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Abstract

This letter considers a reconfigurable intelligent surface (RIS) aided indoor visible light communi-

cation system, where a mirror array-based RIS is deployed to assist the communication from a light-

emitting diode (LED) to multiple user terminals (UTs). We aim to maximize the sum-rate in an entire

serving period by jointly optimizing the orientation of the RIS reflecting unit, the time fraction for

the UT, and the transmit power at the LED, subject to the communication and illumination intensity

requirements. To solve this high-dimensional non-convex problem, we first transform it as a constrained

Markov decision process. Then, a soft actor-critic (SAC)-based deep reinforcement learning (DRL)

algorithm is proposed with the objective of maximizing both the average reward and the expected policy

entropy. Simulation results show that the proposed SAC-based joint optimization design outperforms

the existing DRL-based baselines in terms of the sum-rate and long-term average reward.
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I. INTRODUCTION

Motivated by recent advances in both visible light communication (VLC) and reconfigurable

intelligent surface (RIS), applying RIS into the design and optimization of VLC systems has been

identified as a symbiotic 6G enabler, gaining upsurge of research interests [1], [2]. In the RIS-

VLC framework, the ubiquitous light-emitting diodes (LEDs) are used to transmit data through

the visible light that carries the message signals to the photodetectors (PDs) of user terminals

(UTs), assisted by the RISs for creating favorable propagation conditions. By mitigating skip-

zones and configuring the reflections of the incident visible light signals from LEDs to PDs via

RISs, the interplay between VLC and RIS has shown as great benefits to improve the performance

of VLC, e.g., illumination relaxation, coverage expansion, and signal quality enhancement [1].

Recent research progress has been made to reveal the potentials of a fusion of VLC and

RIS. For instance, the authors in [3] designed a joint optimization scheme of power allocation,

LED-RIS reflecting unit association, and LED-UT association to maximize the overall spectral

efficiency. In [4], the RIS unit assignment for UTs was optimized to maximize the sum-rate.

The similar work can be found in [5], where a joint optimization framework of transceiver

signal processing and RIS unit alignment with the “LED-PD” pair was presented to minimize

the system’s mean square error. However, these works in [3]–[5] only considered the RIS

configuration via the unit association design, without capturing the unit orientation, especially

for the mirror array-based RIS. Typically, the RIS unit orientation can be controlled intelligently

to better reflect the incident signal towards the UT, which may further exploit its benefits. In

this regard, the authors in [6] derived the optimal orientation of the RIS mirror to set up the

robust RIS-reflecting path such that the maximal rate was obtained. In [7], the secrecy rate was

maximized by optimizing the RIS unit orientation to defend against the eavesdropper. Despite

the works in [6], [7] devoted to improving the system performance, the RIS unit orientation

optimization design has not been jointly considered with the efficient resource allocation.

To further develop the potentials of the RIS-VLC systems, it is crucial to jointly optimize

RIS unit orientation configuration and resource allocation [2]. However, the joint optimization

problem involves multiple optimization variables with high dimensionality, which usually suffers

from loss of optimality, high computational complexity, and lack of long-term optimization when

using traditional optimization methods as in [3]–[7]. Against this problem, the deep deterministic

policy gradient (DDPG)-based deep reinforcement learning (DRL) via the actor-critic method
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was utilized in [8] to jointly optimize the RIS unit orientation and the LED’s beamforming

weight for maximizing the secrecy rate. The use of DRL in [8] was also shown to be beneficial

in real-time deployment and ease of implementation for practical RIS-VLC systems. However,

the work in [8] only considered optimizing the RIS unit orientation thus failed to fully explore

the resource allocation problem. Meanwhile, the joint optimization problem cannot effectively

addressed by traditional DDPG-based DRL algorithm since it may easily trapped in locally

optimal solution due to the existence of action space with high dimensions.

Against this background, this letter proposes a DRL-based framework that uses the state-

of-the-art soft actor-critic (SAC) algorithm, designed for the joint optimization scheme of RIS

unit orientation configuration and resource allocation in the indoor VLC system assisted by a

mirror array-based RIS. To the best of our knowledge, this work is the first attempt to investigate

the joint optimization problem for an RIS-VLC system with tools from the SAC-based DRL

approach. The specific contributions can be listed as below:

• We formulate a joint RIS unit orientation configuration, time fraction assignment, and power

allocation optimization problem to maximize the sum-rate of all UTs across an entire serving

period, subject to the rotation angle, communication, and illumination constraints.

• To solve this high-dimensional non-convex problem, we reformulate it as a constrained

Markov decision process (CMDP) aiming at maximizing the long-term balance between

the sum-rate and penalties. An SAC-based DRL algorithm is designed with the goal of

maximizing both the average reward and the expected policy entropy.

