References

Alexopoulos, G. S., Hoptman, M. J., Kanellopoulos, D., Murphy, C. F., Lim, K. O., & Gunning, F. M. (2012). Functional connectivity in the cognitive control network and the default mode network in late-life depression.Journal of Affective Disorders , 139 (1), 56–65. https://doi.org/10.1016/j.jad.2011.12.002.
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.).
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron , 65 (4), 550–562. https://doi.org/10.1016/j.neuron.2010.02.005
Beck, A. T., Steer, R. A., & Brown, G. (1996). Manual for the Beck Depression Inventory-II . Psychological Corporation.
Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (1988). An inventory for measuring clinical anxiety: Psychometric properties. Journal of Consulting and Clinical Psychology , 56 (6), 893–897. https://doi.org/10.1037/0022-006x.56.6.893
Bishop, S. J., Duncan, J., & Lawrence, A. D. (2004). State anxiety modulation of the amygdala response to unattended threat-related stimuli. The Journal of Neuroscience , 24 (46), 10364–10368. https://doi.org/10.1523/JNEUROSCI.2550-04.2004
Blair, R. J. R. (2007). The amygdala and ventromedial prefrontal cortex in morality and psychopathy. Trends in Cognitive Sciences ,11 (9), 387–392. https://doi.org/10.1016/j.tics.2007.07.003
BrainNet Viewer (Version 2019) [Computer software]. (2013). Mingrui Xia; J Wang; Y He. PLoS ONE 8: e68910.
Brakowski, J., Spinelli, S., Dörig, N., Bosch, O. G., Manoliu, A., Holtforth, M. G., & Seifritz, E. (2017). Resting state brain network function in major depression - Depression symptomatology, antidepressant treatment effects, future research. Journal of Psychiatric Research ,92 , 147–159. https://doi.org/10.1016/j.jpsychires.2017.04.007
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease.Annals of the New York Academy of Sciences , 1124 , 1–38. https://doi.org/10.1196/annals.1440.011
Chao-Gan, Y., & Yu-Feng, Z. (2010). Dparsf: A MATLAB toolbox for ”pipeline” data analysis of resting-state fMRI. Frontiers in Systems Neuroscience , 4 , 13. https://doi.org/10.3389/fnsys.2010.00013
Chen, S.-Y., Feng, Z., & Yi, X. (2017). A general introduction to adjustment for multiple comparisons. Journal of Thoracic Disease ,9 (6), 1725–1729. https://doi.org/10.21037/jtd.2017.05.34
Cullen, K. R., Westlund, M. K., Klimes-Dougan, B., Mueller, B. A., Houri, A., Eberly, L. E., & Lim, K. O. (2014). Abnormal amygdala resting-state functional connectivity in adolescent depression. JAMA Psychiatry , 71 (10), 1138–1147. https://doi.org/10.1001/jamapsychiatry.2014.1087
Deen, B., Pitskel, N. B., & Pelphrey, K. A. (2011). Three systems of insular functional connectivity identified with cluster analysis. Cerebral Cortex , 21 (7), 1498–1506. https://doi.org/10.1093/cercor/bhq186
Dong, D., Wang, Y., Chang, X., Luo, C., & Yao, D. (2018). Dysfunction of Large-Scale Brain Networks in Schizophrenia: A Meta-analysis of Resting-State Functional Connectivity. Schizophrenia Bulletin ,44 (1), 168–181. https://doi.org/10.1093/schbul/sbx034
Dunlop, B. W., Cha, J., Choi, K. S., Rajendra, J. K., Nemeroff, C. B., Craighead, W. E., & Mayberg, H. S. (2023). Shared and Unique Changes in Brain Connectivity Among Depressed Patients After Remission With Pharmacotherapy Versus Psychotherapy. The American Journal of Psychiatry , 180 (3), 218–229. https://doi.org/10.1176/appi.ajp.21070727
