References
Alexopoulos,
G. S., Hoptman, M. J., Kanellopoulos, D., Murphy, C. F., Lim, K. O., &
Gunning, F. M. (2012). Functional connectivity in the cognitive control
network and the default mode network in late-life depression.Journal of Affective Disorders , 139 (1), 56–65.
https://doi.org/10.1016/j.jad.2011.12.002.
American
Psychiatric Association. (2013). Diagnostic and statistical manual
of mental disorders (5th ed.).
Andrews-Hanna,
J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L.
(2010). Functional-anatomic fractionation of the brain’s default
network. Neuron , 65 (4), 550–562.
https://doi.org/10.1016/j.neuron.2010.02.005
Beck,
A. T., Steer, R. A., & Brown, G. (1996). Manual for the Beck
Depression Inventory-II . Psychological Corporation.
Beck,
A. T., Epstein, N., Brown, G., & Steer, R. A. (1988). An inventory for
measuring clinical anxiety: Psychometric properties. Journal of
Consulting and Clinical Psychology , 56 (6), 893–897.
https://doi.org/10.1037/0022-006x.56.6.893
Bishop,
S. J., Duncan, J., & Lawrence, A. D. (2004). State anxiety modulation
of the amygdala response to unattended threat-related stimuli. The
Journal of Neuroscience , 24 (46), 10364–10368.
https://doi.org/10.1523/JNEUROSCI.2550-04.2004
Blair,
R. J. R. (2007). The amygdala and ventromedial prefrontal cortex in
morality and psychopathy. Trends in Cognitive Sciences ,11 (9), 387–392. https://doi.org/10.1016/j.tics.2007.07.003
BrainNet
Viewer (Version 2019) [Computer software]. (2013). Mingrui Xia; J
Wang; Y He. PLoS ONE 8: e68910.
Brakowski,
J., Spinelli, S., Dörig, N., Bosch, O. G., Manoliu, A., Holtforth, M.
G., & Seifritz, E. (2017). Resting state brain network function in
major depression - Depression symptomatology, antidepressant treatment
effects, future research. Journal of Psychiatric Research ,92 , 147–159. https://doi.org/10.1016/j.jpsychires.2017.04.007
Buckner,
R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s
default network: Anatomy, function, and relevance to disease.Annals of the New York Academy of Sciences , 1124 , 1–38.
https://doi.org/10.1196/annals.1440.011
Chao-Gan,
Y., & Yu-Feng, Z. (2010). Dparsf: A MATLAB toolbox for ”pipeline” data
analysis of resting-state fMRI. Frontiers in Systems
Neuroscience , 4 , 13. https://doi.org/10.3389/fnsys.2010.00013
Chen,
S.-Y., Feng, Z., & Yi, X. (2017). A general introduction to adjustment
for multiple comparisons. Journal of Thoracic Disease ,9 (6), 1725–1729. https://doi.org/10.21037/jtd.2017.05.34
Cullen,
K. R., Westlund, M. K., Klimes-Dougan, B., Mueller, B. A., Houri, A.,
Eberly, L. E., & Lim, K. O. (2014). Abnormal amygdala resting-state
functional connectivity in adolescent depression. JAMA
Psychiatry , 71 (10), 1138–1147.
https://doi.org/10.1001/jamapsychiatry.2014.1087
Deen,
B., Pitskel, N. B., & Pelphrey, K. A. (2011). Three systems of insular
functional connectivity identified with cluster analysis. Cerebral
Cortex , 21 (7), 1498–1506. https://doi.org/10.1093/cercor/bhq186
Dong,
D., Wang, Y., Chang, X., Luo, C., & Yao, D. (2018). Dysfunction of
Large-Scale Brain Networks in Schizophrenia: A Meta-analysis of
Resting-State Functional Connectivity. Schizophrenia Bulletin ,44 (1), 168–181. https://doi.org/10.1093/schbul/sbx034
Dunlop,
B. W., Cha, J., Choi, K. S., Rajendra, J. K., Nemeroff, C. B.,
Craighead, W. E., & Mayberg, H. S. (2023). Shared and Unique Changes in
Brain Connectivity Among Depressed Patients After Remission With
Pharmacotherapy Versus Psychotherapy. The American Journal of
Psychiatry , 180 (3), 218–229.
