to high-intensity rainfall 43 

events associated with convective storms. Despite their local scale and rapid onset, the 44 

effects of flash floods can be devastating, making their prediction and mitigation of critical 45 

importance. However, the modeling and analysis of such events in data-scarce regions 46 

present a unique set of challenges. In the present work, we show that by employing 47 

physically based representative hillslope models that resolve the main gradients 48 

controlling overland flow hydrology and hydraulics, we can get reliable simulations of 49 

flash flood response in small data-scarce catchments. To this end, we use climate 50 

reanalysis products and transfer soil parameters previously obtained for hydrological 51 

predictions in an experimental catchment in the same landscape. The inverted mass 52 

balance of flood reservoirs downstream is employed to derive a target data set for model 53 

evaluation in these nearly ungauged basins. We show that our approach using 54 

representative hillslopes and climate datasets can provide reasonable uncalibrated 55 

estimates of the overland runoff response (flood magnitude, storm volume, and event 56 

runoff coefficients) in three of the four catchments considered. Given that flash floods 57 

typically occur at scales of a few km2 and in ungauged places, our results have 58 

implications for operational flash flood forecasting and the design of small and medium 59 

flood retention basins around the world. 60 
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Plain Language Summary 61 
Flash floods have become increasingly common worldwide, with catastrophic damages 62 

to both human life and the economy. While the extent of global warming and climate 63 

change impacting these events is still under much debate, it is almost certain now that we 64 

need to be better equipped to understand and model these extremes to prevent and 65 

mitigate the possible risk to human life and infrastructure in a warming climate. To test, 66 

if we can use first principles derived from thermodynamic conservation laws and process 67 

based hydrological models for the same, we modelled flash flood response in four 68 

headwater catchments over Southern Germany using the concept of ‘representative 69 

hillslope’.  Since the regions considered in our work are nearly ungauged, we made use of 70 

global climate reanalysis products and parameter transfer from past experiments. The 71 

encouraging results obtained in predicting the flood magnitude and volume speak to the 72 

overall applicability of our approach. We are able to get decent uncalibrated predictions 73 

in three out of the four catchments considered with minimum computational effort. 74 

However, as the results in one of the catchments show, further research and modelling 75 

experiments are required to advance the applied methodology for the design of flood 76 

mitigation measures and operational flash flood forecasting. Understanding and 77 

managing the adverse impacts of such extreme hydroclimatic events remains one of the 78 

crucial hurdles facing humanity towards the sustainable development goals (SDG17) in 79 

this decade. 80 

Keywords – flash floods, ungauged basins, physically based models, parameter transfer, 81 

representative hillslopes. 82 
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1 Introduction   83 
As early as 2008, the Organisation for Economic Co-operation and Development (OECD) 84 

highlighted climate change and hydro-meteorological extremes as some of the most 85 

pressing challenges facing humanity. Flood events, a key component of these extremes, 86 

manifest at varying spatial and temporal scales, each driven by distinct meteorological 87 

conditions. Flash floods, for instance, occur on local scales within a span of minutes to 88 

hours. These events are triggered by high-intensity rainfall from convective storms, 89 

resulting in infiltration excess and significant overland flow (Bronstert et al., 2018; 90 

Marchi et al., 2016, 2010; Meyer et al., 2022; Ruiz-Villanueva et al., 2012). While these 91 

floods pose immediate risks, such as loss of human life, their consequences extend to 92 

long-term impacts like soil erosion, sediment transport, and subsequent deterioration of 93 

water quality and soil fertility, particularly in agricultural settings. On the other end of 94 

the spectrum are large-scale riverine floods, which occur due to synoptic scale low-95 

pressure systems characterized by widespread and sustained precipitation. Unlike flash 96 

floods, these events are governed by capacity-controlled runoff formation processes like 97 

saturation excess, known as Dunne overland flow (Dunne and Kirkby, 1978), and 98 

subsurface storm flow. Additionally, flood routing in channel networks and snowmelt 99 

contributions, play crucial roles (Blöschl et al., 2007). This stands in contrast to the 100 

Hortonian overland flow (Horton, 1933) typically observed in flash floods driven by 101 

convective storms.  102 

Flood forecasting and risk management have to cope with both types of flood events, and 103 

both are naturally highly sensitive to climate change (IPCC, 2021). The largest observed 104 

floods in many European rivers have occurred in the last three decades, which count 105 

among the most flood-rich periods in the past 500 years (Blöschl et al., 2020). With 106 

respect to local flash floods, the situation seems not better. For instance, 22 flash floods 107 

in southwest Germany occurring in the past 20 years, had estimated design return 108 

periods exceeding 500 years (Göppert, 2018). This is in line with the recent accumulation 109 

of flash floods in Europe (Meyer et al., 2022), which likely reflects the already ongoing 110 

acceleration of the hydrological cycle, with expected increasing frequencies of more 111 

intense convective rainstorms and flash floods due to Clausius-Clapeyron scaling (Pall et 112 

al., 2007). This is alarming, as the flash flood series in the summer of 2016 alone caused 113 

about €2.5 bn of damage in Germany (Munich Re, 2016). All this recent evidence calls for 114 
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improving the current standards in a) flood predictions and b) methods for deriving 115 

hydrological extreme values for design.  116 

Considerable progress has been made in alert systems for riverine floods (Borga et al., 117 

2011; Thielen et al., 2009). These systems rely on ensemble numerical weather 118 

predictions and conceptual hydrological models such as LARSIM (Bremicker, 1998),  HBV 119 

(Hundecha and Bardossy, 2004) or LISFLOOD (van der Knijff et al., 2010). Conceptual 120 

hydrological models simulate rainfall-runoff generation using linear reservoir concepts 121 

characterised by effective fluxes, states, and effective parameters (Hrachowitz and Clark, 122 

2017). Despite their simplicity, countless studies have shown that they capture capacity-123 

controlled runoff generation processes quite well (Berkowitz and Zehe, 2020). Today it 124 

is known that conceptual models provide reliable predictions of streamflow for 125 

catchments larger than 200 km2 (Zehe et al., 2014), explaining their widespread and 126 

successful operational use.  127 

Despite their success, conceptual models, like every model, also have limitations. They 128 

usually give lumped integral responses and do not provide detailed information on how 129 

each principal component within the model interacts (Fatichi et al., 2016). Predictions 130 

are also subject to model structural uncertainty as several parameter sets may reproduce 131 

the target discharge data within the learning phase in an acceptable manner (Beven and 132 

Binley, 1992). While multi-response calibration is generally well suited to reduce 133 

parameter uncertainty, this venture is not straightforward in the case of conceptual 134 

models, as their parameters and states cannot be measured directly (Berkowitz and Zehe, 135 

2020; Hrachowitz and Clark, 2017). This has crucial implications for the transfer of such 136 

models to ungauged regions. In most cases, they do not perform well in regions outside 137 

their calibrated range. In the context of flash flooding this is of key importance, as these 138 

events are rare, typically impacting small catchments or even specific hillslopes which 139 

are often ungauged. They are thus tricky and challenging to observe with conventional 140 

rain and discharge measurement networks (Borga et al., 2008), which implies that the 141 

sample for model learning and testing is small. Hence they are strongly related to the 142 

classical ‘predictions in ungauged basins - PUB problem’ (Hrachowitz et al., 2013; 143 