Ernst, M., Benson, B., Artiges, E., Gorka, A. X., Lemaitre, H., Lago, T., Miranda, R., Banaschewski, T., Bokde, A. L. W., Bromberg, U., Brühl, R., Büchel, C., Cattrell, A., Conrod, P., Desrivières, S., Fadai, T., Flor, H., Grigis, A., Gallinat, J., . . . Martinot, J.-L. (2019). Pubertal maturation and sex effects on the default-mode network connectivity implicated in mood dysregulation. Translational Psychiatry ,9 (1), 103. https://doi.org/10.1038/s41398-019-0433-6
Esposito, R., Cieri, F., Chiacchiaretta, P., Cera, N., Lauriola, M., Di Giannantonio, M., Tartaro, A., & Ferretti, A. (2018). Modifications in resting state functional anticorrelation between default mode network and dorsal attention network: Comparison among young adults, healthy elders and mild cognitive impairment patients. Brain Imaging and Behavior , 12 (1), 127–141. https://doi.org/10.1007/s11682-017-9686-y
Etkin, A., & Wager, T. D. (2007). Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. The American Journal of Psychiatry ,164 (10), 1476–1488. https://doi.org/10.1176/appi.ajp.2007.07030504
Fan, J., Zhong, M., Gan, J., Liu, W., Niu, C., Liao, H., Zhang, H., Yi, J., Chan, R. C. K., Tan, C., & Zhu, X. (2017). Altered connectivity within and between the default mode, central executive, and salience networks in obsessive-compulsive disorder. Journal of Affective Disorders ,223 , 106–114. https://doi.org/10.1016/j.jad.2017.07.041
Fava, M., Rankin, M. A., Wright, E. C., Alpert, J. E., Nierenberg, A. A., Pava, J., & Rosenbaum, J. F. (2000). Anxiety disorders in major depression. Comprehensive Psychiatry , 41 (2), 97–102. https://doi.org/10.1016/s0010-440x(00)90140-8
First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (1996). Structured clinical interview for DSM-IV axis I disorders, clinician version (SCID-CV).: Handanweisung.
Friston, K. J. (2007). Statistical parametric mapping: The analysis of functional brain images . Academic.
Frodl, T., Bokde, A. L. W., Scheuerecker, J., Lisiecka, D., Schoepf, V., Hampel, H., Möller, H.-J., Brückmann, H., Wiesmann, M., & Meisenzahl, E. (2010). Functional connectivity bias of the orbitofrontal cortex in drug-free patients with major depression. Biological Psychiatry ,67 (2), 161–167. https://doi.org/10.1016/j.biopsych.2009.08.022
REX toolbox [Computer software]. Gabrieli Lab, Massachusetts Institute of Technology. Cambridge, Massachusetts, USA.
Gaspersz, R., Lamers, F., Kent, J. M., Beekman, A. T. F., Smit, J. H., van Hemert, A. M., Schoevers, R. A., & Penninx, B. W. J. H. (2017). Longitudinal Predictive Validity of the DSM-5 Anxious Distress Specifier for Clinical Outcomes in a Large Cohort of Patients With Major Depressive Disorder.The Journal of Clinical Psychiatry , 78 (2), 207–213. https://doi.org/10.4088/JCP.15m10221
Gonsalves, M. A., Beck, Q. M., Fukuda, A. M., Tirrell, E., Kokdere, F., Kronenberg, E. F., Iadarola, N. D., Hagberg, S., Carpenter, L. L., & Barredo, J. (2022). Mechanical Affective Touch Therapy for Anxiety Disorders: Effects on Resting State Functional Connectivity. Neuromodulation : Journal of the International Neuromodulation Society , 25 (8), 1431–1442. https://doi.org/10.1016/j.neurom.2021.10.007
Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason, H. B., Kenna, H., Reiss, A. L., & Schatzberg, A. F. (2007). Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry , 62 (5), 429–437. https://doi.org/10.1016/j.biopsych.2006.09.020
Hamilton, J. P., Chen, M. C., & Gotlib, I. H. (2013). Neural systems approaches to understanding major depressive disorder: An intrinsic functional organization perspective. Neurobiology of Disease , 52 , 4–11. https://doi.org/10.1016/j.nbd.2012.01.015
IBM SPSS Statistics (Version 29.0) [Computer software]. (2022). IBM Corp. Armonk, NY.
