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1. Gaussian Processes With Non-Gaussian Constraint Noise

1.1. Introduction

In the main text, we gave a brief overview of the Gaussian Process methodology as it

related to reconstruction of δ11Bsw. Here we give a fuller, more generalised and statistically

rigorous description of the Gaussian Process methodology, including how it was adapted

to incorporate each style of constraint mentioned in the main text. We then illustrate

how this technique works in practice by testing it against a hypothetical signal with noisy

constraints, with a step by step walkthrough of integrating various forms of information

analogous to the types of constraint we have on δ11Bsw.

Suppose that we observe a function f(·) subject to (potentially non-Gaussian) noise in

constraints at a set of known times ti, i.e.,

yi = f(ti) + ϵi for i = 1, . . . ,M.

Here, ϵi can be a general probability distribution and is not required to be a standard

Gaussian. Furthermore, suppose that we may have some further constraints on the value

of f(t) for certain values of t (e.g. lower/upper bounds), or additional non-standard

information on the values of f(t) (such as constraints on the change in value over time

df
dt
).

We wish to obtain a non-parametric posterior estimate of the function f(·) modelled

as a Gaussian Process (GP) given both the potentially complex observations yi and any

additional non-standard information. In the standard GP setting, the function f(·) is

assumed to be observed subject to normally distributed noise. As a consequence, the

exact posterior for f given y can be easily calculated directly. However, when the available
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constraints ϵ are non-Gaussian, the GP’s posterior can not be written down exactly and

is much more challenging to calculate, as it does not take a standard form. To obtain

posterior samples under such a non-Gaussian constraint model, we therefore implement

a rejection sampling approach. Specifically, we aim to draw from a nearby distribution

(from which it is possible to sample directly) and then reject/accept these samples using

rejection sampling principles to obtain the correct GP posterior under our non-Gaussian

constraint model.

To explain our approach in this Supplementary Information, we will first provide a

brief background to Gaussian Processes and explain how they are usually fitted in the

context of non-parametric regression given a set of constraints with Gaussian noise. We

then introduce the idea of rejection sampling before going on to show how this idea can be

used to sample from the posterior of a Gaussian Process in the presence of constraints with

non-Gaussian uncertainty (or when additional, non-standard information is available).

1.2. Definition of a Gaussian Process (GP) Prior

A (one-dimensional input) zero-mean Gaussian Process f(z) ∼ GP(0, k(t, t′)) is a col-

lection of random variables, any finite number of which have a joint Gaussian distribution

(Rasmussen & Williams, 2006). It is completely specified by its covariance function:

k(t, t′) = E[f(t)f(t′)].

When using a Gaussian Process to perform regression, the random variables represent the

values of the function f(t) at time t. For a set of N times t⋆ = (t⋆1, t
⋆
2, . . . , t

⋆
N)

T , our prior

specifies

f⋆ = f(t⋆) ∼ N (0, Kt⋆,t⋆),
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where Kt⋆,t⋆ denotes the matrix of the covariances evaluated at all pairs of the times t⋆i .

1.3. Updating the GP Prior under a Normal Observational Model

Typically, when performing non-parametric regression, we assume that we observe the

function f(t) subject to normally-distributed noise, i.e.,

y = f(t) + η

where the noise η ∼ N (0,Σ). This observational noise may have dependence encoded in

the covariance matrix Σ but critically is assumed to be normally distributed. In such a

situation, we can use the standard properties of the multivariate normal distribution to

derive the posterior distribution for our function values at our times of interest t⋆ exactly:

f⋆|t,y, t⋆ ∼ N (f̄⋆, cov(f⋆)),

where

f̄⋆ = KT
t,t⋆ [Kt,t + Σ]−1y,

cov(f⋆) = Kt⋆,t⋆ −KT
t,t⋆ [Kt,t + Σ]−1Kt,t⋆ .

See Rasmussen and Williams (2006) for full details. However, as soon as the observational

model becomes non-normal, i.e., it is no longer the case that yi|f(ti) ∼ N(f(ti), σ
2
i ) then

the GP posterior becomes much more complex and will no longer take the form of a

simple multivariate normal. To estimate the posterior distribution in such instances, we

will therefore take a different approach based upon rejection sampling.

