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Appendix 1 2 

Description of the fully nonlinear Boussinesq wave model FUNWAVE-TVD 3 

 4 

The numerical phase resolving model FUNWAVE_TVD is based on the conservative form 5 

of the fully nonlinear Boussinesq equations formulated by Shi et al. (2012). Following Tonelli 6 

and Petti (2009) wave breaking forces the model to switch from Boussinesq equations, where 7 

dispersive and nonlinear effects are of a similar order of magnitude, to the nonlinear shallow 8 

water equation, where nonlinearity dominates. This model employs a Total Variation 9 

Diminishing (TVD) spatial discretisation scheme to solve the fully non-linear Boussinesq 10 

equation (combining finite-volume for nonlinear terms and finite-difference for dispersive 11 

terms) and incorporates a time-dependent reference level (Kennedy et al. 2001) moving with 12 

the instantaneous free surface to calculate the velocity potential. The combination of the 13 

shock-capturing TVD scheme and moving reference provides robust performance in 14 

simulating breaking waves and optimising nonlinear behaviour. Furthermore, the model uses 15 

an adaptative time stepping defined from a third-order Strong Stability-Preserving (SSP) 16 

Runge–Kutta scheme (Gottlieb et al., 2001) to increase model stability. The conservative form 17 

of the fully nonlinear Boussinesq equations in FUNWAVE_TVD employs a modification of the 18 

leading order pressure term in the momentum equation using a modified surface gradient 19 

term such as:  20 

 21 

𝜂𝑡 + ∇. M = 0  (A1.1) 

𝑀𝑡 + ∇. [
𝑀𝑀

𝐻𝑡𝑜𝑡
] + ∇ [

1

2
𝑔(𝜂2 + 2ℎ𝜂)]

= 𝐻𝑡𝑜𝑡{𝘶̅2,𝑡 + 𝘶𝛼. ∇𝘶̅2 + 𝘶̅2. ∇𝘶𝛼 − 𝑉1,𝑡
′ − 𝑉1

" − 𝑉2 − 𝑉3 − 𝑅}

+ 𝑔𝜂∇ℎ (A1.2) 

 22 
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where ∇ denotes the horizontal partial derivative ((𝜕 𝜕𝑥⁄ ), (𝜕 𝜕𝑦⁄ )), 𝜂 is the free surface 23 

elevation, ℎ is the water depth, 𝐻𝑡𝑜𝑡 = ℎ + 𝜂 is the total local water depth and 𝑔 is the 24 

gravitational acceleration, the terms ∇ [
1

2
𝑔(𝜂2 + 2ℎ𝜂)] and 𝑔𝜂∇ℎ are components of the 25 

surface gradient. The horizontal volume flux is expressed as:  26 

 27 

𝑀 = 𝐻𝑡𝑜𝑡{𝘶𝛼 + 𝘶̅2}  (A1.3) 

 28 

where 𝑢𝛼 is the horizontal velocity at the reference level 𝑧𝛼 = 𝜁ℎ + 𝛽𝜂 (from Kennedy et al. 29 

(2001)) with 𝜁=-0.53 and 𝛽=0.47. While 𝑢2 is the depth dependant correction at 𝑂(𝜇2) (with 30 

𝜇 representing the ratio of depth over wave length) that is expressed as: 31 

 32 

𝘶2(𝑧) = (𝑧𝛼 − 𝑧)∇𝐴 +
1

2
(𝑧𝛼

2 − 𝑧2)∇𝐵  (A1.4) 

 33 

with ∇𝐴 =  ∇. (ℎ𝘶𝛼) and ∇𝐵= ∇. 𝘶𝛼. The depth-averaged contribution to the horizontal 34 

velocity field is given by: 35 

 36 

𝘶̅2 =
1

𝐻𝑡𝑜𝑡
∫ 𝘶2(𝑧)𝑑𝑧 = [

𝑧𝛼
2

2
−

1

6
(ℎ2| − ℎ𝜂 + 𝜂2)]

𝜂

−ℎ
∇𝐵 + [𝑧𝛼 +

1

2
(ℎ − 𝜂)] ∇𝐴  (A1.5) 

 37 

𝑉1 and 𝑉2 represent the dispersive terms of the Boussinesq equation defined as: 38 

 39 

𝑉1 =  {
𝑧𝛼

2

2
∇𝐵 + 𝑧𝛼∇𝐴}

𝑡
− ∇ [

𝜂2

2
𝐵𝑡 + 𝜂𝐴𝑡]  (A1.6) 

𝑉2 = ∇ {(𝑧𝛼 − 𝜂)(𝑈𝛼. ∇)𝐴 +
1

2
(𝑧𝛼

2 − 𝜂2)(U𝛼. ∇)𝐵 +
1

2
[𝐴 + 𝜂𝐵]2}  (A1.7) 

 40 

with 𝑉3 representing the second order (𝑂(𝜇2)) effect of the vertical velocity, which is 41 

expressed as: 42 

𝑉3 = 𝜔0𝑖𝑧 × 𝘶̅2 + 𝜔2𝑖𝑧 × 𝘶𝛼  (A1.8) 