James, S. L., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N., Abbastabar, H., Abd-Allah, F., Abdela, J., Abdelalim, A., Abdollahpour, I., Abdulkader, R. S., Abebe, Z., Abera, S. F., Abil, O. Z., Abraha, H. N., Abu-Raddad, L. J., Abu-Rmeileh, N. M. E., Accrombessi, M. M. K., . . . Murray, C. J. L. (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet ,392 (10159), 1789–1858. https://doi.org/10.1016/S0140-6736(18)32279-7
Javaheripour, N., Li, M., Chand, T., Krug, A., Kircher, T., Dannlowski, U., Nenadić, I., Hamilton, J. P., Sacchet, M. D., Gotlib, I. H., Walter, H., Frodl, T., Grimm, S., Harrison, B. J., Wolf, C. R., Olbrich, S., van Wingen, G., Pezawas, L., Parker, G., . . . Wagner, G. (2021). Altered resting-state functional connectome in major depressive disorder: A mega-analysis from the PsyMRI consortium. Translational Psychiatry , 11 (1), 511. https://doi.org/10.1038/s41398-021-01619-w
Jiang, Y., Duan, M., Chen, X., Chang, X., He, H., Li, Y., Luo, C., & Yao, D. (2017). Common and distinct dysfunctional patterns contribute to triple network model in schizophrenia and depression: A preliminary study.Progress in Neuro-Psychopharmacology & Biological Psychiatry ,79 (Pt B), 302–310. https://doi.org/10.1016/j.pnpbp.2017.07.007
Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D., & Pizzagalli, D. A. (2015). Large-Scale Network Dysfunction in Major Depressive Disorder: A Meta-analysis of Resting-State Functional Connectivity. JAMA Psychiatry , 72 (6), 603–611. https://doi.org/10.1001/jamapsychiatry.2015.0071
Kaiser, R. H., Whitfield-Gabrieli, S., Dillon, D. G., Goer, F., Beltzer, M., Minkel, J., Smoski, M., Dichter, G., & Pizzagalli, D. A. (2016). Dynamic resting-state functional connectivity in major depression.Neuropsychopharmacology , 41 (7), 1822–1830. https://doi.org/10.1038/npp.2015.352
Katayama, N., Nakagawa, A., Umeda, S., Terasawa, Y., Shinagawa, K., Kikuchi, T., Tabuchi, H., Abe, T., & Mimura, M. (2023). Functional connectivity changes between frontopolar cortex and nucleus accumbens following cognitive behavioral therapy in major depression: A randomized clinical trial. Psychiatry Research. Neuroimaging , 332 , 111643. https://doi.org/10.1016/j.pscychresns.2023.111643
Kelly, C., Biswal, B. B., Craddock, R. C., Castellanos, F. X., & Milham, M. P. (2012). Characterizing variation in the functional connectome: Promise and pitfalls. Trends in Cognitive Sciences , 16 (3), 181–188. https://doi.org/10.1016/j.tics.2012.02.001
Kessler, R. C., & Greenberg, P. E. (2002). The economic burden of anxiety and stress disorders. Neuropsychopharmacology: The Fifth Generation of Progress , 67 , 981–992.
Kim, Y.-K., & Yoon, H.-K. (2018). Common and distinct brain networks underlying panic and social anxiety disorders. Progress in Neuro-Psychopharmacology & Biological Psychiatry , 80 (Pt B), 115–122. https://doi.org/10.1016/j.pnpbp.2017.06.017.