1.4. Rejection Sampling

Rejection sampling is a general purpose method that enables sampling from non-

standard distributions. Suppose we wish to sample X from a particular target probability
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density fX(x) but, for some reason, we cannot do so directly. However, suppose there

exists an alternative envelope density function gZ(z) from which we can sample that satis-

fies the condition fX(x)
gZ(x)

bounded ∀x. For any constant c ≥ supx
fX(x)
gY (x)

, we can then obtain

samples from our desired target fX(x) using the following rejection method:

1. Sample z from an envelope density that is proportional to gZ(z), and a uniform u

from U [0, 1].

2. If u ≤ fX(z)
c gY (z)

, state X = z, otherwise return to step 1.

For maximum efficiency we therefore want c, i.e., supx
fX(x)
gZ(x)

as small as possible. We

therefore aim to find an envelope density function gZ that is both easy to sample from

and mimics the target fX as closely as possible. The concept of rejection sampling is

shown graphically in Figure S3.

2. Rejection Sampling GPs with Non-Gaussian Noise

Returning to our specific non-parametric regression, suppose that we observe a function

subject to (potentially non-Gaussian) noise at a set of known times ti,

yi = f(ti) + ϵi for i = 1, . . . ,M.

We wish to place a Gaussian Process prior on the values of f(t) and then sample from

the posterior under the (potentially non-Gaussian) observational model ϵ,

pϵ(f |y) =
pϵ(y|f)π(f)

pϵ(y)
∝ pϵ(y|f)π(f). (†)

Due to the non-Gaussian nature of ϵ, we cannot directly sample from this posterior dis-

tribution. However we can sample from an alternative distribution of our choosing and

then use rejection sampling principles. We will typically use the GP posterior under a
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normally-distributed error model for this envelope distribution. This η-error model as

discussed in Section 1.3 can be calculated precisely and, in general, will hopefully be close

to the true target posterior. Having chosen a suitable envelope density, proportional to

g(f |y), the rejection algorithm thus becomes:

1. Calculate c‡ = supf
pϵ(y|f)π(f)

g(f |y)

2. Sample from the envelope density g(f ‡|y) a potential f ‡ at both times of interest t⋆

and the times t at which we have observations y

3. Sample u ∼ U [0, 1], if u ≤ pϵ(y|f‡)π(f‡)
c‡g(f‡|y) then accept f = f ‡ as a draw from the correct

posterior, otherwise return to step 2.

The calculation of both c‡ and the acceptance criteria in step 3 will generally only de-

pend upon the sampled values of f ‡ at the times t with observations. This will reduce

calculation. Furthermore, we note that pη(y|f) =
∏N

i=1 pηi(yi|f(ti)) if the observations

are independent. Exceptions may however occur if we have additional, non-standard,

constraints such as on the range or variation of the function f(·).

We can repeat this rejection sampling technique until we obtain a large number of

posterior realisations f from the target distribution (that corresponds to the general ob-

servational noise model). These can then be summarised by Monte Carlo to provide

posterior means and variances for any f(t).

2.1. Rejection Sampling Implementation

Our rejection sampling algorithm to sample from the correct posterior under a general

observational error model ϵ then becomes (after cancelling common terms):
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1. Sample fη at times of interest t⋆ and also times t at which we have observations y

from GP posterior under normally-distributed η error model.

2. Sample u ∼ U [0, 1], if u ≤ pϵ(y|fη)
c⋆ pη(y|f) (where, as defined above, c⋆ = supf

pϵ(y|fη)
pη(y|f) ) then

accept f = fη as a draw from the correct posterior, otherwise return to step 1. Again, we

note that this only depends upon the sampled values of fη at the times t with observations

and that, e.g., pη(y|f) =
∏N

i=1 pηi(yi|f(ti)) if those observations are independent.