Sivapalan et al., 2003), which implies the estimation of either the occurrence frequency 144 

or forecasting the hydrological response using current/future climate and topographic 145 

inputs without the benefit of past observational time series for direct model calibration.  146 
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Here, we propose that gradient resolving, physically based hydrological models (Fatichi 147 

et al., 2016; Paniconi and Putti, 2015) are well suited to address the challenges of flash 148 

flood predictions in such data scarce regions. By solving coupled partial differential 149 

equations (PDEs) that represent infiltration, soil moisture dynamics, runoff, streamflow 150 

and evaporation in space and time, such models allow for spatially distributed 151 

simulations of extreme flash floods (Pérez et al., 2011; Steinbrich et al., 2016; Zehe et al., 152 

2001).  153 

Our primary aim is to evaluate the efficacy of gradient-resolving, physically based 154 

hydrological models for predicting flash floods triggered by convective rainstorms in 155 

data-scarce regions. Further, we aim to explore the feasibility of operationalizing these 156 

models for the design of small and medium reservoirs in such regions. One of the primary 157 

challenges in employing physically based models lies in their 'data greed,' requiring 158 

extensive input data, as well as the computational expense involved in running the 159 

models. To mitigate the data requirement challenge, we propose to leverage existing 160 

information from well-studied past catchments within the same hydrological landscape. 161 

Specifically, we suggest utilizing these well-instrumented catchments as 'donor 162 

catchments' to transfer model structures and parameters to target catchments that are 163 

poorly instrumented but share similar hydrological characteristics (Figures 1 & 2T). 164 

Specifically, we explore: 165 

1. Is it feasible to transfer model parameters from a past monitored experimental 166 

catchment to data-scarce catchments for uncalibrated flash flood predictions in 167 

response to increased convective storm activity? 168 

2. To overcome the computational expense challenge, we explore whether the 169 

representative hillslope concept (Loritz. et al. 2017; see section 3.1) is an effective 170 

way to reduce computation burden, while maintaining a balance between model 171 

complexity and data requirements? 172 

As study areas, we selected several headwaters upstream of flood defence reservoirs in 173 

South West Germany, operated by the Elsenz-Schwarzbach Water Board (Zweckverband 174 

Hochwasserschutz Elsenz-Schwarzbach, 2016). In June 2016, several of these flood 175 

reservoirs were overtopped in response to a convective rainstorm. While these 176 

catchments are in the same hydrological landscape as the previously monitored 177 

Weiherbach experimental headwater shed (Zehe et al., 2001), they are, despite the 178 
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available water level gauges in the reservoirs, completely unmonitored with respect to 179 

rainfall, streamflow and soil moisture. To overcome the related challenges, we 180 

investigate: 181 

3. Can climate reanalysis data initialize process-based hydrological models and 182 

transition to higher-resolution radar precipitation data without requiring 183 

recalibration during flood simulations? 184 

4. Is reservoir mass balance inversion a reliable method for estimating storm 185 

hydrographs during flash flood events and how does the inherent uncertainty of 186 

such floods affect design considerations?  187 

2 Venue and Model 188 
2.1 Study Area  189 
The four headwater catchments (in this study referred to as W22, W32, W39 and W44) 190 

belong to the Elsenz-Schwarzbach catchment in the State of Baden Württemberg, 191 

Southern Germany (Figure 1 & Figure B1 in Appendix B). The catchment is located within 192 

the eastern “Kraichgau”, west of Bad Rappenau and around 50 km from the nearest cities 193 

- Heidelberg and Karlsruhe. Due to a series of catastrophic flooding episodes in 1993-94, 194 

a comprehensive flood protection concept for the entire region was envisaged, which led 195 

to the development of local flood retention basins throughout the catchment area. The 196 

size of the catchments varies from 1-6 km2; they all drain into the Krebsbach, which joins 197 

into the Schwarzbach near Waibstadt (the nearest gauging station – Eschelbronn 198 

Schwarzbach, being more than 12km from our study area). The Elsenz-Schwarzbach 199 

finally merges into the Neckar, one of the Rhine's largest tributaries. From Figure 1, it is 200 

clear that even though the catchments are primarily agricultural in nature (major crops 201 

being – cereals, maize, sugar beets and potatoes), they are situated upstream of the 202 

population centres of the region. As flooding could have catastrophic impacts on human 203 

life and establishment, these settlements have been protected by regulated flood defence 204 

reservoirs.  205 

During the end of May to early June 2016, several strong convective rainfall events 206 

clustered in Germany because of persistent atmospheric conditions (Bronstert et al., 207 

2018; Meyer et al., 2022; Piper et al., 2016). Rain totals exceeding 100 mm were reported 208 

in a day, triggering flash floods in many small catchments over Southern Germany. The 209 

impacts in the Elsenz-Schwarzbach were also severe, with several of the flood control 210 
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reservoirs being overtopped. To investigate the feasibility of our approach (Figure 2) and 211 

of the CAFLOW model to simulate such events, we focus our attention on the severe event 212 

of 08 June 2016 in the region (Appendix -B). Since no streamflow gauges are available for 213 

the four headwater catchments, we use the water level measurements in the flood control 214 

reservoirs to estimate the runoff response based on the reconstructed reservoir inflow 215 

(W22, W32, W39 and W44). The storm runoff response is calculated based on inverting 216 

the reservoir mass balance with the knowledge of the reservoir geometry and stage-217 

outflow relationship (Appendix-C). Related uncertainties are accounted for by using a 218 

relative percentage error value (5%) in the stage level measurements.  219 

 

Figure 1 Overview of the location of the four headwater catchments considered in the study. Also, 220 

shown in the figure are the downstream flood control reservoirs, which afford protection to the 221 

towns in the region. The overlay layer depicts a Sentinel-2 (Drusch et al., 2012) multispectral true 222 

colour composite image showing the major land use patterns during May-June 2016. Figure B1 in 223 

Appendix B shows the stream network of Krebsbach and Schwarzbach and also the total 224 

accumulated precipitation during the event.  225 
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2.2 CATFLOW in a Nutshell 226 
The quest for accurately identifying and modelling the governing processes of water 227 

balance and reactive pesticide transport in rural catchments motivated both the setup of 228 

the Weiherbach experimental catchment in the 90’s (Plate and Zehe, 2008; Zehe et al., 229 

2001) and the development of the process-based model CATFLOW (Zehe et al., 2001). 230 

The model relies on the subdivision of a catchment into several 2D hillslopes and an 231 

interconnected drainage (optional) and river network. However, each hillslope is 232 

modeled separately and hence this provides the opportunity to run each hillslope 233 

individually without the associated stream network. Hillslopes are discretised along a 234 

two- dimensional cross section using terrain following curvilinear orthogonal 235 

coordinates. Soil water dynamics within the hillslopes are characterized using the 236 

potential based form of the 2D Darcy–Richards equation, solved by a mass conservative 237 

Picard solver using adaptive time stepping (Celia and Bouloutas, 1990). Soil hydraulic 238 

properties can be parameterised according to van Genuchten (1980) and Mualem (1976), 239 

Tang and Skaggs (1977) or the recently proposed PDI model (Peters et al., 2021) 240 

Overland flow is simulated using the diffusion wave approximation of the Saint-Venant 241 

equation and explicit upstreaming, in combination with the Gauckler-Manning-Strickler 242 

formula. The model can optionally account for rills (Schroers et al., 2022), sediment 243 

transport (Schroers et al., 2023) and reactive transport of solutes (Klaus and Zehe, 2010). 244 

Evaporation and transpiration are usually simulated using a SVAT (Surface Vegetation – 245 

Atmosphere Transfer) module based on the Penman–Monteith equation, accounting for 246 

annual cycles of plant phenology, albedo, and roughness using tabulated data. Stomatal 247 

conductance is characterized after Jarvis (1976), or via the inversion of sap flow data 248 