Kühn, S., Vanderhasselt, M.-A., Raedt, R. de, & Gallinat, J. (2012). Why ruminators won’t stop: The structural and resting state correlates of rumination and its relation to depression. Journal of Affective Disorders , 141 (2-3), 352–360. https://doi.org/10.1016/j.jad.2012.03.024
Lerman, C., Gu, H., Loughead, J., Ruparel, K., Yang, Y., & Stein, E. A. (2014). Large-scale brain network coupling predicts acute nicotine abstinence effects on craving and cognitive function. JAMA Psychiatry ,71 (5), 523–530. https://doi.org/10.1001/ jamapsychiatry.2013.4091
Li, Y., Dai, X., Wu, H., & Wang, L. (2021). Establishment of Effective Biomarkers for Depression Diagnosis With Fusion of Multiple Resting-State Connectivity Measures. Frontiers in Neuroscience ,15 , 729958. https://doi.org/10.3389/fnins.2021.729958
Liu, Y., Chen, Y., Liang, X., Li, D., Zheng, Y., Zhang, H., Cui, Y., Chen, J., Liu, J., & Qiu, S. (2020). Altered Resting-State Functional Connectivity of Multiple Networks and Disrupted Correlation With Executive Function in Major Depressive Disorder. Frontiers in Neurology , 11 , 272. https://doi.org/10.3389/fneur.2020.00272
Lydon-Staley, D. M., Kuehner, C., Zamoscik, V., Huffziger, S., Kirsch, P., & Bassett, D. S. (2019). Repetitive negative thinking in daily life and functional connectivity among default mode, fronto-parietal, and salience networks.Translational Psychiatry , 9 (1), 234. https://doi.org/10.1038/s41398-019-0560-0
Macêdo, M. A., Sato, J. R., Bressan, R. A., & Pan, P. M. (2022). Adolescent depression and resting-state fMRI brain networks: A scoping review of longitudinal studies. Revista Brasileira De Psiquiatria (Sao Paulo, Brazil : 1999) , 44 (4), 420–433. https://doi.org/10.47626/1516-4446-2021-2032
Malhi, G. S., & Mann, J. J. (2018). Depression. Lancet (London, England) , 392 (10161), 2299–2312. https://doi.org/10.1016/S0140-6736(18)31948-2
Manoliu, A., Meng, C., Brandl, F., Doll, A., Tahmasian, M., Scherr, M., Schwerthöffer, D., Zimmer, C., Förstl, H., Bäuml, J., Riedl, V., Wohlschläger, A. M., & Sorg, C. (2013). Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder. Frontiers in Human Neuroscience , 7 , 930. https://doi.org/10.3389/fnhum.2013.00930
Massullo, C., Carbone, G. A., Farina, B., Panno, A., Capriotti, C., Giacchini, M., Machado, S., Budde, H., Murillo-Rodríguez, E., & Imperatori, C. (2020). Dysregulated brain salience within a triple network model in high trait anxiety individuals: A pilot EEG functional connectivity study.International Journal of Psychophysiology : Official Journal of the International Organization of Psychophysiology , 157 , 61–69. https://doi.org/10.1016/j.ijpsycho.2020.09.002
Menon, B. (2019). Towards a new model of understanding - The triple network, psychopathology and the structure of the mind. Medical Hypotheses , 133 , 109385. https://doi.org/10.1016/j.mehy.2019.109385
Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences ,15 (10), 483–506. https://doi.org/10.1016/j.tics.2011.08.003
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function ,214 (5-6), 655–667. https://doi.org/10.1007/s00429-010-0262-0.