We repeat this sampling technique until we obtain a large number of posterior realisa-

tions f from the target distribution (that correspond to the general observational noise

model) which can then be summarised by Monte-Carlo.

3. Specific Examples

While the rejection sampling approach may appear complicated, in many instances it

will simplify considerably. We discuss some specific examples below.

3.1. Incorporating Upper and Lower Bounds

Suppose that we have a set of normally-distributed observations y but, in addition, a

further set of values z = (z1, . . . , zK)
T that operate as upper bounds on the unknown

function, i.e., it is the case that f(tbj) < zj for given times tb1, . . . , t
b
K . In this case, we

consider that these K additional values are entirely uninformative about the value of f(t)

beyond providing such a bound. Consequently, the target posterior is:

p(f |y, z) ∝

{
M∏
j=1

1[f(tbj)<zj ]

}
pη(y|f)π(f),

where pη(y|f) is the usual normal likelihood function for the observations y. For our

envelope function, we can sample directly from the GP posterior considering just the
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regular, normally-distributed, observations y, i.e., g(f |y) ∝ pη(y|f)π(f) so that our c‡ = 1.

Our algorithm then becomes simply:

1. Sample f ‡ from the standard GP posterior based upon normally-distributed obser-

vations y at both times of interest t⋆ and the times tb at which there are upper bounds.

This can be done as described in Section 1.3

2. Accept f ‡ as a draw from the true target posterior if it satisfies all the constraints

z; otherwise reject and return to step 1.

This has a straightforward analogue when we have combinations of upper and lower

bounds.

3.2. Incorporating Non-Gaussian Observations

When our observations y are subject to non-normal noise (which we have denoted by

η) then an appropriate envelope density to use for rejection sampling might be the GP

posterior for f had the noise been normally distributed (see Figure S3). In other words, we

use might use a GP conditioned on observations with normal noise as our initial estimate

of the posterior, then refine this through rejection sampling, i.e., the posterior for f(·)

under the model:

yi = f(ti) + ηi for i = 1, . . . , n.

where η ∼ N(0, σ2
i ). In this case the envelope function is g(f |y) = pη(f |y) = pη(y|f)π(f).

This distribution is known, see Section 1.3, and it is easy to sample from it directly. To

perform rejection sampling, we are required to calculate

c† = sup
f

pϵ(y|f)π(f)
pη(y|f)π(f)

= sup
f

pϵ(y|f)
pη(y|f)

.
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Since pη(y|f) is a normal distribution with infinite support, this supremum will exist

for almost all alternative errors models (unless they have different tail behaviour). The

calculation of c† only depends upon the sampled values of f at the times t for which we

have observations y. Furthermore, if the observations yi are independent, the numerator

and denominator in the supremum can be calculated as independent products since, e.g.,

pη(y|f) =
∏N

i=1 pηi(yi|f(ti)). Our rejection sampling algorithm to sample from the correct

GP posterior under a general observational error model ϵ then becomes:

1. Sample f ‡ at times of interest t⋆ and also times t at which we have observations y

from GP posterior under normally-distributed η error model.

2. Sample u ∼ U [0, 1], if u ≤ pϵ(y|f‡)
c† pη(y|f‡) , then accept f = f ‡ as a draw from the correct

posterior. Otherwise return to step 1.

Again, the acceptance criteria in step 2 only depends upon the sampled values of f ‡ at the

times t corresponding to the observations y. Also, if the observations y are independent,

then the likelihood terms reduce to products, e.g., pη(y|f) =
∏N

i=1 pηi(yi|f(ti)).

Modelling Outlying Observations: A specific instance where we may wish to consider

non-normal noise occurs if we believe that some of the observations y may be outliers.

In such situations, we are required to select both the probability w of an observation yi

being an outlier and, when it is an outlier, its specific distribution. We will denote the

observational noise in an outlier model as ζ. Our likelihood for the observed yi given f(ti)

then becomes a mixture:

pζ(yi|fi) = (1− w)pϵ(yi|fi) + wpo(yi|fi)
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Here, pϵ(yi|fi) is the quoted non-outlier likelihood; and po(x) the selected outlier likeli-

hood. A natural choice for po(yi|fi) may be a uniform distribution U [fi − a, fi + b] where

a and b are chosen suitably (or even simply U [a, b]). We can then proceed as above using

the mixture pζ(x) as our observational model.