https://doi.org/10.1176/appi.ajp.21070727
Ernst,
M., Benson, B., Artiges, E., Gorka, A. X., Lemaitre, H., Lago, T.,
Miranda, R., Banaschewski, T., Bokde, A. L. W., Bromberg, U., Brühl, R.,
Büchel, C., Cattrell, A., Conrod, P., Desrivières, S., Fadai, T., Flor,
H., Grigis, A., Gallinat, J., . . . Martinot, J.-L. (2019). Pubertal
maturation and sex effects on the default-mode network connectivity
implicated in mood dysregulation. Translational Psychiatry ,9 (1), 103. https://doi.org/10.1038/s41398-019-0433-6
Esposito,
R., Cieri, F., Chiacchiaretta, P., Cera, N., Lauriola, M., Di
Giannantonio, M., Tartaro, A., & Ferretti, A. (2018). Modifications in
resting state functional anticorrelation between default mode network
and dorsal attention network: Comparison among young adults, healthy
elders and mild cognitive impairment patients. Brain Imaging and
Behavior , 12 (1), 127–141.
https://doi.org/10.1007/s11682-017-9686-y
Etkin,
A., & Wager, T. D. (2007). Functional neuroimaging of anxiety: A
meta-analysis of emotional processing in PTSD, social anxiety disorder,
and specific phobia. The American Journal of Psychiatry ,164 (10), 1476–1488.
https://doi.org/10.1176/appi.ajp.2007.07030504
Fan,
J., Zhong, M., Gan, J., Liu, W., Niu, C., Liao, H., Zhang, H., Yi, J.,
Chan, R. C. K., Tan, C., & Zhu, X. (2017). Altered connectivity within
and between the default mode, central executive, and salience networks
in obsessive-compulsive disorder. Journal of Affective Disorders ,223 , 106–114. https://doi.org/10.1016/j.jad.2017.07.041
Fava,
M., Rankin, M. A., Wright, E. C., Alpert, J. E., Nierenberg, A. A.,
Pava, J., & Rosenbaum, J. F. (2000). Anxiety disorders in major
depression. Comprehensive Psychiatry , 41 (2), 97–102.
https://doi.org/10.1016/s0010-440x(00)90140-8
First,
M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (1996).
Structured clinical interview for DSM-IV axis I disorders, clinician
version (SCID-CV).: Handanweisung.
Friston,
K. J. (2007). Statistical parametric mapping: The analysis of
functional brain images . Academic.
Frodl,
T., Bokde, A. L. W., Scheuerecker, J., Lisiecka, D., Schoepf, V.,
Hampel, H., Möller, H.-J., Brückmann, H., Wiesmann, M., & Meisenzahl,
E. (2010). Functional connectivity bias of the orbitofrontal cortex in
drug-free patients with major depression. Biological Psychiatry ,67 (2), 161–167. https://doi.org/10.1016/j.biopsych.2009.08.022
REX
toolbox [Computer software]. Gabrieli Lab, Massachusetts Institute
of Technology. Cambridge, Massachusetts, USA.
Gaspersz,
R., Lamers, F., Kent, J. M., Beekman, A. T. F., Smit, J. H., van Hemert,
A. M., Schoevers, R. A., & Penninx, B. W. J. H. (2017). Longitudinal
Predictive Validity of the DSM-5 Anxious Distress Specifier for Clinical
Outcomes in a Large Cohort of Patients With Major Depressive Disorder.The Journal of Clinical Psychiatry , 78 (2), 207–213.
