References

Abrams, P.A. (1995). Monotonic or unimodal diversity-productivity gradients: What does competition theory predict? Ecology, 76, 2019–2027.
Adler, P.B., Seabloom, E.W., Borer, E.T., Hillebrand, H., Hautier, Y., Hector, A., et al.(2011). Productivity is a poor predictor of plant species richness.Science, 333, 1750–1753.
Allbee, S.A., Rogers, H.S. & Sullivan, L.L. (2023). The effects of dispersal, herbivory, and competition on plant community assembly. Ecology, 104, e3859.
Anacker, B.L. (2014). The nature of serpentine endemism. Am. J. Bot., 101, 219–224.
Aoyama, L., Shoemaker, L.G., Gilbert, B., Collinge, S.K., Faist, A.M., Shackelford, N., et al.(2022). Application of modern coexistence theory to rare plant restoration provides early indication of restoration trajectories.Ecol. Appl., 32, e2649.
Bertness, M.D. & Callaway, R. (1994). Positive interactions in communities. Trends Ecol. Evol., 9, 191–193.
Blanchet, F.G., Cazelles, K. & Gravel, D. (2020). Co-occurrence is not evidence of ecological interactions. Ecol. Lett., 23, 1050–1063.
Bontrager, M. & Angert, A.L. (2019). Gene flow improves fitness at a range edge under climate change.Evol Lett, 3, 55–68.
Brady, S.P., Bolnick, D.I., Barrett, R.D.H., Chapman, L., Crispo, E., Derry, A.M., et al.(2019). Understanding Maladaptation by Uniting Ecological and Evolutionary Perspectives. Am. Nat., 194, 495–515.
Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., et al.(2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J., 9, 378–400.
Buckley, L.B., Urban, M.C., Angilletta, M.J., Crozier, L.G., Rissler, L.J. & Sears, M.W. (2010). Can mechanism inform species’ distribution models? Ecol. Lett., 13, 1041–1054.
Cadotte, M.W. & Tucker, C.M. (2017). Should Environmental Filtering be Abandoned? Trends Ecol. Evol., 32, 429–437.
Carscadden, K.A., Emery, N.C., Arnillas, C.A., Cadotte, M.W., Afkhami, M.E., Gravel, D., et al.(2020). Niche Breadth: Causes and Consequences for Ecology, Evolution, and Conservation. Q. Rev. Biol.
Chase, J.M. & Leibold, M.A. (2009). Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press.
Craine, J.M. & Dybzinski, R. (2013). Mechanisms of plant competition for nutrients, water and light.Funct. Ecol., 27, 833–840.
Elff, M. (2023).mclogit: Multinomial Logit Models, with or without Random Effects or Overdispersion. Comprehensive R Archive Network (CRAN). Available at: https://cran.r-project.org/web/packages/mclogit/index.html. Last accessed 5 August 2023.
Fleishman, E., Noss, R. & Noon, B. (2006). Utility and limitations of species richness metrics for conservation planning. Ecol. Indic., 6, 543–553.
Fraser, L.H., Pither, J., Jentsch, A., Sternberg, M., Zobel, M., Askarizadeh, D., et al.(2015). Plant ecology. Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 349, 302–305.
Fridley, J.D., Grime, J.P., Huston, M.A., Pierce, S., Smart, S.M., Thompson, K., et al.(2012). Comment on “Productivity is a poor predictor of plant species richness.” Science.
Germain, R.M., Jones, N.T. & Grainger, T.N. (2019). Cryptic dispersal networks shape biodiversity in an invaded landscape. Ecology, 100, e02738.
Germain, R.M., Mayfield, M.M. & Gilbert, B. (2018). The “filtering” metaphor revisited: Competition and environment jointly structure invasibility and coexistence.Biol. Lett., 14.
Germain, R.M., Strauss, S.Y. & Gilbert, B. (2017). Experimental dispersal reveals characteristic scales of biodiversity in a natural landscape. Proc. Natl. Acad. Sci. U. S. A., 114, 4447–4452.
Germain, R.M., Urquhart-Cronish, M., Jones, N.T., Mayfield, M.M. & Raymundo, M. (2022). The strength and direction of local (mal)adaptation depends on neighbour density and the environment. J. Ecol., 110, 514–525.
Gillman, L.N. & Wright, S.D. (2006). The influence of productivity on the species richness of plants: a critical assessment. Ecology, 87, 1234–1243.