 43 
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Where with 𝑖𝑧 the unit vector in the vertical direction and: 44 

 45 

𝜔0 = (∇ × 𝘶𝛼). 𝑖𝑧 = 𝑣𝛼,𝑥 − 𝑢𝛼,𝑦   (A1.9) 

𝜔2 = (∇ × 𝘶̅2). 𝑖𝑧 = 𝑧𝛼,𝑥(𝐴𝑦 + 𝑧𝛼𝐵𝑦) − 𝑧𝛼,𝑦(𝐴𝑥 + 𝑧𝛼𝐵𝑥)  (A1.10) 

 46 

𝑅 in Eq. A3.2 represents the combination of diffusive (𝑅𝑠) and dissipative (𝑅𝑓) terms (Chen et 47 

al., 1999) induced by sub-grid lateral turbulent mixing and bottom friction, 𝑅 = 𝑅𝑠 + 𝑅𝑓, with 48 

𝑅𝑓, expressed as: 49 

𝑅𝑓 =
𝐶𝑑

ℎ + 𝜂
𝘶𝛼|𝘶𝛼| 

(A1.11) 

where 𝐶𝑑 is the bottom friction coefficient.  50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 
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Appendix 2 66 

Description of the Bispectra Mode Decomposition 67 

Advantages and limitations of orthogonal decomposition methods 68 

Since its first application to fluid mechanics (Lumley, 1967), the Empirical Orthogonal 69 

Function (EOF) analysis has been used extensively to identify stationary patterns in random 70 

wavefields. However, the limitations of this approach are twofold. First, a single physical wave 71 

transformation process can be spread over more than one EOF mode; inversely, more than 72 

one physical process can contribute to one EOF mode. Additionally, the orthogonal nature of 73 

the EOF modes does not support the complex values necessary to define the physical 74 

properties of the wavefield from high-order spectral analysis. Therefore, the EOF analysis 75 

cannot establish causality between modal states and physical processes other than physical 76 

mechanisms previously accepted in the literature (e.g. standing waves) (Emery and Thomson, 77 

2014).  78 

 79 

Development and advantages of high-order spectral decomposition methods  80 

Investigating the generation of stationary patterns from coherent wave amplification 81 

requires a decomposition method capable of holding information on both spectral and phase 82 

characteristics of the wavefield. Such information can be provided by high-order statistical 83 

analyses such as bispectrum, defined from the third moment of the data field (Hasselmann et 84 

al., 1963). The bispectrum presents attractive properties to identify coherent wave 85 

amplification. It is not only capable of detecting quadratic phase coupling for specific sets of 86 

frequencies but also represents a measure of skewness, which is expected to increase in areas 87 

of wave ray intersection (e.g. Janssen and Herbers, 2009). Despite these advantages, the 88 

bispectrum is only applicable to one-dimensional spatial domains. To overcome this 89 

limitation, Schmidt (2020) recently introduced the Bispectra Mode Decomposition (BMD), 90 

which consists of maximising the expansion coefficients of a spatial integral measure of the 91 

bispectrum. Thus, the BMD can be regarded as a decomposition method based on the same 92 

principle as the spectral EOF but applied to higher-order spectral analysis.  93 
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 94 

Description of the Bispectral Mode decomposition method 95 

In the BMD approach, the time series of two-dimensional sea surface elevation 96 

observations defined in the time domain and cartesian coordinate system (𝑞(𝜉, 𝑡) ∈  ℂ𝑀×𝑁𝑡) 97 

are first redefined in the frequency domain using Welch's method (Welch, 1967) such as:  98 

𝑞̂(𝜉, 𝑓𝑘) = ∑ 𝑞(𝜉, 𝑡𝑗+1)𝑒−𝑖2𝜋𝑗𝑘/𝑁𝐹𝐹𝑇

𝑁𝐹𝐹𝑇−1

𝑗=0

 

with 𝑘 = 0, … , 𝑁𝐹𝐹𝑇 − 1 

(A2.1) 

where 𝑞(𝜉, 𝑡𝑗) ∈  ℂ𝑀 represents the two-dimensional sea surface observations in the spatial 99 

domain 𝜉 defined by a number of points 𝑀 = 𝑁𝑥, 𝑁𝑦, 𝑁𝑧 at a sample time 𝑡𝑗 with 𝑗 = 0, …, 𝑁𝑡. 100 

𝑁𝐹𝐹𝑇 represents the number of samples in one of the 𝑁𝑏𝑙𝑘 segments used to calculate the 101 

Fourier transform. Two-dimensional observations are, therefore, redefined in the space-102 

frequency domain 𝑞̂(𝜉, 𝑓𝑘) ∈  ℂ𝑀×𝑁𝑏𝑙𝑘. 103 

The product of the Fourier coefficients used to define the bispectrum for frequencies 𝑘 104 

an 𝑙 is obtained from the Hadamard product of the matrices 𝑞̂(𝜉, 𝑓𝑘) ≡  𝑞̂𝑘 and 𝑞̂(𝜉, 𝑓𝑙)  ≡  𝑞̂𝑙 105 

such as:  106 

𝑞̂𝑘∘𝑙 =  𝑞̂𝑘 ∘  𝑞̂𝑙 (A2.2) 