https://doi.org/10.4088/JCP.15m10221
Gonsalves,
M. A., Beck, Q. M., Fukuda, A. M., Tirrell, E., Kokdere, F., Kronenberg,
E. F., Iadarola, N. D., Hagberg, S., Carpenter, L. L., & Barredo, J.
(2022). Mechanical Affective Touch Therapy for Anxiety Disorders:
Effects on Resting State Functional Connectivity. Neuromodulation
: Journal of the International Neuromodulation Society , 25 (8),
1431–1442. https://doi.org/10.1016/j.neurom.2021.10.007
Greicius,
M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason, H. B., Kenna,
H., Reiss, A. L., & Schatzberg, A. F. (2007). Resting-state functional
connectivity in major depression: Abnormally increased contributions
from subgenual cingulate cortex and thalamus. Biological
Psychiatry , 62 (5), 429–437.
https://doi.org/10.1016/j.biopsych.2006.09.020
Hamilton,
J. P., Chen, M. C., & Gotlib, I. H. (2013). Neural systems approaches
to understanding major depressive disorder: An intrinsic functional
organization perspective. Neurobiology of Disease , 52 ,
4–11. https://doi.org/10.1016/j.nbd.2012.01.015
IBM
SPSS Statistics (Version 29.0) [Computer software]. (2022). IBM
Corp. Armonk, NY.
James,
S. L., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N.,
Abbastabar, H., Abd-Allah, F., Abdela, J., Abdelalim, A., Abdollahpour,
I., Abdulkader, R. S., Abebe, Z., Abera, S. F., Abil, O. Z., Abraha, H.
N., Abu-Raddad, L. J., Abu-Rmeileh, N. M. E., Accrombessi, M. M.
K., . . . Murray, C. J. L. (2018). Global, regional, and national
incidence, prevalence, and years lived with disability for 354 diseases
and injuries for 195 countries and territories, 1990–2017: a systematic
analysis for the Global Burden of Disease Study 2017. The Lancet ,392 (10159), 1789–1858.
https://doi.org/10.1016/S0140-6736(18)32279-7
Javaheripour,
N., Li, M., Chand, T., Krug, A., Kircher, T., Dannlowski, U., Nenadić,
I., Hamilton, J. P., Sacchet, M. D., Gotlib, I. H., Walter, H., Frodl,
T., Grimm, S., Harrison, B. J., Wolf, C. R., Olbrich, S., van Wingen,
G., Pezawas, L., Parker, G., . . . Wagner, G. (2021). Altered
resting-state functional connectome in major depressive disorder: A
mega-analysis from the PsyMRI consortium. Translational
Psychiatry , 11 (1), 511.
https://doi.org/10.1038/s41398-021-01619-w
Jiang,
Y., Duan, M., Chen, X., Chang, X., He, H., Li, Y., Luo, C., & Yao, D.
(2017). Common and distinct dysfunctional patterns contribute to triple
network model in schizophrenia and depression: A preliminary study.Progress in Neuro-Psychopharmacology & Biological Psychiatry ,79 (Pt B), 302–310. https://doi.org/10.1016/j.pnpbp.2017.07.007
Kaiser,
R. H., Andrews-Hanna, J. R., Wager, T. D., & Pizzagalli, D. A. (2015).
Large-Scale Network Dysfunction in Major Depressive Disorder: A
Meta-analysis of Resting-State Functional Connectivity. JAMA
Psychiatry , 72 (6), 603–611.
https://doi.org/10.1001/jamapsychiatry.2015.0071
Kaiser,
R. H., Whitfield-Gabrieli, S., Dillon, D. G., Goer, F., Beltzer, M.,
Minkel, J., Smoski, M., Dichter, G., & Pizzagalli, D. A. (2016).
Dynamic resting-state functional connectivity in major depression.Neuropsychopharmacology , 41 (7), 1822–1830.
https://doi.org/10.1038/npp.2015.352
Katayama,
N., Nakagawa, A., Umeda, S., Terasawa, Y., Shinagawa, K., Kikuchi, T.,
Tabuchi, H., Abe, T., & Mimura, M. (2023). Functional connectivity
changes between frontopolar cortex and nucleus accumbens following
cognitive behavioral therapy in major depression: A randomized clinical
trial. Psychiatry Research. Neuroimaging , 332 , 111643.
https://doi.org/10.1016/j.pscychresns.2023.111643
Kelly,
C., Biswal, B. B., Craddock, R. C., Castellanos, F. X., & Milham, M. P.