(Loritz et al., 2022). CATFLOW has been used in numerous landscapes to explore 249 

watershed functioning, the predictability of (flash) flooding (Villinger et al., 2022; Zehe 250 

et al., 2005; Zehe and Blöschl, 2004) the role of subsurface storm flow for runoff 251 

generation (Loritz et al., 2017; Wienhofer and Zehe, 2014) or the value of distributed 252 

precipitation for improving stream flow predictions (Loritz et al., 2021; Zehe et al., 2005).  253 
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Figure 2 Illustration of our methodological approach– Transfer (T), Initialisation (I) and 254 

Prediction (P). In Transfer (T), we transfer our knowledge of hillslope properties and soil 255 

parameters from the Weiherbach to our study area in Krebsbach. The Initialisation (I) phase 256 

involves deriving the representative hillslope (detailed in Figure 3) for the catchments and using 257 

the ERA5 Land forcings to run the hillslope model for an entire year. In the prediction phase, (P), 258 

the same model is run with the fine-resolution radar forcing and initial conditions from 259 

Initialisation (I) for predicting the flash flood discharge.  (1 -Zehe et al. (2001), 2 - Muñoz-Sabater 260 

et al., (2021), 3 – Figure 3 & Loritz et al. (2017), 4 –Kachelmannwetter, n.d (Radar Data.) 261 
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3 Methodology 262 
Setting up a process based model of any hydrological system mainly requires two types 263 

of information (Remson et al., 1971). The first one concerns the fundamental laws 264 

governing the dynamics of system state variables and fluxes and related process 265 

parametrizations (e.g., preferential macropore flow) related to the chosen model. The 266 

second involves the data representing the “landscape” in the equation set. A proper 267 

identification of these properties is crucial for reliable model performance, and they can 268 

be divided into a) system geometry, b) system parameters and c) initial and boundary 269 

(forcing) conditions. The current section details the steps required for setting up the 270 

model in this respect. We firstly explain the concept of the representative hillslope and 271 

its derivation from digital topographical data, then elaborate on the transfer of soil and 272 

land use parameters from the Weiherbach. Finally, we explain the spin up of the model 273 

using ERA5 Land and the radar-based precipitation product used during the event 274 

simulation. 275 

3.1 The representative hillslope concept 276 
Physically based hydrological models are renowned for their substantial computational 277 

demands, often impeding their broader application (Paniconi and Putti, 2015). As a 278 

result, catchment hydrology research has pivoted towards simplifying these models, 279 

ensuring they retain their physical underpinnings. Notable models that exemplify this 280 

approach include the hillslope storage Boussinesq model by Troch et al. (2003) and the 281 

representative elementary watershed model proposed by Reggiani et al. (1998). In this 282 

study, we adopt a gradient-based simplification termed 'representative hillslopes', as 283 

introduced by Loritz et al. (2017). Their work demonstrated that the water balance and 284 

streamflow generation in the Colpach catchment (19 km2) could be accurately simulated 285 

using a single representative hillslope, negating the need for an associated river network. 286 

Here we provide a concise explanation on why this approach works.  The concept behind 287 

a representative hillslope is that both surface and subsurface water fluxes are propelled 288 

by differences in potential energy (Loritz et al., 2017; Zehe et al., 2013). These differences 289 

emerge from rainfall distribution over varied topography. In the context of intense 290 

convective rainstorms, our focus narrows to the energy balance of overland flow. Here, 291 

the driving potential energy difference hinges on the relative elevation between a 292 

location and its corresponding flow outlet. It's crucial to recognize that only a minute 293 

portion of this potential energy is converted into overland flow kinetic energy, with the 294 
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majority being dissipated, primarily influenced by factors such as Manning’s roughness 295 

(Schroers et al., 2022). 296 

Preserving this energy dynamic implies that the topography of the representative 297 

hillslope should be structured to maintain average topographic gradients along the flow 298 

path to the nearest drainage point. A viable method involves segmenting geo-potential 299 

energy by proximity to the river and averaging within each segment. Specifically, we 300 

consider the distribution of flow profile lines shown in Figure 3B for catchment W22. For 301 

any distance class (also shown in Figure A1: Appendix – A), the total flow potential is the 302 

sum of all the potential of the cells within the class, which is proportional to the relative 303 

elevation difference of the cells. For the catena profile, we require a representative value 304 

for this class so that the total energy remains conserved. We use the Linear Average 305 

Representative Slope Profile concept from Francke et al. (2008) for the same. The method 306 

involves a weighting factor based on the relative occurrence of each cell in a flow path 307 

(characterised by the flow accumulation values). Therefore, the value of the mean 308 

elevation (ℎ௜) for a class at distance 𝑖: 309 

                ℎ௜ =
∑ ௛ೕඥ௙ೕ

೙
ೕసభ

∑ ඥ௙ೕ
೙
ೕసభ

 (3.1) 

where ℎ௝  & 𝑓௝  are the relative elevation and flow accumulation values for each cell in the 310 

class at a distance 𝑖 and 𝑗: 1 𝑡𝑜 𝑛 be the total number of cells in the class. The 311 

representative value for any other attribute (say width) can also be calculated similarly.  312 

3.2 System Geometry (Deriving the hillslope profile) 313 
The representative hillslope topography is derived for each of the four catchments (Fig 314 

1) as illustrated for the catchment W22 in Fig 3. Firstly, the digital elevation model (DEM) 315 

is pre-processed to fill all depressions and sinks. We then derive the flow accumulation, 316 

aspect, and stream rasters from this filled DEM. The distance to the river and elevation to 317 

river rasters (which indicates the relative horizontal and vertical distance from a cell to 318 

the nearest river segment, respectively) are then extracted.  319 

The distance from the nearest river segment and the corresponding relative elevation 320 

difference is plotted for all the cells within the catchment of interest (Fig 3B). In Fig 3B, 321 

each green dot denotes a 10 x 10 m2 cell in the catchment. The representative hillslope 322 

catena is then derived based on the methodology explained in Section 3.1. The potential 323 

energy conservation along the direction of the flow profile by means of the weighted 324 
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mean elevation values is validated using four different distance classes (100m, 200m, 325 

300m & 400m: Fig A1) in Appendix – A. The representative hillslope profile obtained for 326 

W22 is shown as a pink overlay in Fig 3B. The catena length is chosen intuitively based 327 

on the relative elevation and distance from stream distribution plots (Fig 3B). The 328 

representative hillslope is then transferred to CATFLOW (Fig 3C) for simulating the 329 

catchment water balance.  330 

For numerical simulation, the hillslope W22 was discretised into 531 (1 node for every 1 331 

m) horizontal and 15 vertical elements. The total hillslope depth was set to 2 m, based on 332 

the transfer of knowledge from Weiherbach (see section 3.3). The vertical grid resolution 333 

varied from 0.05 m near the surface to 0.25 m towards the bottom node (Fig 3C). For ease 334 

of numerical simulation, we choose a uniform width (area of catchment/representative 335 

hillslope length) for all hillslope elements. Boundary conditions were set to the 336 

atmospheric boundary at the top and the no flow boundary at the left margin. Towards 337 

the lower boundary, a gravitational flow condition was established.  338 
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Figure 3 Workflow diagram illustrating the major steps involved in deriving the representative 339 

hillslope catena for the catchment W22. Derivation of raster maps (streams, flow accumulation, 340 

aspect, distance, elevation to river from the filled digital elevation model (DEM) (A). Selection and 341 

binning of every distance and corresponding elevation to the nearest river segment (B). 342 