3.3. Additional Constraints

We are also able to incorporate additional types of constraints on the value of the

function beyond simply direct observations of the function at individual times. Examples

might include additional prior information, or observed information that might depend

upon the value of the function at multiple times. For example, suppose that we have a

belief that the gradient of the pH function should not change by more than x per million

years. This can be encapsulated by modifying π(f), the standard GP prior, to instead be

π′(f) ∝ 1[max gradient<x]π(f). To include this additional belief, we can simply sample from

the standard (non-gradient-constrained) GP posterior, and then reject those realisations

for which the maximum gradient is greater than x per million years. We note that, in

practice, we estimate the maximum gradient of the function by sampling the GP extremely

densely in time.

Aside: We can build up our posterior by using the GP posterior from a subset of

the observations; and then use rejection sampling to adjust/update this for the full set of

observations. Suppose that we observe yi = f(ti) + ϵi for i = 1, . . . ,M . We can sample

from a reduced posterior considering all the observations excluding one, without loss of

generality we suppose this is yM :

g(f |y1, . . . , yM−1) ∝
M−1∏
i=1

pϵ(yi|fi)π(f).
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To update this preliminary distribution to the full target posterior using all the obser-

vations, we sample from the reduced posterior g(f |y1, . . . , yM−1) ensuring we include the

value at fM = f(tM). We then accept this draw with probability pϵ(yM |fM )
maxf pϵ(yM |fM )

. Other-

wise we sample from the reduced envelope again. This reduced-to-full approach is however

likely to be much less efficient than sampling from an appropriate envelope based upon

all the samples.

4. Rejection Sampling for δ11Bsw with Diverse Constraints

When reconstructing δ11Bsw we have multiple types of constraints: non-Gaussian ob-

servations, upper/lower bounds, and restrictions on the maximum rate of change over

time. We are required to integrate all these varied constraints into our GP posterior. We

illustrate how this is achieved in Figure S4. The large upper panel shows a hypothetical

signal (in the thick black line) which is assumed unknown. We wish to reconstruct this

function using a Gaussian Process and five noisy observations. Three observations, shown

in blue, are subject to Gaussian noise (displayed at 1 standard deviation uncertainty).

The other two observations, shown in green, are subject to non Gaussian noise reminis-

cent of a Tukey window - derived from a uniform distribution with Gaussian noise in the

end members.

Here a Gaussian Process with prescribed hyperparameters (length scale of 15, noise

scale of 30) assimilates the three observations with Gaussian uncertainty. This will be our

envelope density. Three proposed samples are drawn from the Gaussian Process, shown

in grey and labelled: a (dashed line), b (dotted line), and c (solid line). Looking at each

sample in the upper panel, we see that:
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• Gaussian Process sample a is completely inconsistent with the non-Gaussian obser-

vation around t = 70.

• Gaussian Process sample b is potentially consistent with both non-Gaussian observa-

tions, but is right at the limits of the possible outcomes for the constraint around t = 30.

• Gaussian Process sample c is consistent with both non-Gaussian observations - pass-

ing through a high probability region of both.

Each of the five observations is shown in a separate subpanel beneath the main time

series. We might consider these as time slices through the main panel, displaying each

observation probabilistically. The true value of the signal at these times is shown by the

black horizontal line in each panel. The value of each Gaussian Process sample at the

time slices is shown in the panels with the corresponding line style.

To assimilate observations with non-Gaussian uncertainties (shown in green), we use

a rejection sampling strategy described above. To calculate a probability of acceptance,

first each non-Gaussian distribution is scaled such the the maximum is equal to one (as

shown in the lower panels). Then for each sample drawn from the Gaussian Process, the

relative likelihood of the sample is calculated (this is shown numerically for each sample

in the lower panels). The relative likelihood of each sample from the Gaussian Process is

the product of the likelihoods at each of these individual timeslices.