(2012). Characterizing variation in the functional connectome: Promise
and pitfalls. Trends in Cognitive Sciences , 16 (3),
181–188. https://doi.org/10.1016/j.tics.2012.02.001
Kessler,
R. C., & Greenberg, P. E. (2002). The economic burden of anxiety and
stress disorders. Neuropsychopharmacology: The Fifth Generation of
Progress , 67 , 981–992.
Kim,
Y.-K., & Yoon, H.-K. (2018). Common and distinct brain networks
underlying panic and social anxiety disorders. Progress in
Neuro-Psychopharmacology & Biological Psychiatry , 80 (Pt B),
115–122. https://doi.org/10.1016/j.pnpbp.2017.06.017.
Kühn,
S., Vanderhasselt, M.-A., Raedt, R. de, & Gallinat, J. (2012). Why
ruminators won’t stop: The structural and resting state correlates of
rumination and its relation to depression. Journal of Affective
Disorders , 141 (2-3), 352–360.
https://doi.org/10.1016/j.jad.2012.03.024
Lerman,
C., Gu, H., Loughead, J., Ruparel, K., Yang, Y., & Stein, E. A. (2014).
Large-scale brain network coupling predicts acute nicotine abstinence
effects on craving and cognitive function. JAMA Psychiatry ,71 (5), 523–530. https://doi.org/10.1001/
jamapsychiatry.2013.4091
Li,
Y., Dai, X., Wu, H., & Wang, L. (2021). Establishment of Effective
Biomarkers for Depression Diagnosis With Fusion of Multiple
Resting-State Connectivity Measures. Frontiers in Neuroscience ,15 , 729958. https://doi.org/10.3389/fnins.2021.729958
Liu,
Y., Chen, Y., Liang, X., Li, D., Zheng, Y., Zhang, H., Cui, Y., Chen,
J., Liu, J., & Qiu, S. (2020). Altered Resting-State Functional
Connectivity of Multiple Networks and Disrupted Correlation With
Executive Function in Major Depressive Disorder. Frontiers in
Neurology , 11 , 272. https://doi.org/10.3389/fneur.2020.00272
Lydon-Staley,
D. M., Kuehner, C., Zamoscik, V., Huffziger, S., Kirsch, P., & Bassett,
D. S. (2019). Repetitive negative thinking in daily life and functional
connectivity among default mode, fronto-parietal, and salience networks.Translational Psychiatry , 9 (1), 234.
https://doi.org/10.1038/s41398-019-0560-0
Macêdo,
M. A., Sato, J. R., Bressan, R. A., & Pan, P. M. (2022). Adolescent
depression and resting-state fMRI brain networks: A scoping review of
longitudinal studies. Revista Brasileira De Psiquiatria (Sao
Paulo, Brazil : 1999) , 44 (4), 420–433.
https://doi.org/10.47626/1516-4446-2021-2032
Malhi,
G. S., & Mann, J. J. (2018). Depression. Lancet (London,
England) , 392 (10161), 2299–2312.
https://doi.org/10.1016/S0140-6736(18)31948-2
Manoliu,
A., Meng, C., Brandl, F., Doll, A., Tahmasian, M., Scherr, M.,
Schwerthöffer, D., Zimmer, C., Förstl, H., Bäuml, J., Riedl, V.,
Wohlschläger, A. M., & Sorg, C. (2013). Insular dysfunction within the
salience network is associated with severity of symptoms and aberrant
inter-network connectivity in major depressive disorder. Frontiers
in Human Neuroscience , 7 , 930.
https://doi.org/10.3389/fnhum.2013.00930
Massullo,
C., Carbone, G. A., Farina, B., Panno, A., Capriotti, C., Giacchini, M.,
Machado, S., Budde, H., Murillo-Rodríguez, E., & Imperatori, C. (2020).