Grinnell, J. (1917). The niche-relationship of the California Thrasher. The Auk., 34, 427-433.
Hallett, L.M., Shoemaker, L.G., White, C.T. & Suding, K.N. (2019). Rainfall variability maintains grass-forb species coexistence. Ecol. Lett., 22, 1658–1667.
Hargreaves, A.L., Samis, K.E. & Eckert, C.G. (2014). Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range.Am. Nat., 183, 157–173.
Harpole, W.S. & Tilman, D. (2007). Grassland species loss resulting from reduced niche dimension.Nature, 446, 791–793.
Hartig, F. (2022). Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models [R package DHARMa version 0.4.6].
He, Q., Bertness, M.D. & Altieri, A.H. (2013). Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett., 16, 695–706.
HilleRisLambers, J., Adler, P.B., Harpole, W.S., Levine, J.M. & Mayfield, M.M. (2012). Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst., 43, 227–248.
Howe, R.W., Davis, G.J. & Mosca, V. (1991). The demographic significance of “sink” populations.Biol. Conserv., 57, 239–255.
Jones, N.T. & Gilbert, B. (2016). Biotic forcing: the push–pull of plant ranges. Plant Ecol., 217, 1331–1344.
Jorgensen, S.E. & Fath, B.D. (2008). Encyclopedia of Ecology. Elsevier Science.
Kraft, N.J.B., Adler, P.B., Godoy, O., James, E.C., Fuller, S. & Levine, J.M. (2015). Community assembly, coexistence and the environmental filtering metaphor.Funct. Ecol., 29, 592–599.
Kraft, N.J.B., Comita, L.S., Chase, J.M., Sanders, N.J., Swenson, N.G., Crist, T.O., et al.(2011). Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science, 333, 1755–1758.
Laliberté, E., Zemunik, G. & Turner, B.L. (2014). Environmental filtering explains variation in plant diversity along resource gradients. Science, 345, 1602–1605.
Lande, R. (1993). Risks of Population Extinction from Demographic and Environmental Stochasticity and Random Catastrophes. Am. Nat., 142, 911–927.
Le Bagousse-Pinguet, Y., Gross, N., Maestre, F.T., Maire, V., de Bello, F., Fonseca, C.R.,et al. (2017). Testing the environmental filtering concept in global drylands. J. Ecol., 105, 1058–1069.
Leibold, M.A. & Chase, J.M. (2017). Metacommunity Ecology, Volume 59. Princeton University Press.
Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., et al.(2004). The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett., 7, 601–613.
Leibold, M.A., Rudolph, F.J., Blanchet, F.G., De Meester, L., Gravel, D., Hartig, F., et al.(2022). The internal structure of metacommunities. Oikos, 2022.
Louthan, A.M., DeMarche, M.L. & Shoemaker, L.G. (2021). Climate sensitivity across latitude: scaling physiology to communities. Trends Ecol. Evol., 36, 931–942.
Louthan, A.M., Doak, D.F. & Angert, A.L. (2015). Where and When do Species Interactions Set Range Limits? Trends Ecol. Evol., 30, 780–792.
Lüdecke, D. (2018). Ggeffects: Tidy data frames of marginal effects from regression models. J. Open Source Softw., 3, 772.
Malkinson, D. & Tielbörger, K. (2010). What does the stress-gradient hypothesis predict? Resolving the discrepancies. Oikos, 119, 1546–1552.
Mayfield, M.M. & Stouffer, D.B. (2017). Higher-order interactions capture unexplained complexity in diverse communities. Nat Ecol Evol, 1, 62.
Mittelbach, G.G., Steiner, C.F., Scheiner, S.M., Gross, K.L., Reynolds, H.L., Waide, R.B., et al. (2001). What is the observed relationship between species richness and productivity? Ecology, 82, 2381–2396.
Odum, E.P. (1969). The strategy of ecosystem development. Science, 164, 262–270.
Pärtel, M., Laanisto, L. & Zobel, M. (2007). Contrasting plant productivity-diversity relationships across latitude: the role of evolutionary history. Ecology, 88, 1091–1097.
Pärtel, M. & Zobel, M. (2007). Dispersal Limitation May Result in the Unimodal Productivity-Diversity Relationship: A New Explanation for a General Pattern. J. Ecol., 95, 90–94.
Pianka, E.R. (1966). Latitudinal Gradients in Species Diversity: A Review of Concepts.Am. Nat., 100, 33–46.