Mueller, F., Musso, F., London, M., Boer, P. de, Zacharias, N., & Winterer, G. (2018). Pharmacological fMRI: Effects of subanesthetic ketamine on resting-state functional connectivity in the default mode network, salience network, dorsal attention network and executive control network. NeuroImage. Clinical , 19 , 745–757. https://doi.org/10.1016/j.nicl.2018.05.037
Mulders, P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F., & Tendolkar, I. (2015). Resting-state functional connectivity in major depressive disorder: A review. Neuroscience and Biobehavioral Reviews , 56 , 330–344. https://doi.org/10.1016/j.neubiorev.2015.07.014
Muscatell, K. A., Dedovic, K., Slavich, G. M., Jarcho, M. R., Breen, E. C., Bower, J. E., Irwin, M. R., & Eisenberger, N. I. (2015). Greater amygdala activity and dorsomedial prefrontal-amygdala coupling are associated with enhanced inflammatory responses to stress. Brain, Behavior, and Immunity , 43 , 46–53. https://doi.org/10.1016/j.bbi.2014.06.201
Nawijn, L., Dinga, R., Aghajani, M., van Tol, M.-J., van der Wee, N. J. A., Wunder, A., Veltman, D. J., & Penninx, B. W. H. J. (2022). Neural correlates of anxious distress in depression: A neuroimaging study of reactivity to emotional faces and resting-state functional connectivity.Depression and Anxiety , 39 (7), 573–585. https://doi.org/10.1002/da.23264
Northoff, G. (2020). Anxiety Disorders and the Brain’s Resting State Networks: From Altered Spatiotemporal Synchronization to Psychopathological Symptoms. Advances in Experimental Medicine and Biology ,1191 , 71–90. https://doi.org/10.1007/978-981-32-9705-0_5
Oathes, D. J., Patenaude, B., Schatzberg, A. F., & Etkin, A. (2015). Neurobiological signatures of anxiety and depression in resting-state functional magnetic resonance imaging. Biological Psychiatry ,77 (4), 385–393. https://doi.org/10.1016/j.biopsych.2014.08.006
Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion.Trends in Cognitive Sciences , 9 (5), 242–249. https://doi.org/10.1016/j.tics.2005.03.010
Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation.Proceedings of the National Academy of Sciences of the United States of America , 87 (24), 9868–9872. https://doi.org/10.1073/pnas.87.24.9868
Pannekoek, J. N., van der Werff, S. J. A., van Tol, M. J., Veltman, D. J., Aleman, A., Zitman, F. G., Rombouts, S. A. R. B., & van der Wee, N. J. A. (2015). Investigating distinct and common abnormalities of resting-state functional connectivity in depression, anxiety, and their comorbid states. European Neuropsychopharmacology : The Journal of the European College of Neuropsychopharmacology , 25 (11), 1933–1942. https://doi.org/10.1016/j.euroneuro.2015.08.002.
Pannekoek, J. N., van der Werff, S. J. A., Meens, P. H. F., van den Bulk, B. G., Jolles, D. D., Veer, I. M., van Lang, N. D. J., Rombouts, S. A. R. B., van der Wee, N. J. A., & Vermeiren, R. R. J. M. (2014). Aberrant resting-state functional connectivity in limbic and salience networks in treatment–naïve clinically depressed adolescents. Journal of Child Psychology and Psychiatry , 55 (12), 1317–1327. https://doi.org/10.1111/jcpp.12266
Pantazatos, S. P., Yttredahl, A., Rubin-Falcone, H., Kishon, R., Oquendo, M. A., John Mann, J., & Miller, J. M. (2020). Depression-related anterior cingulate prefrontal resting state connectivity normalizes following cognitive behavioral therapy. European Psychiatry : The Journal of the Association of European Psychiatrists , 63 (1), e37. https://doi.org/10.1192/j.eurpsy.2020.34
Paulus, M. P., & Stein, M. B. (2006). An insular view of anxiety.Biological Psychiatry , 60 (4), 383–387. https://doi.org/10.1016/j.biopsych.2006.03.042.