Calculation of mean distance using flow accumulation weights (see also Appendix – A). Final 343 

derived representative hillslope (pink overlay line in panel B) in panel C. 344 
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3.3 Transfer of System Parameters from Weiherbach 345 
Since our present study area in the Elsenz-Schwarzbach consists mainly of agricultural 346 

loess catchments with similar geological and pedological characteristics of the previously 347 

monitored Weiherbach catchment (Zehe et al., 2001) and have the same major crops, we 348 

attempted a transfer of the soil and land use parameters from the previous field 349 

experiments (Fig 2-T). 350 

A typical hillslope soil catena in the Weiherbach (Fig 2T: Zehe et al., 2001)   consists of 351 

Calcaric Regosol (FAO/UNESCO, 1988; Pararendzina) or Luvisol (FAO/UNESCO, 1988; 352 

Parabraunerde) on top and mid slope sectors and Coluvisol (FAO/UNESCO, 1988; 353 

Kolluvium) in the hillslope foot. Hence, the representative hillslopes were assumed to 354 

have a similar distribution of soils along the downstream profile (Calcaric Regosol / 355 

Luvisol along 90% of the length of the hillslope and Coluvisol on the remaining 10%). The 356 

soil hydraulic functions based on the parameters of Mualem (1976) and van Genuchten 357 

(1980) were determined by Schäfer (1999) and Delbrück (1997) for the typical soils in 358 

the Weiherbach using both field and laboratory experiments (See Table 3 in Zehe et al. 359 

2001). The same was utilized to set up the soil properties in the present study.   360 

Estimates of surface roughness after the Manning-Strickler coefficient, Kst, for different 361 

crop types and maturity stages were obtained from more than 60 irrigation experiments 362 

conducted in the Weiherbach. (Throughout the remainder of this work, we use both 363 

Manning’s roughness and Strickler values interchangeably to refer to the roughness 364 

coefficient (k) in the Gauckler-Manning-Strickler formula. Interested readers are referred 365 

to (Hager, 2015) for a historical anecdote). However, previous studies (Lumbroso and 366 

Gaume, 2012) have shown that the traditional estimates of the Manning’s coefficient do 367 

not adequately represent flash flood conditions. Specifically, due to overbank flow during 368 

such extreme events, changes in the associated roughness properties are invariable. 369 

Hence, due to the high uncertainties involved in such calculations and the non-linear 370 

changes (e.g., overbank flow) typically seen during flash floods, we use an ensemble 371 

approach for the surface roughness. In principle, instead of running the model for one 372 

pre-selected Manning’s roughness, we run the simulations for the range of Strickler 373 

values within the reported experiments in the Weiherbach (6-12 m1/3/s) and report the 374 

mean and spread of the ensemble predictions.  375 



16 
 

As stated, CATFLOW also includes an advanced evapotranspiration subroutine, which 376 

enables time continuous simulations for a model spin up. However, use of this module 377 

requires detailed information about the relative fraction of each crop, which is not 378 

available for the summer of 2016, as well as detailed ground based data on radiation, 379 

wind speed, air humidity and temperature, which are neither at hand for our study area 380 

nor for most regions in the world. Hence, we decided not to use the inbuilt 381 

evapotranspiration module, but ran the model using globally available climate data sets 382 

for the model spin up. Specifically, we coupled the hillslope model with the climate 383 

reanalysis product ERA5 Land (Muñoz-Sabater et al., 2021), using precipitation and 384 

evapotranspiration during the event simulation and for model spin up as detailed in the 385 

next sections.  386 

3.4 Initial and Boundary Conditions 387 
The problem of inferring the initial conditions is a key challenge in all event-based 388 

modelling strategies (Beauchamp et al., 2013; Zeimetz et al., 2018). The challenge is 389 

usually not estimating the “actual” soil moisture state but establishing an initial state 390 

coherent with the land atmosphere interactions and parameterisations within the model 391 

(Koster et al., 2009). In essence, we seek an initialisation identical to the dynamics being 392 

captured by our model.   393 

In the present work, we use the ERA5 Land hourly precipitation and evapotranspiration 394 

reanalysis data for initializing our representative hillslope model (Fig 2I) within a spin-395 

up period of a year. The model was run using the mean catchment values of forcing data 396 

from ERA5 Land until the event of interest (8.06.2016 00:00 UTC); the corresponding soil 397 

moisture pattern was saved and then used as initial conditions for the event simulation 398 

with a radar based precipitation estimate (temporal resolution of 5 min) without 399 

recalibration. 400 

During the event of 08 June 2016 (Appendix – B), there were no operational rainfall 401 

gauges that we know of, within the catchment area of Krebsbach. The nearest gauge 402 

operated by the Baden-Württemberg State Institute for the Environment, Survey and 403 

Nature Conservation (Landesanstalt für Umwelt, Messungen und Naturschutz Baden-404 

Württemberg - LUBW) lay towards the southeast of catchment W22 in Bad Rappenau - 405 

Bonfeld (LUBW Station ID – 76730: Fig B1 in Appendix B). The gauge recorded a total 406 

precipitation sum of around 28 mm on 08 June. The German Weather Services (Deutscher 407 
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Wetterdienst -DWD) operates a nearby gauge in Waibstadt (DWD Station ID – 13674), 408 

west of catchment W44. The DWD gauge reported a total daily precipitation of 11 mm. 409 

Considering the mismatch between the two gauges and the need for a finer 410 

spatiotemporal estimate of the convective storm activity, we opt for a radar product 411 

(temporal resolution – 5 min) provided by Kachelmannwetter (Kachelmannwetter, n.d.) 412 

as the forcing boundary condition for the model. Appendix – B depicts radar images of 413 

the storm on 08.06.2016 over our study region. Overall, it can be seen that the storm 414 

activity is captured quite well by the fine resolution radar product. The direction of the 415 

storm also agrees with the smaller magnitude of total precipitation reported by the DWD 416 

gauge compared to the LUBW gauge (which seems to be nearer to the storm centre: Fig 417 

B1 in Appendix B).  418 

4 Results  419 
In the following section, we first showcase the initialisation using ERA5 Land and 420 

evaluate the performance of the hillslope models in describing the soil moisture changes 421 

at the annual scale (4.1). We then detail the event based flash flood simulations using the 422 

same representative hillslope models and radar based precipitation forcing in 4.2. Finally 423 

(4.3), we discuss the shape and LULC of the four catchments, and shed light on the 424 

potential to include spatially variable precipitation forcings for flash flood simulation 425 

using the representative hillslope approach.  426 

4.1 Model Initialisation with ERA5 Land  427 

Figure 4 shows the top soil (0-5 cm) water content simulated with the representative 428 

hillslope that was forced by ERA5 Land precipitation and evapotranspiration for 429 

catchment W22. Variations of Manning Strickler, Kst (m1/3/s) leads to a variation in soil 430 

water content during the summer period. To characterize the coherence of these soil 431 

moisture simulation with the gridded ERA5 reanalysis product, we calculated the Kling-432 

Gupta Efficiency (KGE) (Gupta et al., 2009) between the CATFLOW top layer soil moisture 433 

ensemble predictions with the spatially averaged ERA5 Land surface soil moisture (0-7 434 

cm) (Fig 4 and Table 1). 435 

While this revealed high KGE values, CATFLOW simulations were consistently drier than 436 

the ERA5 Land reanalysis product and the yearly CATFLOW runs (Figure 4). This 437 

mismatch likely reflects the different soil parameterizations and scale disparities in the 438 

two models. It is important to note that we do not expect perfect fit between the two 439 
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modeled soil moisture products, our interest is in capturing the overall local dynamics in 440 

soil moisture changes for such ungauged regions.  441 

To better understand the relative role of such a bias in the overall KGE calculations, we 442 

also calculated the three components of the modified KGE (Pearson correlation, r and bias 443 

ratio, beta and variability ratio, gamma in Table 1) as per (Kling et al., 2012). As expected, 444 

we obtained high pearson correlation values (around 0.80) for all the different runs 445 