• Gaussian Process sample a has a 1.0× 0.0 = 0 probability of acceptance.

• Gaussian Process sample b has a 0.56× 1.0 = 0.56 probability of acceptance.

• Gaussian Process sample c has a 1.0× 1.0 = 1.0 probability of acceptance.
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This strategy allows us to draw samples which are consistent with different types of

observation - though we note there are potential failure conditions. If one of the non-

Gaussian observations were much higher than the Gaussian observations, every sample

would receive a 0 probability of acceptance. We mitigate against this failure condition by

giving non-Gaussian constraints the possibility of being an outlier (as described above in

Section 3.2).

In addition to the types of constraints shown above, we also place limitations on the

rate of change in δ11Bsw. The same technique as shown for the non-Gaussian constraints

is used to enforce these constraints. Using the same synthetic example, this would appear

as in Figure S5.

Here the gradient in each of the samples is calculated using the first difference, and a

weight for each sample can be determined by comparing this gradient to the constraints.

In both the synthetic data example and the δ11Bsw reconstruction we place a uniform

prior on the gradient, which effectively describes the maximum rate of change (either

in a negative or positive direction). This is displayed using horizontal bars in the large

panel, within which the signal must fall, and each uniform window is plotted in individual

subpanels underneath. We see that two samples remain within the imposed constraints,

whereas the sample a is incompatible with both the earliest and latest constraint.

The prescribed maximum rate of change in both the synthetic example and the recon-

struction of δ11Bsw depends on time. In the synthetic example, the gradient is constrained

in three places, with increasing acceptable range from ±0.2 units in the earliest constraint

to ±0.6 units in the latest. For δ11Bsw, the maximum rate of change is constrained for each
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discretised age window (at a resolution of 0.1Myr), and grows linearly from 0.1‰/Myr in

the modern day to 1‰/Myr at 100Ma to account for increasing uncertainty in this limit.

If we run the algorithm described above for 10,000 Gaussian Process samples, accepting

and rejecting the proposed samples according to the rejection algorithm, we can obtain

a set of realisations from the complete posterior that incorporate all the various forms of

information we have on its value: the three Gaussian observations, the two non-Gaussian,

and the gradient constraints. We can then summarise these using a median and 95%

pointwise posterior probability window and compare agreement to the underlying original

signal as shown in Figure S6. We see a good match, within the limitations imposed by

not having many observations on which to base our reconstruction, and considering that

each of these observations has substantial uncertainty.
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5. Data File Description

5.1. Data Supplement S1

Data Supplement S1 is an excel file containing two worksheets. The first has every

accepted reconstructed δ11Bsw time series, with age in each column, and an independent

statistical sample in each row. The second worksheet contains summary metrics, specif-

ically the median and 5% and 95% quantiles of the time series. These quantiles give a

sense of uncertainty at any individual time, and can be used to propagate uncertainties

when targeting absolute pH reconstructions from δ11B4 within a narrow time window.

When looking at longer term trends, or robustly assessing uncertainty in change in pH,

the full time series should be integrated by sampling from the time series presented in the

former tab.

5.2. Data Supplement S2

Data Supplement S3 is an excel file containing three triples of worksheets (nine in total)

which contain the data, summary metrics for fits, and 10,000 Gaussian Process samples

for the evolution of 87/86Sr, δ7Li, and 187/188Os (as shown in Figure 4 and Figure S1).

Strontium and lithium signals are taken from Misra and Froelich (2012). Osmium

deserves special mention here as no Cenozoic compilation was found in an accessible

format. Our Cenozoic 187/188Os record was constructed from previously published data

in Josso et al. (2019); Klemm, Levasseur, Frank, Hein, and Halliday (2005); Oxburgh

(1998); Oxburgh, Pierson-Wickmann, Reisberg, and Hemming (2007); Paquay, Ravizza,

Dalai, and Peucker-Ehrenbrink (2008); Paquay, Ravizza, and Coccioni (2014); Pegram

and Turekian (1999); Peucker-Ehrenbrink and Ravizza (2000, 2020); van der Ploeg et al.
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(2018); Ravizza (1993); Ravizza and Turekian (1992); Ravizza and Peucker-Ehrenbrink

(2003); Ravizza, Norris, Blusztajn, and Aubry (2001); Reusch, Ravizza, Maasch, and

Wright (1998); Robinson, Ravizza, Coccioni, Peucker-Ehrenbrink, and Norris (2009).