Dysregulated brain salience within a triple network model in high trait
anxiety individuals: A pilot EEG functional connectivity study.International Journal of Psychophysiology : Official Journal of
the International Organization of Psychophysiology , 157 , 61–69.
https://doi.org/10.1016/j.ijpsycho.2020.09.002
Menon,
B. (2019). Towards a new model of understanding - The triple network,
psychopathology and the structure of the mind. Medical
Hypotheses , 133 , 109385.
https://doi.org/10.1016/j.mehy.2019.109385
Menon,
V. (2011). Large-scale brain networks and psychopathology: A unifying
triple network model. Trends in Cognitive Sciences ,15 (10), 483–506. https://doi.org/10.1016/j.tics.2011.08.003
Menon,
V., & Uddin, L. Q. (2010). Saliency, switching, attention and control:
A network model of insula function. Brain Structure & Function ,214 (5-6), 655–667. https://doi.org/10.1007/s00429-010-0262-0.
Mueller,
F., Musso, F., London, M., Boer, P. de, Zacharias, N., & Winterer, G.
(2018). Pharmacological fMRI: Effects of subanesthetic ketamine on
resting-state functional connectivity in the default mode network,
salience network, dorsal attention network and executive control
network. NeuroImage. Clinical , 19 , 745–757.
https://doi.org/10.1016/j.nicl.2018.05.037
Mulders,
P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F., &
Tendolkar, I. (2015). Resting-state functional connectivity in major
depressive disorder: A review. Neuroscience and Biobehavioral
Reviews , 56 , 330–344.
https://doi.org/10.1016/j.neubiorev.2015.07.014
Muscatell,
K. A., Dedovic, K., Slavich, G. M., Jarcho, M. R., Breen, E. C., Bower,
J. E., Irwin, M. R., & Eisenberger, N. I. (2015). Greater amygdala
activity and dorsomedial prefrontal-amygdala coupling are associated
with enhanced inflammatory responses to stress. Brain, Behavior,
and Immunity , 43 , 46–53.
https://doi.org/10.1016/j.bbi.2014.06.201
Nawijn,
L., Dinga, R., Aghajani, M., van Tol, M.-J., van der Wee, N. J. A.,
Wunder, A., Veltman, D. J., & Penninx, B. W. H. J. (2022). Neural
correlates of anxious distress in depression: A neuroimaging study of
reactivity to emotional faces and resting-state functional connectivity.Depression and Anxiety , 39 (7), 573–585.
https://doi.org/10.1002/da.23264
Northoff,
G. (2020). Anxiety Disorders and the Brain’s Resting State Networks:
From Altered Spatiotemporal Synchronization to Psychopathological
Symptoms. Advances in Experimental Medicine and Biology ,1191 , 71–90. https://doi.org/10.1007/978-981-32-9705-0_5
Oathes,
D. J., Patenaude, B., Schatzberg, A. F., & Etkin, A. (2015).
Neurobiological signatures of anxiety and depression in resting-state
functional magnetic resonance imaging. Biological Psychiatry ,77 (4), 385–393. https://doi.org/10.1016/j.biopsych.2014.08.006
Ochsner,
K. N., & Gross, J. J. (2005). The cognitive control of emotion.Trends in Cognitive Sciences , 9 (5), 242–249.
https://doi.org/10.1016/j.tics.2005.03.010
Ogawa,
S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic
resonance imaging with contrast dependent on blood oxygenation.Proceedings of the National Academy of Sciences of the United
States of America , 87 (24), 9868–9872.
https://doi.org/10.1073/pnas.87.24.9868
Pannekoek,
J. N., van der Werff, S. J. A., van Tol, M. J., Veltman, D. J., Aleman,
A., Zitman, F. G., Rombouts, S. A. R. B., & van der Wee, N. J. A.