(varying Kst values). The high correlation shows that our approach reproduces the yearly 446 

dynamics of soil moisture changes in the region (using the coarse resolution globally 447 

available ERA5 Land data as a benchmark). The values of beta and gamma indicate the 448 

overall bias and variability of the modeled values compared to the ERA5 Land data. 449 

 

Figure 4: Time series of ERA5 Land surface soil moisture (0-7 cm) averaged over the entire 450 

catchment (grey) and the soil moisture simulations with CATFLOW (0-5 cm), red represents the 451 

ensemble mean, shaded regions depict the uncertainties (± the standard deviation) 452 

corresponding to different values of the Strickler coefficient (Kst = 6-12).  453 

Table 1 Goodness of fit measures between the modeled soil moisture values of different 454 

CATFLOW runs (varying Manning Strickler coefficient Kst) with ERA5 Land surface soil moisture 455 

for catchment W22. 456 

Kst (m1/3/s) KGE r Gamma Beta 

6 0.651 0.798 0.812 0.786 

7 0.654 0.797 0.821 0.784 

8 0.662 0.800 0.836 0.782 

9 0.691 0.822 1.050 0.752 
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10 0.690 0.822 1.051 0.751 

11 0.671 0.800 0.861 0.779 

12 0.699 0.824 1.019 0.756 

 

As we used ERA5 Land forcing variables (precipitation and evapotranspiration) to run 457 

the CATFLOW model, and then again ERA5 Land soil moisture states to evaluate the 458 

model performance, it remains to be seen whether the correlation is not only due to 459 

inherent, modeled dependencies within the reanalysis product. To shed light on this 460 

question, we again compared the CAFLOW simulations to another estimate of soil 461 

moisture for the same region, the in situ Soil Moisture Active Passive (Derksen et al., 462 

2017) remote sensing product and obtained a decent (albeit lower) correlation value of 463 

r=0.61. 464 

4.2 Flash flood modeling using representative hillslopes. 465 
The representative hillslope models were then used to simulate the runoff response for 466 

the convective storm event on 08.06.2016 in the four catchments in the study area using 467 

the dynamical initial conditions obtained from the yearly scale runs using ERA5 Land. It 468 

is worth mentioning here that our approach of initializing the models using the reanalysis 469 

datasets helps in avoiding a random guess of the initial states and in complimenting 470 

parsimony principles. The approach also has implications for operationalization of the 471 

model (by changing the reanalysis product to a suitable nowcast product). Figure 5 472 

displays the simulated catchment response modelled using a uniform precipitation series 473 

- the spatially averaged radar precipitation over each catchment (Appendix - B). The 474 

model performance in the four catchments is evaluated against the reconstructed inflow 475 

hydrograph obtained from the reservoir mass balance (Appendix – C) assuming relative 476 

measurement error measures for peak flow, volume, and time to peak as given in Table 477 

2.   478 
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Figure 5: Rainfall – Runoff hydrographs for the flash flood event on 08.06.2016 at the four 479 

headwater catchments (W22, W32, W39 and W44). Green curve indicates the reconstructed 480 

inflow to the flood defence reservoir (Appendix – C), assuming measurement uncertainties of 5%. 481 

Red curve indicates the mean values (± SD) of the predicted flood discharge by the CATFLOW 482 

model ensemble (varying Strickler coefficient values). All simulation times are in UTC time zone. 483 

Table 2: Characteristics of simulated and reconstructed storm hydrographs. The error values are 484 

calculated between the mean values of the ensemble CATFLOW predictions and the inverted 485 

flood hydrograph for each catchment.  Area of each catchment is indicated in brackets.  486 

Flood Characteristics 

W22 

 (2.91 km2) 

W32   

(5.6 km2) 

W39   

(0.73 km2) 

W44 

 (2.44 km2) 

Obs Sim Obs Sim Obs Sim Obs Sim 

Storm Precipitation (mm) 49 - 35 - 26 - 24 - 

Peak Discharge, Q (m3/s) 4.703 4.421 17.212 3.123 0.406 0.363 0.527 0.943 

Time of Peak, t (s) 58200 55200 58800 57900 56700 58800 61200 56400 

Flood Volume, V (m3) 45637 57978 72209 49868 5189 5959 13466 14537 

Flood Volume, V (mm) 15.7 19.9 12.9 8.9 7.1 8.2 5.5 5.9 

Runoff Coefficient, R 0.32 0.41 0.37 0.25 0.27 0.31 0.23 0.25 
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The model captures the steep ascent of the rising limb of the flood hydrograph, albeit with 487 

a time lag, and matches the magnitude of peak discharge values in at least two out of the 488 

four catchments (W22 and W39). Visually, the uncertainties in the simulated response 489 

due to changes in surface roughness are almost identical to the possible observational 490 

errors in the gauge level measurements (5%) that propagated into the estimated storm 491 

hydrograph. 492 

More specifically, the peak flow errors (Table 1) in W22 (6%) and W39 (11%) are within 493 

the expected ranges considering the high uncertainties involved in local flash flood 494 

predictions. It is also interesting to note that the hillslope approach underestimates the 495 

peak flow magnitude but overestimates the flow volume for both the catchments. Also, 496 

the peak flow is delayed in W39 (happens later than observed) while it occurs earlier in 497 

W22. 498 

On the contrary, in catchment W32, the hillslope model severely underestimates the 499 

storm response, while in W44 it slightly over predicts the discharge values. To better 500 

understand the apparent deviation in performance for catchments W32 and W44 501 

compared to W22 and W39, we closely examined the storm pattern and then the relative 502 

shape, LULC and orientation of the catchments w.r.t the storm activity. 503 

4.3 Role of LULC and distributed rainfall forcing 504 
From Fig 1, we can observe that the catchments W32 and W44 appear to be more 505 

elongated and fan-shaped in contrast to the broader shaped catchments W22 and W39. 506 

Additionally, based on Fig 2P and details provided in Appendix B, the storm's direction 507 

suggests that our initial assumption of uniform precipitation across the representative 508 

hillslopes might not apply as neatly to the elongated catchments (W32 & W44).  509 

However, the quite sharp discharge response of W32 (around 15 m3/s within 15 minutes) 510 

seems unreasonably high when compared with the overall precipitation input and 511 

response in other catchments. One possible explanation could be an obstruction in the 512 

flow path perhaps due to debris like wood or sediment from the agricultural upstream 513 

areas of W32, which, as indicated by Fig B1 in Appendix B, was closer to the storm center. 514 

Percentage Error in Peak 
Discharge, PQ(%) 

- 6  - 82  - 11 - -79 

Error in time to Peak, 
Pt (s) 

- 3000 - 900 - -2100 - 4800 

Percentage Error in Flood 
Volume, PV (%) 

- -27  - 31 - -15 - -8 
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This might have inadvertently created a temporary retention area, which then burst after 515 

a certain point, mimicking the effects of a dam break and resulting in a sudden inflow to 516 

the reservoir. Magnitude amplification due to such debris flows and driftwood blockages 517 

during flash floods have been reported in regions around the world (Chen et al., 2021; 518 

Schalko et al., 2018; Spreitzer et al., 2019). 519 

The total event runoff coefficients calculated for each catchment (Table 2) also shows that 520 

while the approach slightly overestimates the response in all the other three catchments 521 

(W22, W39 and W44), it underrepresents the runoff response by around 12% in 522 

Catchment W32. One possible reason for the apparent stronger runoff production, might 523 

be the presence of larger fraction of impervious sealed built-up surface in W32. From 524 