Ages of the data from Paquay et al. (2008) were adjusted to match the age model of

the record of Paquay et al. (2014). Our 187/188Os compilation integrates data from pelagic

sediments and Fe-Mn crusts into a single record. The trends are broadly consistent with

those previously reported in Peucker-Ehrenbrink and Ravizza (2020), however we are able

to produce a representative curve with propagated uncertainties using a Gaussian Process.

For most signals in this work we have used the residence time of the element in question

to determine the length scale of the Gaussian process, however in the case of osmium

the residence time is too short (Oxburgh, 2001) for this to be viable given the current

data density. Instead we choose a low (1 Myr) but still inflated value which bridges the

gaps between data without overly smoothing the signal, in order to produce the curve we

believe to be most representative.

5.3. Data Supplement S3

Data Supplement S3 is an excel file containing four worksheets describing summary

metrics and 10,000 possible evolutions of δ11B4 and pH (as shown in Figure 3 and Fig-

ure S1).
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Figure S1: δ11Bsw (pink), δ11B4 (purple), pH (red), 87/86Sr (yellow), δ7Li (green), and
187/188Os (blue) are shown here with the same style as shown in the two separate plots in
the main text. We provide an large summary figure here for easy comparison of the six
signals.
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Figure S2: The temporal gradient in our δ11Bsw samples is shown by the blue window, with
the mean average shown in grey. Our imposed limitation on the gradient of δ11Bsw through
time is shown by the dotted black lines. Any sample drawn outside of these bounds would
be rejected. It can be seen that the limitations have most influence between the Neogene
and modern, and further back do not result in rejection of any samples.

September 22, 2023, 10:13am



X - 22 :

Figure S3: An illustration of rejection sampling. We aim to sample from the dotted
blue saw-tooth density (shown as a dotted blue line) using a Gaussian distribution as
the envolope (shown in solid blue). The Gaussian envelope has been rescaled from a
standard Gaussian distribution so it encapsulates the target sawtooth density. To obtain
a sample from the sawtooth distribution, we first sample a value envelope density. We
show hypothetical three values z1 = 30, z2 = 45 and z3 = 60. The probability of accepting
each sample zi as a draw from the sawtooth distribution is then the ratio of the height
of the target (dotted line) compared to the height of the envelope (solid blue line). These
probabilities are 0.3, 0.83, and 0 respectively for our three hypothetical zi samples.
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Figure S4: Calculating the GP posterior by rejection sampling that combines multiple
constraints of both Gaussian and non-Gaussian types. Multiple samples are taken using
a Gaussian Process conditioned on only the Gaussian constraints (samples are shown
in the grey lines), and for each we quantify the probability of that sample at each data
constraint (the blue and green windows). The probability of each sample is the product of
the probabilities of that sample at each data constraint, meaning that sample a is rejected
(it does not match the fourth data constraint), while other are likely to be accepted. This
is described further in Section 3.3.
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Figure S5: Incorporating constraints on the gradient into estimation of δ11Bsw. The main
plot shows the estimated gradient ∆Value of our function over time. The subplots shown
the gradient constraint we impose upon the signal, and the probability of observing each
statistical sample at that time. Note that here we impose gradient constraint only a three
discrete locations, whereas in the main text we apply a continuous limitation on the rate
of change in δ11Bsw.
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Figure S6: Reconstruction of the function shown in black incorporating information from
noisy Gaussian observations (in blue) and non-Gaussian observations (in green) and gra-
dient restrictions (in purple in Figure S5). The yellow line shows our central estimate,
with a 95% confidence interval shown in the yellow shaded region.
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