References
Abrams, P.A. (1995). Monotonic
or unimodal diversity-productivity gradients: What does competition
theory predict? Ecology, 76, 2019–2027.
Adler, P.B., Seabloom, E.W.,
Borer, E.T., Hillebrand, H., Hautier, Y., Hector, A., et al.(2011). Productivity is a poor predictor of plant species richness.Science, 333, 1750–1753.
Allbee, S.A., Rogers, H.S. &
Sullivan, L.L. (2023). The effects of dispersal, herbivory, and
competition on plant community assembly. Ecology, 104, e3859.
Anacker, B.L. (2014). The
nature of serpentine endemism. Am. J. Bot., 101, 219–224.
Aoyama, L., Shoemaker, L.G.,
Gilbert, B., Collinge, S.K., Faist, A.M., Shackelford, N., et al.(2022). Application of modern coexistence theory to rare plant
restoration provides early indication of restoration trajectories.Ecol. Appl., 32, e2649.
Bertness, M.D. & Callaway, R.
(1994). Positive interactions in communities. Trends Ecol. Evol.,
9, 191–193.
Blanchet, F.G., Cazelles, K.
& Gravel, D. (2020). Co-occurrence is not evidence of ecological
interactions. Ecol. Lett., 23, 1050–1063.
Bontrager, M. & Angert, A.L.
(2019). Gene flow improves fitness at a range edge under climate change.Evol Lett, 3, 55–68.
Brady, S.P., Bolnick, D.I.,
Barrett, R.D.H., Chapman, L., Crispo, E., Derry, A.M., et al.(2019). Understanding Maladaptation by Uniting Ecological and
Evolutionary Perspectives. Am. Nat., 194, 495–515.
Brooks, M.E., Kristensen, K.,
van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., et al.(2017). glmmTMB balances speed and flexibility among packages for
zero-inflated generalized linear mixed modeling. R J., 9,
378–400.
Buckley, L.B., Urban, M.C.,
Angilletta, M.J., Crozier, L.G., Rissler, L.J. & Sears, M.W. (2010).
Can mechanism inform species’ distribution models? Ecol. Lett.,
13, 1041–1054.
Cadotte, M.W. & Tucker, C.M.
(2017). Should Environmental Filtering be Abandoned? Trends Ecol.
Evol., 32, 429–437.
Carscadden, K.A., Emery, N.C.,
Arnillas, C.A., Cadotte, M.W., Afkhami, M.E., Gravel, D., et al.(2020). Niche Breadth: Causes and Consequences for Ecology, Evolution,
and Conservation. Q. Rev. Biol.
Chase, J.M. & Leibold, M.A.
(2009). Ecological Niches: Linking Classical and Contemporary
Approaches. University of Chicago Press.
Craine, J.M. & Dybzinski, R.
(2013). Mechanisms of plant competition for nutrients, water and light.Funct. Ecol., 27, 833–840.
Elff, M. (2023).mclogit: Multinomial Logit Models, with or without Random Effects
or Overdispersion. Comprehensive R Archive Network (CRAN).
Available at:
https://cran.r-project.org/web/packages/mclogit/index.html.
Last accessed 5 August 2023.
Fleishman, E., Noss, R. &
Noon, B. (2006). Utility and limitations of species richness metrics for
conservation planning. Ecol. Indic., 6, 543–553.
Fraser, L.H., Pither, J.,
Jentsch, A., Sternberg, M., Zobel, M., Askarizadeh, D., et al.(2015). Plant ecology. Worldwide evidence of a unimodal relationship
between productivity and plant species richness. Science, 349,
302–305.
Fridley, J.D., Grime, J.P.,
Huston, M.A., Pierce, S., Smart, S.M., Thompson, K., et al.(2012). Comment on “Productivity is a poor predictor of plant species
richness.” Science.
Germain, R.M., Jones, N.T. &
Grainger, T.N. (2019). Cryptic dispersal networks shape biodiversity in
an invaded landscape. Ecology, 100, e02738.
Germain, R.M., Mayfield, M.M.
& Gilbert, B. (2018). The “filtering” metaphor revisited: Competition
and environment jointly structure invasibility and coexistence.Biol. Lett., 14.
Germain, R.M., Strauss, S.Y.
& Gilbert, B. (2017). Experimental dispersal reveals characteristic
scales of biodiversity in a natural landscape. Proc. Natl. Acad.
Sci. U. S. A., 114, 4447–4452.
Germain, R.M.,
Urquhart-Cronish, M., Jones, N.T., Mayfield, M.M. & Raymundo, M.
(2022). The strength and direction of local (mal)adaptation depends on
neighbour density and the environment. J. Ecol., 110, 514–525.
Gillman, L.N. & Wright, S.D.
(2006). The influence of productivity on the species richness of plants:
a critical assessment. Ecology, 87, 1234–1243.