Figure 1, it is seen that the small town of Haselbach lies within the catchment area, this 525 

contrasts to the other three catchments which are mostly only of agricultural or forest 526 

type (which also imposes limitations on the parameter transfer from the agricultural 527 

rural Weiherbach catchment). Another interesting point is that there is a well defined 528 

distribution of agricultural and forested areas along the stream profile in W32 (crops at 529 

the upstream plateaus and forest along the tributaries or near the outlet). These regions 530 

could hence behave like sub catchments having distinct concentration times.  531 

However, it is worthwhile to note that out of all the four catchments the timing of the 532 

peak is most accurately captured in W32, which also has relevant implications for flood 533 

warning systems. 534 

To investigate whether a distributed forcing input could help in better characterization 535 

of response in such elongated catchments, we again ran the simulations for catchments 536 

W32 and W44 using different rainfall time series along the representative hillslopes. 537 

Intuitively, we divided the catchment as having two different precipitation forcings over 538 

the upstream and downstream regions, to better reflect the storm pattern over the region 539 

(Appendix-B). Since this didn’t lead to major changes for catchment W32 (apart from a 540 

minor increase in the peak flood), we only show the results for W44 in Fig 6. The 541 

predicted discharge values for catchment W44 are now remarkably close to the observed 542 

ones, relative peak errors reduce from around 80% to just 2% (Table 3). The relative 543 

volume error decreases to 2% from the earlier 8%, while the time to peak error remains 544 

nearly constant. This might be due to the longer stream network and the inability of the 545 
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hillslope approach to mimic the stream routing in such elongated hillslopes with more 546 

stream structures.  547 

 

Figure 6 Flood hydrographs for catchment W44. Green curve indicates the reconstructed 548 

reservoir inflow, dotted red curve stands for model run using uniform precipitation forcing for 549 

the entire representative hillslope, solid red line denotes the model run with distributed forcing. 550 

All simulation times are in UTC time zone. 551 

Table 3: Goodness of fit measures for the representative hillslope modelled discharges (Kst =9) 552 

with the reservoir stage inverted streamflow measures for distributed forcings over catchment 553 

W44. 554 

Flood Characteristics 
W44  (2.44 km2) 

Observed Uniform forcing 
Distributed   

forcing 
Peak Discharge, Q (m3/s) 0.527 0.959 0.535 

Time of Peak, t (s) 64800 56100 56400 
Flood Volume, V (m3) 13465.92 14567.44 13714.541 
Runoff Coefficient, R 0.23 0.25 0.25 

Percentage Error in Peak 
Discharge, PQ (%) - -82.19 -1.52 

Error in time to Peak,  
Pt (s) 

- 53.13 50 

Percentage Error in Flood Volume, 
PV (%) 

- -8.18 -1.8 
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5 Discussion 555 
In this study, we aimed to predict flash flood responses in data-scarce, small (<6 km2) 556 

headwater catchments subjected to convective storm events. We utilized the 557 

representative hillslope concept and transferred parameters from a previous 558 

experimental catchment to establish process-based models for the four catchments 559 

under consideration. Given the absence of a comprehensive observational network in the 560 

area, we dynamically initialized initial conditions using climate reanalysis data. 561 

Furthermore, compared our event based simulations with reservoir streamflow inverted 562 

hydrographs. This comparison allowed us to quantify the relative simulation error 563 

values. Our endeavor to model and understand flood dynamics in these specific regions, 564 

despite the data limitations, gave crucial insights which presents a step forward in 565 

mitigation and preparation for such extreme events. 566 

5.1 Towards short term predictability in ungauged basins  567 

The Predictions in Ungauged Basin Initiative (IAHS PUB Initiative: Hrachowitz et al., 568 

2013) attempted to bridge the gap in hydrologic predictions over ungauged basins by the 569 

concept of regionalization i.e to undertake a transfer of hydrological understanding from 570 

gauged to ungauged environments. Spatial proximity is one of the most widely used and 571 

simple regionalization techniques.  The successful transfer of the previously obtained soil 572 

hydraulic parameters and the catena from the Weiherbach to the four Elsenz-573 

Schwarzbach catchments, suggests that both could be valid in the entire hydrological 574 

landscape, the Kraichgau. The same applies to the crop specific Manning-Stricker 575 

parameters. In consequence, hydrological observatories like the Weiherbach (Zehe et al., 576 

2001), the HOAL (Blöschl et al., 2016) or the Attert experimental basin (Pfister et al., 577 

2017) could serve as donors for soil and vegetation parameters and behavioral hillslope 578 

setups within the same hydrological landscape.  579 

Flash floods usually come as (bad) surprises, often impacting regions when and where 580 

we least expect them (Borga et al., 2008). Hence, strategies that provide robust warnings 581 

are essential. However, since they are also quite rare in nature, there lacks a coherent 582 

motivational starting point to invest time and resources into them (Montz and Gruntfest, 583 

2002). In this study, we derived representative hillslope catenas for four head water 584 

catchments preserving their geopotential energy differences along the mean distance to 585 

the stream. Since, these representative catenas are thermodynamically consistent (based 586 
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on relative elevation differences and flow accumulation weighted mean values as 587 

discussed in Section 3.1 & Appendix -A) to the flow profiles in the catchment, we 588 

postulated that the representative hillslope should be able to provide reasonable 589 

estimates for rainfall-runoff prediction without the need for any manual event 590 

calibration.  591 

While our approach provided near uncalibrated predictions for surface runoff in two out 592 

of the four catchments (W22 &W39), in the third catchment (W44), we had to release the 593 

assumption of uniform precipitation forcing over the hillslope and go for a distributed 594 

approach. The method was not able to capture the abrupt response in Catchment W32. 595 

However, as discussed in the text, the different landuse patterns within such elongated 596 

catchments implies that we may have to go for an approach involving different hillslopes 597 

for the different LULC classes and then add a suitable flow routing component to avoid 598 

the mismatch. In case they are not at hand, the soil hydraulic parameters (transferred 599 

from the experimental Weiherbach catchment in the current study: Table 3 in Zehe et al 600 

2001) can be estimated using soil maps and textural data based on pedo-transfer 601 

functions (Rosetta: Schaap, 1999) for catchments of interest. The ensemble approach of 602 

using a range of roughness values helps overcome uncertainties involved in such 603 

parameters during extreme event simulations. This could be a first step in 604 

operationalization of such a flash flood event modeling system for small to lower 605 

mesoscale catchments with data gaps and scarcity issues.  606 

5.2 Tackling data scarcity   607 

Continuous simulations, for estimating initial conditions for the event simulations, were 608 

conducted using globally available climate reanalysis products (ERA5 Land). The 609 

importance of such antecedent soil moisture conditions in constraining the flood 610 

response cannot be overemphasized (Manoj J et al., 2023, 2022;), as has been shown for 611 

many catchments across Europe (Berghuijs et al., 2019; Blöschl et al., 2019, 2017). Global 612 

climate models have delivered commendable outcomes when it comes to capturing 613 

climate and weather extremes on regional scales. However, their potential in estimating 614 

the impacts of smaller scale hydrological events remains largely unexplored (IPCC, 2021; 615 

Poschlod, 2022). The representative hillslope approach which marries the beneficial 616 

components of lumped conceptual models with hydrological process based paradigms 617 
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could be a way forward to implement the vast knowledge of climate model simulations 618 

to smaller event scales.  619 

Marchi et al. (2010) analysed around 25 major flash floods over Europe and showed that 620 

proper observational records didn’t exist for more than half of the investigated events. 621 