(2015). Investigating distinct and common abnormalities of resting-state
functional connectivity in depression, anxiety, and their comorbid
states. European Neuropsychopharmacology : The Journal of the
European College of Neuropsychopharmacology , 25 (11), 1933–1942.
https://doi.org/10.1016/j.euroneuro.2015.08.002.
Pannekoek,
J. N., van der Werff, S. J. A., Meens, P. H. F., van den Bulk, B. G.,
Jolles, D. D., Veer, I. M., van Lang, N. D. J., Rombouts, S. A. R. B.,
van der Wee, N. J. A., & Vermeiren, R. R. J. M. (2014). Aberrant
resting-state functional connectivity in limbic and salience networks in
treatment–naïve clinically depressed adolescents. Journal of
Child Psychology and Psychiatry , 55 (12), 1317–1327.
https://doi.org/10.1111/jcpp.12266
Pantazatos,
S. P., Yttredahl, A., Rubin-Falcone, H., Kishon, R., Oquendo, M. A.,
John Mann, J., & Miller, J. M. (2020). Depression-related anterior
cingulate prefrontal resting state connectivity normalizes following
cognitive behavioral therapy. European Psychiatry : The Journal of
the Association of European Psychiatrists , 63 (1), e37.
https://doi.org/10.1192/j.eurpsy.2020.34
Paulus,
M. P., & Stein, M. B. (2006). An insular view of anxiety.Biological Psychiatry , 60 (4), 383–387.
https://doi.org/10.1016/j.biopsych.2006.03.042.
Peng,
X., Lin, P., Wu, X., Gong, R., Yang, R., & Wang, J. (2018). Insular
subdivisions functional connectivity dysfunction within major depressive
disorder. Journal of Affective Disorders , 227 , 280–288.
https://doi.org/10.1016/j.jad.2017.11.018
Peters,
S. K., Dunlop, K., & Downar, J. (2016). Cortico-Striatal-Thalamic Loop
Circuits of the Salience Network: A Central Pathway in Psychiatric
Disease and Treatment. Frontiers in Systems Neuroscience ,10 , 104. https://doi.org/10.3389/fnsys.2016.00104
Peterson,
A., Thome, J., Frewen, P., & Lanius, R. A. (2014). Resting-state
neuroimaging studies: A new way of identifying differences and
similarities among the anxiety disorders? Canadian Journal of
Psychiatry. Revue Canadienne De Psychiatrie , 59 (6), 294–300.
https://doi.org/10.1177/070674371405900602
Pisoni,
A., Davis, S. W., & Smoski, M. (2021). Neural signatures of
saliency-mapping in anhedonia: A narrative review. Psychiatry
Research , 304 , 114123.
https://doi.org/10.1016/j.psychres.2021.114123
Raichle,
M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., &
Shulman, G. L. (2001). A default mode of brain function.Proceedings of the National Academy of Sciences of the United
States of America , 98 (2), 676–682.
https://doi.org/10.1073/pnas.98.2.676
Raichle,
M. E. (2015). The brain’s default mode network. Annual Review of
Neuroscience , 38 , 433–447.
https://doi.org/10.1146/annurev-neuro-071013-014030
Rauch,
S. L., Shin, L. M., & Wright, C. I. (2003). Neuroimaging studies of
amygdala function in anxiety disorders. Annals of the New York
Academy of Sciences , 985 , 389–410.
https://doi.org/10.1111/j.1749-6632.2003.tb07096.x
Razi,
A., Seghier, M. L., Zhou, Y., McColgan, P., Zeidman, P., Park, H.-J.,
Sporns, O., Rees, G., & Friston, K. J. (2017). Large-scale DCMs for
resting-state fMRI. Network Neuroscience , 1 (3), 222–241.
https://doi.org/10.1162/NETN_a_00015
Robinson,
O. J., Charney, D. R., Overstreet, C., Vytal, K., & Grillon, C. (2012).
The adaptive threat bias in anxiety: Amygdala-dorsomedial prefrontal
cortex coupling and aversive amplification. NeuroImage ,60 (1), 523–529. https://doi.org/10.1016/j.neuroimage.2011.11.096
Rolls,
E. T., Cheng, W., Gong, W., Qiu, J., Zhou, C., Zhang, J., Lv, W., Ruan,
H., Wei, D., Cheng, K., Meng, J., Xie, P., & Feng, J. (2019).