Pinto, S.M. & MacDougall, A.S. (2010). Dispersal limitation and environmental structure interact to restrict the occupation of optimal habitat. Am. Nat., 175, 675–686.
Prabhakara, K., Hively, W.D. & McCarty, G.W. (2015). Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States. Int. J. Appl. Earth Obs. Geoinf., 39, 88–102.
Pulliam, H.R. (2000). On the relationship between niche and distribution. Ecol. Lett., 3, 349–361.
van Ruijven, J. & Berendse, F. (2005). Diversity-productivity relationships: initial effects, long-term patterns, and underlying mechanisms. Proc. Natl. Acad. Sci. U. S. A., 102, 695–700.
Scheiner, S.M. (2003). Six types of species-area curves. Glob. Ecol. Biogeogr., 12, 441–447.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods, 9, 676–682.
Shackelford, N., Paterno, G.B., Winkler, D.E., Erickson, T.E., Leger, E.A., Svejcar, L.N.,et al. (2021). Drivers of seedling establishment success in dryland restoration efforts. Nat Ecol Evol, 5, 1283–1290.
Shoemaker, L.G., Sullivan, L.L., Donohue, I., Cabral, J.S., Williams, R.J., Mayfield, M.M.,et al. (2020). Integrating the underlying structure of stochasticity into community ecology. Ecology, 101, e02922.
Soberón, J. & Nakamura, M. (2009). Niches and distributional areas: concepts, methods, and assumptions. Proc. Natl. Acad. Sci. U. S. A., 106 Suppl 2, 19644–19650.
Stephan, P., Bramon Mora, B. & Alexander, J.M. (2021). Positive species interactions shape species’ range limits. Oikos, 130, 1611–1625.
Thompson, P.L., Guzman, L.M., De Meester, L., Horváth, Z., Ptacnik, R., Vanschoenwinkel, B., et al. (2020). A process-based metacommunity framework linking local and regional scale community ecology. Ecol. Lett., 23, 1314–1329.
Tredennick, A.T., Adler, P.B., Grace, J.B., Harpole, W.S., Borer, E.T., Seabloom, E.W., et al.(2016). Comment on “Worldwide evidence of a unimodal relationship between productivity and plant species richness.” Science, 351, 457–457.
Tucker, C.M., Shoemaker, L.G., Davies, K.F., Nemergut, D.R. & Melbourne, B.A. (2016). Differentiating between niche and neutral assembly in metacommunities using null models of β‐diversity. Oikos, 125, 778–789.
Ugland, K.I., Gray, J.S. & Ellingsen, K.E. (2003). The species-accumulation curve and estimation of species richness. J. Anim. Ecol., 72, 888–897.
Ulrich, W. (2006). Decomposing the process of species accumulation into area dependent and time dependent parts. Ecol. Res., 21, 578–585.
Van Dyke, M.N., Levine, J.M. & Kraft, N.J.B. (2022). Small rainfall changes drive substantial changes in plant coexistence. Nature, 611, 507–511.
Vellend, M. (2010). Conceptual synthesis in community ecology. Q. Rev. Biol., 85, 183–206.
Venail, P.A., Maclean, R.C., Meynard, C.N. & Mouquet, N. (2010). Dispersal scales up the biodiversity-productivity relationship in an experimental source-sink metacommunity. Proceedings of the Royal Society B: Biological Sciences, 277, 2339–2345.
Western Regional Climate Center (2022). Knoxville creek California monthly summary time series. Knoxville Creek California, Available at: https://wrcc.dri.edu/cgi-bin/rawMAIN.pl?caCKNO.
Whittaker, R.J. (2010). Meta-analyses and mega-mistakes: calling time on meta-analysis of the species richness-productivity relationship. Ecology, 91, 2522–2533.
Wisnoski, N.I. & Shoemaker, L.G. (2022). Seed banks alter metacommunity diversity: The interactive effects of competition, dispersal and dormancy. Ecol. Lett., 25, 740–753.
Zelnik, Y.R., Barbier, M., Shanafelt, D.W., Loreau, M. & Germain, R.M. (2021). Linking intrinsic scales of ecological processes to characteristic scales of biodiversity and functioning patterns. bioRxiv.
Ziffer-Berger, J., Weisberg, P.J., Cablk, M.E. & Osem, Y. (2014). Spatial patterns provide support for the stress-gradient hypothesis over a range-wide aridity gradient.J. Arid Environ., 102, 27–33.