During such intense flash floods, direct current meter measurements are often not 622 

possible due to safety and technical considerations. Furthermore, these events usually 623 

occur in remote ungauged regions with limited accessibility (Borga et al., 2008). It is 624 

important to stress here that even in cases with flow measurement gauges, prediction of 625 

discharge values during such convective events usually involves lot of uncertainties due 626 

to faulty devices, dynamical riverbed changes and floating debris in the stream 627 

(Lumbroso and Gaume, 2012).  As is common in such poorly gauged catchments 628 

(Bronstert et al., 2018), we didn’t have a streamflow gauge to compare our model 629 

performance, and hence we made use of the reservoir geometry and downstream flood 630 

retention reservoirs to obtain a crude estimate of the storm characteristics. This strategy 631 

creates a win-win situation, because local water resource managers are natural end users 632 

of such a warning system, and we tremendously increase the sample of historical test 633 

cases and complement the small sample that is available from the few gauging stations 634 

that observe catchments < 10 km2. 635 

5.3 Implications for Design Considerations 636 

Natural streamflow variability has been altered by both climate change and 637 

anthropogenic water resources management policies (Pérez Ciria et al., 2019) over the 638 

last decades. Hence, it becomes imperative to consider multiple hydrological scenarios 639 

and a broader range of climatic forcings for the design of reservoirs and other flood 640 

control measures.  641 

 The evaluation and design of such hydraulic structures are generally based on univariate 642 

extreme values statistics, in Germany usually inferred from gridded KOSTRA rainfall 643 

extremes (Junghänel et al., 2017). These serve as input for event-based rainfall-runoff 644 

simulations using rather simple concepts such as the unit hydrograph hydrological 645 

models and in combinations with conceptual methods like the SCS-Curve number or 646 

rational method. This approach is essentially linear, which implies that the return period 647 

of the precipitation event determines the return period of flood runoff. Formation of flash 648 
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flood runoff is essentially non-linear, a 200-year precipitation event can cause a 10000 649 

year flood, as observed for instance in the Weiherbach (Villinger et al., 2022).  650 

Similarly, the flood reservoir W22 has been designed for a 100 year flood, though the 651 

precipitation event in 2016 had a return period (based on total precipitation) between 652 

10 -20 years (Zehe  et al, 2023) it still resulted in overflowing of the reservoir. In a 653 

different study we tested whether the event in 2016 could be reproduced using the 654 

simple FGM model (Ihringer, 1994 : the model uses the Unit Hydrograph method), that 655 

was used for designing the flood retention reservoir W22. This worked – but only after 656 

doubling the precipitation amount, which changes the return period from 20y to 200 -657 

500y. Thus underpinning, that standard estimators for runoff coefficients have 658 

deficiencies to cope with Hortonian overland flow and its strong dependence on 659 

precipitation intensity. This has crucial implications for the design and management of 660 

water resource infrastructure in a warming climate. Spatially distributed, process-based 661 

approaches that conserve both mass and momentum principles can incorporate multiple 662 

processes and complex feedbacks during the event. Ultimately, this helps to account for 663 

non-linear system responses and tipping points (L.Pimm, 1985).  664 

Throughout Europe, record breaking summer heatwaves and droughts have been 665 

reported in recent years (Tripathy and Mishra, 2023: 2022 Compound Drought and Heat 666 

Wave). The occurrence of convective storm driven floods during summers have 667 

compounding effect on reservoir water management policies as water resources 668 

planners and reservoir operators face the daunting task of balancing the need for 669 

agricultural and irrigation water demand with the challenge of tackling flood risk. 670 

Efficient modeling and forecasting of flash floods could help mitigate the risk of such 671 

interconnected hazard cascades. Vegetative plant barriers (Richet et al., 2017) and other 672 

ecosystem based flood defence solutions (Temmerman et al., 2013) have also come up as 673 

a more sustainable and environmental friendly alternative to conventional manmade 674 

flood defense measures. The hillslope scale again emerges as an interesting sub-unit 675 

within a catchment (virtual laboratories: Fatichi et al., 2016) for testing the impact of such 676 

bio geomorphological measures on runoff response and sediment yield. 677 

5.4 Limitations and Outlook 678 

The perils of applying continuum-based models at scales for which the governing 679 

equations were not developed is well reviewed in literature (Hrachowitz and Clark, 680 
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2017). Such distributed, process-based approaches are also criticized for their 681 

complexity and larger data requirement compared to simple conceptual models. 682 

Conceptual (scaled-down) approaches on the other hand do not perform well in regions 683 

and scenarios which deviates from their well calibrated range of conditions  (Fatichi et 684 

al., 2016; Hrachowitz and Clark, 2017). Hence, on balance, we believe that, under the 685 

threat of a non-stationary climate (Milly et al., 2008) and unprecedented flow regime 686 

changes, strategies which involve a convergence of different modelling philosophies are 687 

called for.  688 

The representative hillslope approach for flash flood modelling is a venture in this regard. 689 

However, limitations remain that need to be properly understood and accounted for. The 690 

2D effective representative hillslope used to represent the catchments implies the 691 

assumption of symmetry where the runoff production is controlled by hillslope parallel 692 

and vertical fluxes and their driving gradients (Loritz et al., 2017). The derived effective 693 

catena profile depicts our best guess based on the available topographical data (DEM). 694 

Any uncertainties and errors in the terrain representation will invariably propagate to 695 

our model geometry. Another point is the sensitivity to different DEM resolutions, raster 696 

filling and flow direction algorithms (Loritz et al., 2019).  697 

So far, the flood simulations were essentially event based with no separate baseflow 698 

component (a constant baseflow was considered from start till end). Moreover, in our 699 

case, we do not attempt to fit the model response to the discharge curve obtained from 700 

the reservoir level measurements. Our main aim is to mimic the catchment response 701 

during such high intensity events in a simple, parsimonious manner. We also endeavored 702 

to consider the uncertainties in our modelled response (by varying the surface 703 

roughness) and the observational benchmark (relative error in gauge measurements). It 704 

is indeed true that the choice of process based model implies that we deal with a much 705 

larger number of system parameters and boundary conditions, compared to conceptual 706 

models. The strength is that these parameters are observable and, as shown in this study, 707 

transferable.  708 

The forcings and soil moisture simulated by any land surface model (ERA5 Land, in our 709 

case) is highly model-dependent and direct transfer of one model product to another can 710 

lead to inconsistencies due to deviations in formulations (Koster et al., 2009). Attempting 711 

such a switch of forcing from a coarse gridded reanalysis product (ERA5 Land) to a fine 712 
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resolution radar precipitation product would usually entail a re-engineering of the model 713 

and associated variables. However, we show here that a process based, spatially 714 

distributed model can capture the dynamics due to their mechanistic description of the 715 

flow system (conserving both the energy and mass balances). Moreover, as we show in 716 

Section 4.1, we are more interested in the temporal soil moisture variability rather than 717 

the absolute values predicted by the models. Hence, we expect very less model bias due 718 

to the choice of the reanalysis product. 719 

One argument frequently put against the use of process-based models in flash flood 720 

modelling and forecast strategies is their higher computational times. In the current 721 

attempt, we reiterate that by employing a representative approach which spatially 722 

averages along the main driving gradient of flow, we can preserve the total flow potential 723 

of the catchment without significant computational effort (For reference, the spin-up 724 

phase for the entire year had run time of less than 10 minutes while the event simulation 725 

for each catchment took around 2 minutes, in a normal Windows PC with 32GB RAM 726 

only).  727 

Conclusions 728 
The method of modeling flash floods in data-scarce, small headwaters using 729 

representative hillslopes, supplemented by climate reanalysis products, appears to be a 730 

viable pathway for achieving dependable rainfall-runoff simulations during high 731 

intensity storm events. By ensuring that these representative hillslopes align with the 732 

principles of thermodynamic conservation, we strike a balance between the intricacies 733 

required by physically based models and the desired simplicity rooted in parsimony 734 

considerations. Integrating with global climate reanalysis products effectively addresses 735 

the persistent challenges of data availability, a crucial aspect when modeling extreme 736 

events in data-limited regions globally. The findings indicate that the modeled 737 

hydrograph aligns well with the observed flood curve, derived from reservoir gauge level 738 

measurements, in three of the four studied catchments. While the approach 739 

demonstrated limitations in one of the region's larger catchments, further exploration 740 

and research, as outlined in the subsequent text, could provide more insights into 741 

modeling elongated catchments, especially those with urban developments. 742 
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Appendix – A (Energy considerations in the derivation of the representative hillslope 743 
catena) 744 
 