Functional connectivity of the anterior cingulate cortex in depression
and in health. Cerebral Cortex , 29 (8), 3617–3630.
https://doi.org/10.1093/cercor/bhy236
Rolls,
E. T., Huang, C.-C., Lin, C.-P., Feng, J., & Joliot, M. (2020).
Automated anatomical labelling atlas 3. NeuroImage , 206 ,
116189. https://doi.org/10.1016/j.neuroimage.2019.116189
Schimmelpfennig,
J., Topczewski, J., Zajkowski, W., & Jankowiak-Siuda, K. (2023). The
role of the salience network in cognitive and affective deficits.Frontiers in Human Neuroscience , 17 , 1133367.
https://doi.org/10.3389/fnhum.2023.1133367
Schirmer,
S. T., Beckmann, F.-E., Gruber, H., Schlaaff, K., Scheermann, D.,
Seidenbecher, S., Metzger, C. D., Tempelmann, C., & Frodl, T. (2023).
Decreased functional connectivity in patients with major depressive
disorder and a history of childhood traumatization through experiences
of abuse. Behavioural Brain Research , 437 , 114098.
https://doi.org/10.1016/j.bbr.2022.114098
Schmidt,
S. A., Akrofi, K., Carpenter-Thompson, J. R., & Husain, F. T. (2013).
Default mode, dorsal attention and auditory resting state networks
exhibit differential functional connectivity in tinnitus and hearing
loss. PloS One , 8 (10), e76488.
https://doi.org/10.1371/journal.pone.0076488
Seeley,
W. W. (2019). The Salience Network: A Neural System for Perceiving and
Responding to Homeostatic Demands. The Journal of Neuroscience ,39 (50), 9878–9882.
https://doi.org/10.1523/JNEUROSCI.1138-17.2019
Seeley,
W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna,
H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic
connectivity networks for salience processing and executive control.The Journal of Neuroscience , 27 (9), 2349–2356.
https://doi.org/10.1523/JNEUROSCI.5587-06.2007
Sharpley,
C. F., & Bitsika, V. (2013). Differences in neurobiological pathways of
four ”clinical content” subtypes of depression. Behavioural Brain
Research , 256 , 368–376.
https://doi.org/10.1016/j.bbr.2013.08.030
Shin,
L. M., & Liberzon, I. (2010). The neurocircuitry of fear, stress, and
anxiety disorders. Neuropsychopharmacology : Official Publication
of the American College of Neuropsychopharmacology , 35 (1),
169–191. https://doi.org/10.1038/npp.2009.83
Silverstone,
P. H., & Studnitz, E. von (2003). Defining anxious depression: Going
beyond comorbidity. Canadian Journal of Psychiatry. Revue
Canadienne De Psychiatrie , 48 (10), 675–680.
https://doi.org/10.1177/070674370304801006
Smucny,
J., Wylie, K. P., Kronberg, E., Legget, K. T., & Tregellas, J. R.
(2017). Nicotinic modulation of salience network connectivity and
centrality in schizophrenia. Journal of Psychiatric Research ,89 , 85–96. https://doi.org/10.1016/j.jpsychires.2017.01.018
Sridharan,
D., Levitin, D. J., & Menon, V. (2008). A critical role for the right
fronto-insular cortex in switching between central-executive and
default-mode networks. Proceedings of the National Academy of
Sciences of the United States of America , 105 (34), 12569–12574.
https://doi.org/10.1073/pnas.0800005105
Sylvester,
C. M., Corbetta, M., Raichle, M. E., Rodebaugh, T. L., Schlaggar, B. L.,
Sheline, Y. I., Zorumski, C. F., & Lenze, E. J. (2012). Functional
network dysfunction in anxiety and anxiety disorders. Trends in
Neurosciences , 35 (9), 527–535.
https://doi.org/10.1016/j.tins.2012.04.012
Tahmasian,
M., Knight, D. C., Manoliu, A., Schwerthöffer, D., Scherr, M., Meng, C.,
Shao, J., Peters, H., Doll, A., Khazaie, H., Drzezga, A., Bäuml, J.,
Zimmer, C., Förstl, H., Wohlschläger, A. M., Riedl, V., & Sorg, C.