The spatial integral measure of the bispectrum is therefore expressed as: 107 

𝑏(𝑓𝑘, 𝑓𝑙) =  𝐸 [∫ 𝑞̂𝑘
∗ ∘  𝑞̂𝑙

∗  ∘ 
 

Ω

𝑞̂𝑘+𝑙 𝑑𝜉] = 𝐸[𝑞̂𝑘∘𝑙
𝐻𝑞̂𝑘+𝑙] (A2.3) 

 108 

where 𝐸[. ] Is the expectation operator, (. )∗ and (. )𝐻 denote the complex conjugate and 109 

transpose, respectively. Assuming that the observed fluid is incompressible, the form of the 110 

triadic interaction in the Navier-Stokes is used in the BMD to establish a causal relationship 111 

between the product of the two interacting frequency components represented by the term 112 

𝑞̂𝑘∘𝑙  in Eq. A2.3, generating the third frequency component represented by the term 𝑞̂𝑘+𝑙. 113 

Therefore, the interacting and resulting frequency components are linked by a shared 114 

expansion coefficient, 𝑎𝑖𝑗, in the modal decomposition and defined by the linear expansions: 115 
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𝜙𝑘∘𝑙
[𝑖] (𝜉, 𝑓𝑘, 𝑓𝑙) = ∑ 𝑎𝑖𝑗

𝑁𝑏𝑙𝑘

𝑗=1

(𝑓𝑘+𝑙)𝑞̂𝑘∘𝑙
[𝑗]

 (A2.4) 

𝜙𝑘+𝑙
[𝑖] (𝜉, 𝑓𝑘+𝑙) = ∑ 𝑎𝑖𝑗

𝑁𝑏𝑙𝑘

𝑗=1

(𝑓𝑘+𝑙)𝑞̂𝑘+𝑙
[𝑗]

 (A2.5) 

The cross-frequency fields 𝜙𝑘∘𝑙 are maps of phase alignment between two frequency 116 

components, while bispectral modes 𝜙𝑘+𝑙 are linear combinations of Fourier modes related 117 

to the amplitude of oscillations of the sea surface at frequency 𝑘 + 𝑙. Consequently, the 118 

modal decomposition in the BMD is defined from the spectral properties of each segment 119 

obtained from the Welch method rather than from the raw two-dimensional time series of 120 

observations conventionally used in the EOF analysis. Eq. A2.4 and A2.4 can be, therefore, 121 

regarded as the product of expansion coefficients and data matrices such as:  122 

𝜙𝑘∘𝑙
[𝑖]

= 𝑄̂𝑘∘𝑙𝑎𝑖  (A2.6) 

𝜙𝑘+𝑙
[𝑖]

= 𝑄̂𝑘+𝑙𝑎𝑖 (A2.7) 

Where 𝑄̂𝑘∘𝑙 and 𝑄̂𝑘+𝑙 ∈  ℂ𝑀×𝑁𝑏𝑙𝑘 and 𝑎𝑖 = [𝑎𝑖1(𝑓𝑘+𝑙), … , 𝑎𝑖𝑁𝑏𝑙𝑘
(𝑓𝑘+𝑙) ]

𝑇
represents the i-th 123 

vector of expansion coefficients for the (𝑘, 𝑙) frequency doublets, with (. )𝑇 denoting the 124 

transpose. To optimally represent the sea surface characteristics in terms of integral 125 

bispectral density, the set of expansion coefficients 𝑎1 maximising the value of 𝑏(𝑓𝑘, 𝑓𝑙) in Eq. 126 

A2.3 is defined from the numerical radius of the complex product matrix 𝐵 representing the 127 

bispectral density matrix:  128 

𝐵 = 𝑄̂𝑘∘𝑙
𝐻

𝑄̂𝑘+𝑙 (A2.8) 

To seek the expansion coefficients corresponding to the largest eigenvalue 𝜆𝑚𝑎𝑥. This method 129 

allows defining an optimal approximation of the eigenvalue characterising the integral 130 

bispectral density of the wavefield for each pair of frequency components, referred to as the 131 

mode bispectrum 𝜆1(𝑓𝑘, 𝑓𝑙). That is, the integral bispectral density is best represented by the 132 

first mode of the BMD, with other modes having a minimal impact. The peak magnitude of 133 

the optimal complex engine value |𝜆1(𝑓𝑘, 𝑓𝑙)| for the set of frequencies 𝑓𝑘 and 𝑓𝑙  is analogue 134 

to the peak magnitude found in the bispectrum. Therefore, the BMD defines the modal states 135 

of the wavefield in regard to interactions between frequency components, which allows the 136 
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extraction of spatial structures of phase coupling and resulting triadic interactions in two 137 

dimensions.  138 

 139 

 140 


	Appendix 1
	Appendix 2
	Advantages and limitations of orthogonal decomposition methods
	Development and advantages of high-order spectral decomposition methods
	Description of the Bispectral Mode decomposition method