Grinnell, J. (1917). The
niche-relationship of the California Thrasher. The Auk., 34,
427-433.
Hallett, L.M., Shoemaker,
L.G., White, C.T. & Suding, K.N. (2019). Rainfall variability maintains
grass-forb species coexistence. Ecol. Lett., 22, 1658–1667.
Hargreaves, A.L., Samis, K.E.
& Eckert, C.G. (2014). Are species’ range limits simply niche limits
writ large? A review of transplant experiments beyond the range.Am. Nat., 183, 157–173.
Harpole, W.S. & Tilman, D.
(2007). Grassland species loss resulting from reduced niche dimension.Nature, 446, 791–793.
Hartig, F. (2022). Residual
Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models
[R package DHARMa version 0.4.6].
He, Q., Bertness, M.D. &
Altieri, A.H. (2013). Global shifts towards positive species
interactions with increasing environmental stress. Ecol. Lett.,
16, 695–706.
HilleRisLambers, J., Adler,
P.B., Harpole, W.S., Levine, J.M. & Mayfield, M.M. (2012). Rethinking
community assembly through the lens of coexistence theory. Annu.
Rev. Ecol. Evol. Syst., 43, 227–248.
Howe, R.W., Davis, G.J. &
Mosca, V. (1991). The demographic significance of “sink” populations.Biol. Conserv., 57, 239–255.
Jones, N.T. & Gilbert, B.
(2016). Biotic forcing: the push–pull of plant ranges. Plant
Ecol., 217, 1331–1344.
Jorgensen, S.E. & Fath, B.D.
(2008). Encyclopedia of Ecology. Elsevier Science.
Kraft, N.J.B., Adler, P.B.,
Godoy, O., James, E.C., Fuller, S. & Levine, J.M. (2015). Community
assembly, coexistence and the environmental filtering metaphor.Funct. Ecol., 29, 592–599.
Kraft, N.J.B., Comita, L.S.,
Chase, J.M., Sanders, N.J., Swenson, N.G., Crist, T.O., et al.(2011). Disentangling the drivers of β diversity along latitudinal and
elevational gradients. Science, 333, 1755–1758.
Laliberté, E., Zemunik, G. &
Turner, B.L. (2014). Environmental filtering explains variation in plant
diversity along resource gradients. Science, 345, 1602–1605.
Lande, R. (1993). Risks of
Population Extinction from Demographic and Environmental Stochasticity
and Random Catastrophes. Am. Nat., 142, 911–927.
Le Bagousse-Pinguet, Y.,
Gross, N., Maestre, F.T., Maire, V., de Bello, F., Fonseca, C.R.,et al. (2017). Testing the environmental filtering concept in
global drylands. J. Ecol., 105, 1058–1069.
Leibold, M.A. & Chase, J.M.
(2017). Metacommunity Ecology, Volume 59. Princeton University
Press.
Leibold, M.A., Holyoak, M.,
Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., et al.(2004). The metacommunity concept: a framework for multi-scale community
ecology. Ecol. Lett., 7, 601–613.
Leibold, M.A., Rudolph, F.J.,
Blanchet, F.G., De Meester, L., Gravel, D., Hartig, F., et al.(2022). The internal structure of metacommunities. Oikos, 2022.
Louthan, A.M., DeMarche, M.L.
& Shoemaker, L.G. (2021). Climate sensitivity across latitude: scaling
physiology to communities. Trends Ecol. Evol., 36, 931–942.
Louthan, A.M., Doak, D.F. &
Angert, A.L. (2015). Where and When do Species Interactions Set Range
Limits? Trends Ecol. Evol., 30, 780–792.
Lüdecke, D. (2018). Ggeffects:
Tidy data frames of marginal effects from regression models. J.
Open Source Softw., 3, 772.
Malkinson, D. & Tielbörger,
K. (2010). What does the stress-gradient hypothesis predict? Resolving
the discrepancies. Oikos, 119, 1546–1552.
Mayfield, M.M. & Stouffer,
D.B. (2017). Higher-order interactions capture unexplained complexity in
diverse communities. Nat Ecol Evol, 1, 62.
Mittelbach, G.G., Steiner,
C.F., Scheiner, S.M., Gross, K.L., Reynolds, H.L., Waide, R.B., et
al. (2001). What is the observed relationship between species richness
and productivity? Ecology, 82, 2381–2396.
Odum, E.P. (1969). The
strategy of ecosystem development. Science, 164, 262–270.
Pärtel, M., Laanisto, L. &
Zobel, M. (2007). Contrasting plant productivity-diversity relationships
across latitude: the role of evolutionary history. Ecology, 88,
1091–1097.
Pärtel, M. & Zobel, M.
(2007). Dispersal Limitation May Result in the Unimodal
Productivity-Diversity Relationship: A New Explanation for a General
Pattern. J. Ecol., 95, 90–94.
Pianka, E.R. (1966).