 

Figure A1 Plots showing the distribution of elevation values of each cell within four distinct 745 

distance classes from Fig 3B. The pink line denotes the representative hillslope profile derived 746 

from the mean elevation values using the approach detailed in Section 3.1. 747 

From Newtonian mechanics, flow potential at a relative elevation (ℎ) is defined as 748 

𝐸 =  𝑚 × 𝑔 × ℎ (A1) 

Where 𝐸 is the potential energy of the water on the hillslope (J), 𝑚 is its mass (kg), 𝑔 749 

represents the gravitational acceleration (m s−2), and ℎ is the relative height of the water 750 

above a reference (m). 751 

For each class (say  𝑥 = 𝑙 m), the average flow potential due to elevation values is related 752 

to the sum of the individual flow potential of all the cells (𝑗: 1 𝑡𝑜 𝑛)  within the class 753 

𝐸௔௩௚
௫ୀ௟ =  

𝐸௧௢௧௔௟
௫ୀ௟

𝑛
=  

∑ 𝐸௝
௫ୀ௟௡

௝ୀଵ

𝑛
 (A2) 
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The flow potential in the representative hillslope element at x = 𝑙 m is given by: 754 

𝐸ത௫ୀ௟ =  𝑚ഥ  × 𝑔 × ℎത (A3) 

Where ℎത is the estimate of weighted mean elevation for a class at distance 𝑙 ,calculated 755 

using Eqn. 3.1 in Section 3.1. Table A1 shows these different energies for all the four 756 

classes illustrated in Fig A1. On average, the relative errors between flow potential in the 757 

classes and in the derived representative catena are seen to decrease as the distance from 758 

the stream increases. 759 

Table A1 The difference between the total flow potential in each class (Figure A1) and in the 760 

derived representative hillslope in terms of density, 𝜌 and gravitational acceleration, 𝑔. 761 

 

  

Classes 𝑙 = 100 𝑚 𝑙 = 200 𝑚 𝑙 = 300 𝑚 𝑙 = 400 𝑚 

 𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛  𝑐𝑙𝑎𝑠𝑠 , 𝐸௔௩௚
௫ୀ௟ 301𝜌𝑔 660𝜌𝑔 877𝜌𝑔 1152𝜌𝑔 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛 𝑝𝑟𝑜𝑓𝑖𝑙𝑒, 𝐸ത௫ୀ௟ 245𝜌𝑔 558𝜌𝑔 801𝜌𝑔 1079𝜌𝑔 

Relative Error (%) -22.8 -18.28 -9.4 -6.7 
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Appendix – B (Storm Event on 08.06.2016) 762 
 

 

Figure B1 Overview of the Schwarzbach catchment till the LUBW streamflow station at 763 

Eschelbronn. In addition, the total accumulated precipitation (in mm) during the event is depicted 764 

as an overlay layer over the four catchments. Also, shown are the DWD and LUBW precipitation 765 

gauges. 766 
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Figure B2 Evolution of the convective storm event on 08.06.2016 over the Krebsbach as captured 767 

in the chosen radar based precipitation product (Kachelmannwetter, n.d.). 768 
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Figure B3 Impact of flash floods on 08.06.2016 over Catchment W22. (Zweckverband 769 

Hochwasserschutz Elsenz-Schwarzbach) 770 
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Appendix – C (Flood estimation using reservoir mass balance) 771 
 

Mass conservation has long been the foundation of hydrological modeling. This basic 772 

physical law is usually expressed (for hydrological systems) in the form of: 773 

     
ௗௌ

ௗ௧
= 𝐼(𝑡) −  𝑂(𝑡) (C1) 

 where the change of a system’s mass storage (S) with respect to time (t) is equal to total 774 

mass input, 𝐼(𝑡) minus total mass output, 𝑂(𝑡). This represents one of the most basic 775 

physical constraints placed on the functioning of any hydrological system. 776 

Considering the mass balance of the downstream flood reservoirs in the four catchments 777 

(Fig 1 and B1) as shown in Fig C1, the storage in the reservoir at any time t being a 778 

function of the level (h). An automatic recorder measures the water level in the reservoir 779 

as shown in Fig C1. The outflow being again a function of the water level in the reservoir. 780 

Having knowledge of the reservoir geometry relations (𝑆 = 𝑓(ℎ)) and the stage-781 

discharge relationship of the outlet (𝑂 = 𝑔(ℎ)), we now need to estimate the inflow to 782 

the reservoir from the catchment due to the convective storm activity. Again, from Eq C1: 783 

     
ௗௌ

ௗ௧
= 𝐼(𝑡) −  𝑂(𝑡) (C1) 

𝑆(𝑡 +  ∆𝑡, ℎ + ∆ℎ) − 𝑆(𝑡, ℎ)

∆𝑡
= 𝐼(𝑡) −  𝑂(𝑡)  (C2) 

Hence, the inflow is given by, 784 

𝐼(𝑡) =
𝑆(𝑡 + ∆𝑡, ℎ + ∆ℎ) −  𝑆(𝑡, ℎ)

∆𝑡
+  𝑂(𝑡) 

 
(C3) 

Now for the uncertainty analysis, we consider a relative error of 5% in the reservoir level 785 

measurements and again calculate the inflows using Eq. C3. The inflow hydrograph 786 

obtained, and calculations are further shown for catchment W22 in Fig C2 and Table C1 787 

respectively. 788 
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Figure C1 Schematic representation of the reservoir mass balance inversion 789 

Table 2 Reservoir mass balance calculations for catchment W22 790 

S No Time Level 
(m) 

Storage 
(m3) 

Change in 
Storage 

(m3) 

Outflow 
(m3/s) Dt Inflow 

(m3/s) 

63 08-06-2016 
15:45 

1.12 41.94883 16.42903 0.354373 900 0.372627 

64 08-06-2016 
16:00 

1.4 107.4919 65.54307 0.407547 900 0.480373 

65 08-06-2016 
16:15 

1.98 471.3575 363.8656 0.500051 900 0.904346 

66 08-06-2016 
16:30 

2.48 1828.668 1357.311 0.565968 900 2.074091 

67 08-06-2016 
16:40 

2.82 3952.833 2124.165 0.605154 600 4.145429 

68 08-06-2016 
16:50 

3.06 6215.17 2262.337 0.631057 600 4.401619 

69 08-06-2016 
17:00 

3.26 8583.66 2368.49 0.651033 600 4.598516 

70 08-06-2016 
17:10 

3.43 11005.15 2421.491 0.666923 600 4.702742 

71 08-06-2016 
17:20 

3.53 12547.01 1541.86 0.676144 600 3.245911 

72 08-06-2016 
17:30 

3.6 13690.94 1143.932 0.68265 600 2.589203 
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Figure C2 Reconstructed inflow time series for catchment W22. All times in CET. 791 
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