(2013). Aberrant intrinsic connectivity of hippocampus and amygdala
overlap in the fronto-insular and dorsomedial-prefrontal cortex in major
depressive disorder. Frontiers in Human Neuroscience , 7 ,
639. https://doi.org/10.3389/fnhum.2013.00639
Trivedi,
M. H., Hollander, E., Nutt, D., & Blier, P. (2008). Clinical evidence
and potential neurobiological underpinnings of unresolved symptoms of
depression. The Journal of Clinical Psychiatry , 69 (2),
246–258. https://doi.org/10.4088/jcp.v69n0211.
Uddin,
L. Q., Yeo, B. T. T., & Spreng, R. N. (2019). Towards a Universal
Taxonomy of Macro-scale Functional Human Brain Networks. Brain
Topography , 32 (6), 926–942.
https://doi.org/10.1007/s10548-019-00744-6
van
den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain
network: A review on resting-state fMRI functional connectivity.European Neuropsychopharmacology , 20 (8), 519–534.
https://doi.org/10.1016/j.euroneuro.2010.03.008
van
Tol, M. J., van der Wee, N. J. A., & Veltman, D. J. (2021). Fifteen
years of NESDA Neuroimaging: An overview of results related to clinical
profile and bio-social risk factors of major depressive disorder and
common anxiety disorders. Journal of Affective Disorders ,289 , 31–45. https://doi.org/10.1016/j.jad.2021.04.009
Vincent,
J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L.
(2008). Evidence for a frontoparietal control system revealed by
intrinsic functional connectivity. Journal of Neurophysiology ,100 (6), 3328–3342. https://doi.org/10.1152/jn.90355.2008
Williams,
L. M. (2016). Precision psychiatry: A neural circuit taxonomy for
depression and anxiety. The Lancet. Psychiatry , 3 (5),
472–480. https://doi.org/10.1016/S2215-0366(15)00579-9.
Xu,
J., van Dam, N. T., Feng, C., Luo, Y., Ai, H., Gu, R., & Xu, P. (2019).
Anxious brain networks: A coordinate-based activation likelihood
estimation meta-analysis of resting-state functional connectivity
studies in anxiety. Neuroscience and Biobehavioral Reviews ,96 , 21–30. https://doi.org/10.1016/j.neubiorev.2018.11.005
Yeo,
B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D.,
Hollinshead, M., Roffman, J. L., Smoller, J. W., Zöllei, L., Polimeni,
J. R., Fischl, B., Liu, H., & Buckner, R. L. (2011). The organization
of the human cerebral cortex estimated by intrinsic functional
connectivity. Journal of Neurophysiology , 106 (3),
1125–1165. https://doi.org/10.1152/jn.00338.2011
Yuan,
M., Zhu, H., Qiu, C., Meng, Y., Zhang, Y., Shang, J., Nie, X., Ren, Z.,
Gong, Q., Zhang, W., & Lui, S. (2016). Group cognitive behavioral
therapy modulates the resting-state functional connectivity of
amygdala-related network in patients with generalized social anxiety
disorder. BMC Psychiatry , 16 , 198.
https://doi.org/10.1186/s12888-016-0904-8.
Zheng,
H., Xu, L., Xie, F., Guo, X., Zhang, J., Yao, L., & Wu, X. (2015). The
Altered Triple Networks Interaction in Depression under Resting State
Based on Graph Theory. BioMed Research International ,2015 , 386326. https://doi.org/10.1155/2015/386326
Table 1. Participant characteristics.