Latitudinal Gradients in Species Diversity: A Review of Concepts.Am. Nat., 100, 33–46.
Pinto, S.M. & MacDougall,
A.S. (2010). Dispersal limitation and environmental structure interact
to restrict the occupation of optimal habitat. Am. Nat., 175,
675–686.
Prabhakara, K., Hively, W.D.
& McCarty, G.W. (2015). Evaluating the relationship between biomass,
percent groundcover and remote sensing indices across six winter cover
crop fields in Maryland, United States. Int. J. Appl. Earth Obs.
Geoinf., 39, 88–102.
Pulliam, H.R. (2000). On the
relationship between niche and distribution. Ecol. Lett., 3,
349–361.
van Ruijven, J. & Berendse,
F. (2005). Diversity-productivity relationships: initial effects,
long-term patterns, and underlying mechanisms. Proc. Natl. Acad.
Sci. U. S. A., 102, 695–700.
Scheiner, S.M. (2003). Six
types of species-area curves. Glob. Ecol. Biogeogr., 12,
441–447.
Schindelin, J.,
Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,et al. (2012). Fiji: an open-source platform for biological-image
analysis. Nat. Methods, 9, 676–682.
Shackelford, N., Paterno,
G.B., Winkler, D.E., Erickson, T.E., Leger, E.A., Svejcar, L.N.,et al. (2021). Drivers of seedling establishment success in
dryland restoration efforts. Nat Ecol Evol, 5, 1283–1290.
Shoemaker, L.G., Sullivan,
L.L., Donohue, I., Cabral, J.S., Williams, R.J., Mayfield, M.M.,et al. (2020). Integrating the underlying structure of
stochasticity into community ecology. Ecology, 101, e02922.
Soberón, J. & Nakamura, M.
(2009). Niches and distributional areas: concepts, methods, and
assumptions. Proc. Natl. Acad. Sci. U. S. A., 106 Suppl 2,
19644–19650.
Stephan, P., Bramon Mora, B.
& Alexander, J.M. (2021). Positive species interactions shape species’
range limits. Oikos, 130, 1611–1625.
Thompson, P.L., Guzman, L.M.,
De Meester, L., Horváth, Z., Ptacnik, R., Vanschoenwinkel, B., et
al. (2020). A process-based metacommunity framework linking local and
regional scale community ecology. Ecol. Lett., 23, 1314–1329.
Tredennick, A.T., Adler, P.B.,
Grace, J.B., Harpole, W.S., Borer, E.T., Seabloom, E.W., et al.(2016). Comment on “Worldwide evidence of a unimodal relationship
between productivity and plant species richness.” Science, 351,
457–457.
Tucker, C.M., Shoemaker, L.G.,
Davies, K.F., Nemergut, D.R. & Melbourne, B.A. (2016). Differentiating
between niche and neutral assembly in metacommunities using null models
of β‐diversity. Oikos, 125, 778–789.
Ugland, K.I., Gray, J.S. &
Ellingsen, K.E. (2003). The species-accumulation curve and estimation of
species richness. J. Anim. Ecol., 72, 888–897.
Ulrich, W. (2006). Decomposing
the process of species accumulation into area dependent and time
dependent parts. Ecol. Res., 21, 578–585.
Van Dyke, M.N., Levine, J.M.
& Kraft, N.J.B. (2022). Small rainfall changes drive substantial
changes in plant coexistence. Nature, 611, 507–511.
Vellend, M. (2010). Conceptual
synthesis in community ecology. Q. Rev. Biol., 85, 183–206.
Venail, P.A., Maclean, R.C.,
Meynard, C.N. & Mouquet, N. (2010). Dispersal scales up the
biodiversity-productivity relationship in an experimental source-sink
metacommunity. Proceedings of the Royal Society B: Biological
Sciences, 277, 2339–2345.
Western Regional Climate Center
(2022). Knoxville creek
California monthly summary time series. Knoxville Creek
California, Available at:
https://wrcc.dri.edu/cgi-bin/rawMAIN.pl?caCKNO.
Whittaker, R.J. (2010).
Meta-analyses and mega-mistakes: calling time on meta-analysis of the
species richness-productivity relationship. Ecology, 91,
2522–2533.
Wisnoski, N.I. & Shoemaker,
L.G. (2022). Seed banks alter metacommunity diversity: The interactive
effects of competition, dispersal and dormancy. Ecol. Lett., 25,
740–753.
Zelnik, Y.R., Barbier, M.,
Shanafelt, D.W., Loreau, M. & Germain, R.M. (2021). Linking intrinsic
scales of ecological processes to characteristic scales of biodiversity
and functioning patterns. bioRxiv.
Ziffer-Berger, J., Weisberg,
P.J., Cablk, M.E. & Osem, Y. (2014). Spatial patterns provide support
for the stress-gradient hypothesis over a range-wide aridity gradient.J. Arid Environ., 102, 27–33.