Peng, X., Lin, P., Wu, X., Gong, R., Yang, R., & Wang, J. (2018). Insular subdivisions functional connectivity dysfunction within major depressive disorder. Journal of Affective Disorders , 227 , 280–288. https://doi.org/10.1016/j.jad.2017.11.018
Peters, S. K., Dunlop, K., & Downar, J. (2016). Cortico-Striatal-Thalamic Loop Circuits of the Salience Network: A Central Pathway in Psychiatric Disease and Treatment. Frontiers in Systems Neuroscience ,10 , 104. https://doi.org/10.3389/fnsys.2016.00104
Peterson, A., Thome, J., Frewen, P., & Lanius, R. A. (2014). Resting-state neuroimaging studies: A new way of identifying differences and similarities among the anxiety disorders? Canadian Journal of Psychiatry. Revue Canadienne De Psychiatrie , 59 (6), 294–300. https://doi.org/10.1177/070674371405900602
Pisoni, A., Davis, S. W., & Smoski, M. (2021). Neural signatures of saliency-mapping in anhedonia: A narrative review. Psychiatry Research , 304 , 114123. https://doi.org/10.1016/j.psychres.2021.114123
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function.Proceedings of the National Academy of Sciences of the United States of America , 98 (2), 676–682. https://doi.org/10.1073/pnas.98.2.676
Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience , 38 , 433–447. https://doi.org/10.1146/annurev-neuro-071013-014030
Rauch, S. L., Shin, L. M., & Wright, C. I. (2003). Neuroimaging studies of amygdala function in anxiety disorders. Annals of the New York Academy of Sciences , 985 , 389–410. https://doi.org/10.1111/j.1749-6632.2003.tb07096.x
Razi, A., Seghier, M. L., Zhou, Y., McColgan, P., Zeidman, P., Park, H.-J., Sporns, O., Rees, G., & Friston, K. J. (2017). Large-scale DCMs for resting-state fMRI. Network Neuroscience , 1 (3), 222–241. https://doi.org/10.1162/NETN_a_00015
Robinson, O. J., Charney, D. R., Overstreet, C., Vytal, K., & Grillon, C. (2012). The adaptive threat bias in anxiety: Amygdala-dorsomedial prefrontal cortex coupling and aversive amplification. NeuroImage ,60 (1), 523–529. https://doi.org/10.1016/j.neuroimage.2011.11.096
Rolls, E. T., Cheng, W., Gong, W., Qiu, J., Zhou, C., Zhang, J., Lv, W., Ruan, H., Wei, D., Cheng, K., Meng, J., Xie, P., & Feng, J. (2019). Functional connectivity of the anterior cingulate cortex in depression and in health. Cerebral Cortex , 29 (8), 3617–3630. https://doi.org/10.1093/cercor/bhy236
Rolls, E. T., Huang, C.-C., Lin, C.-P., Feng, J., & Joliot, M. (2020). Automated anatomical labelling atlas 3. NeuroImage , 206 , 116189. https://doi.org/10.1016/j.neuroimage.2019.116189
Schimmelpfennig, J., Topczewski, J., Zajkowski, W., & Jankowiak-Siuda, K. (2023). The role of the salience network in cognitive and affective deficits.Frontiers in Human Neuroscience , 17 , 1133367. https://doi.org/10.3389/fnhum.2023.1133367
Schirmer, S. T., Beckmann, F.-E., Gruber, H., Schlaaff, K., Scheermann, D., Seidenbecher, S., Metzger, C. D., Tempelmann, C., & Frodl, T. (2023). Decreased functional connectivity in patients with major depressive disorder and a history of childhood traumatization through experiences of abuse. Behavioural Brain Research , 437 , 114098. https://doi.org/10.1016/j.bbr.2022.114098
Schmidt, S. A., Akrofi, K., Carpenter-Thompson, J. R., & Husain, F. T. (2013). Default mode, dorsal attention and auditory resting state networks exhibit differential functional connectivity in tinnitus and hearing loss. PloS One , 8 (10), e76488. https://doi.org/10.1371/journal.pone.0076488
Seeley, W. W. (2019). The Salience Network: A Neural System for Perceiving and Responding to Homeostatic Demands. The Journal of Neuroscience ,39 (50), 9878–9882. https://doi.org/10.1523/JNEUROSCI.1138-17.2019
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control.The Journal of Neuroscience , 27 (9), 2349–2356. https://doi.org/10.1523/JNEUROSCI.5587-06.2007
Sharpley, C. F., & Bitsika, V. (2013). Differences in neurobiological pathways of four ”clinical content” subtypes of depression. Behavioural Brain Research , 256 , 368–376. https://doi.org/10.1016/j.bbr.2013.08.030
Shin, L. M., & Liberzon, I. (2010). The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology , 35 (1), 169–191. https://doi.org/10.1038/npp.2009.83
Silverstone, P. H., & Studnitz, E. von (2003). Defining anxious depression: Going beyond comorbidity. Canadian Journal of Psychiatry. Revue Canadienne De Psychiatrie , 48 (10), 675–680. https://doi.org/10.1177/070674370304801006
Smucny, J., Wylie, K. P., Kronberg, E., Legget, K. T., & Tregellas, J. R. (2017). Nicotinic modulation of salience network connectivity and centrality in schizophrenia. Journal of Psychiatric Research ,89 , 85–96. https://doi.org/10.1016/j.jpsychires.2017.01.018
Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America , 105 (34), 12569–12574. https://doi.org/10.1073/pnas.0800005105
Sylvester, C. M., Corbetta, M., Raichle, M. E., Rodebaugh, T. L., Schlaggar, B. L., Sheline, Y. I., Zorumski, C. F., & Lenze, E. J. (2012). Functional network dysfunction in anxiety and anxiety disorders. Trends in Neurosciences , 35 (9), 527–535. https://doi.org/10.1016/j.tins.2012.04.012
Tahmasian, M., Knight, D. C., Manoliu, A., Schwerthöffer, D., Scherr, M., Meng, C., Shao, J., Peters, H., Doll, A., Khazaie, H., Drzezga, A., Bäuml, J., Zimmer, C., Förstl, H., Wohlschläger, A. M., Riedl, V., & Sorg, C. (2013). Aberrant intrinsic connectivity of hippocampus and amygdala overlap in the fronto-insular and dorsomedial-prefrontal cortex in major depressive disorder. Frontiers in Human Neuroscience , 7 , 639. https://doi.org/10.3389/fnhum.2013.00639
Trivedi, M. H., Hollander, E., Nutt, D., & Blier, P. (2008). Clinical evidence and potential neurobiological underpinnings of unresolved symptoms of depression. The Journal of Clinical Psychiatry , 69 (2), 246–258. https://doi.org/10.4088/jcp.v69n0211.
Uddin, L. Q., Yeo, B. T. T., & Spreng, R. N. (2019). Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks. Brain Topography , 32 (6), 926–942. https://doi.org/10.1007/s10548-019-00744-6
van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity.European Neuropsychopharmacology , 20 (8), 519–534. https://doi.org/10.1016/j.euroneuro.2010.03.008
van Tol, M. J., van der Wee, N. J. A., & Veltman, D. J. (2021). Fifteen years of NESDA Neuroimaging: An overview of results related to clinical profile and bio-social risk factors of major depressive disorder and common anxiety disorders. Journal of Affective Disorders ,289 , 31–45. https://doi.org/10.1016/j.jad.2021.04.009
Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology ,100 (6), 3328–3342. https://doi.org/10.1152/jn.90355.2008
Williams, L. M. (2016). Precision psychiatry: A neural circuit taxonomy for depression and anxiety. The Lancet. Psychiatry , 3 (5), 472–480. https://doi.org/10.1016/S2215-0366(15)00579-9.
Xu, J., van Dam, N. T., Feng, C., Luo, Y., Ai, H., Gu, R., & Xu, P. (2019). Anxious brain networks: A coordinate-based activation likelihood estimation meta-analysis of resting-state functional connectivity studies in anxiety. Neuroscience and Biobehavioral Reviews ,96 , 21–30. https://doi.org/10.1016/j.neubiorev.2018.11.005
Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller, J. W., Zöllei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology , 106 (3), 1125–1165. https://doi.org/10.1152/jn.00338.2011
Yuan, M., Zhu, H., Qiu, C., Meng, Y., Zhang, Y., Shang, J., Nie, X., Ren, Z., Gong, Q., Zhang, W., & Lui, S. (2016). Group cognitive behavioral therapy modulates the resting-state functional connectivity of amygdala-related network in patients with generalized social anxiety disorder. BMC Psychiatry , 16 , 198. https://doi.org/10.1186/s12888-016-0904-8.
Zheng, H., Xu, L., Xie, F., Guo, X., Zhang, J., Yao, L., & Wu, X. (2015). The Altered Triple Networks Interaction in Depression under Resting State Based on Graph Theory. BioMed Research International ,2015 , 386326. https://doi.org/10.1155/2015/386326
Table 1. Participant characteristics.