• We validate the performance of the proposed SAC-based joint optimization scheme by

extensive simulations. The results demonstrate that the proposed scheme performs better

than existing DRL-based baselines in terms of the sum-rate and long-term average reward.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the downlink of an indoor VLC system as shown in Fig. 1, where a set of K=

{1, 2, · · · , K} UTs, each equipped with a PD, are served by a single LED with the aid of an

RIS attached on the wall. The LED transmits data of the UTs in a TDMA manner within a serving

period of T . Denote the duration of time slot reserved for UT k by τkT , such that
∑K

k=1 τk=1.

The RIS is formed with a set of N ={1, 2, · · · , N} reflecting units, configured in the form of

an intelligent mirror array. The orientation of each RIS unit can be tuned independently via two

rotational degrees of freedom, i.e., yaw and roll angles, denoted by αnk and βnk of RIS unit n for
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Fig. 1. System model for an RIS-aided indoor VLC system.

UT k, respectively, as shown in Fig. 1. A central controller (CC) is mounted at the ceiling to

jointly control the RIS and LED. The locations of the UTs and RIS as well as the channel state

information (CSI) of all channels are known at this controller, which can be obtained by the VLC

positioning and channel estimation techniques [3]. For ease of discussion, the locations of UT k

and RIS unit n in the 3D coordinate are specified by (xk, yk, zk) and (xn, yn, zn), respectively.

A. Channel and Signal Model

1) Direct Channel: We employ the Lambertian model [4] to depict the channel gain of direct

path between the LED and UT k, which can be determined by

hk=
(m+ 1)Ap

2πd2
l,k

cosm
(
Θl
k

)
gf
(
ψlk
)

cos
(
ψlk
)
gc
(
ψlk
)
, (1)

where m=− 1

log2 cos(ξ1/2)
is the Lambertian index with ξ1/2 the LED’s half-intensity radiation

angle, Ap is the PD’s active aperture area of each UT, dl,k is the distance between the LED and

UT k, Θl
k and ψlk are the angles of irradiance and incidence for the direct path from the LED to

UT k, respectively, and gf
(
ψlk
)

and gc
(
ψlk
)

are the gains of the optical filter and concentrator,

respectively. Here, gc
(
ψlk
)

= f2

sin2 Ψ
, where f is the refractive index and Ψ is the PD’s field-of-

view of UT.

2) RIS-Reflecting Channel: The visible light reflections via RIS typically include specular

reflection and diffuse reflection. However, diffuse reflection can be ignored due to the smooth

RIS reflecting surface and the relatively low intensity level compared to the direct path channel

gain [1]. We thus focus on specular reflection to depict the RIS-reflecting channel gain, which

can be derived as an approximate expression following an additive model under the point source



5

assumption [9]. Specifically, the channel gain of RIS-reflecting path from the LED to UT k

reflected by RIS unit n can be calculated as

h̃l,n,k =
ζu (m+ 1)ApAu

2π (dl,n + dn,k)
2 cosm

(
Θl
n

)
cos
(
ψln
)
× cos (Θn

k) gf (ψnk ) cos (ψnk ) gc (ψnk ) , (2)

where ζu is the reflection coefficient of the RIS unit, Au is the physical area of the RIS unit,

dl,n is the distance from the LED to RIS unit n, dn,k is the distance from RIS unit n to UT k,

Θl
n, ψln, Θn

k , and ψnk are the angles of irradiance and incidence from the LED to RIS unit n and

from RIS unit n to UT k, respectively.

Due to the specular reflection of concern, we conclude that the angle of incidence is equal to

the angle of reflection, i.e., ψln = Θn
k , and further represent the cosine of them by [6]

cos
(
ψln
)

= cos (Θn
k) =

xn − xk
dn,k

sinαnk cos βnk +
yn − yk
dn,k

cosαnk cos βnk +
zn − zk
dn,k

sin βnk . (3)

3) Received Signal: Denote by pk the transmit power of the LED to UT k, and let sk ∈ [−A,A]

be the transmitted data symbol of UT k with A being a positive value, for E {sk}= 0 and

E {s2
k}=1 [10]. The transmitted signal of the LED to UT k is given as xk =

√
pksk + b, where

b is a constant meaning the direct current (DC) offset. Using the non-negativity of the VLC

signal, i.e.,
√
pksk + b ≥ 0, we obtain pk ≤

(
b
A

)2. Moreover, to satisfy the eye safety and LED

illumination requirements, the transmitted signal has to be bounded by the LED’s maximum

permissible current Ic [10], i.e.,
√
pksk + b ≤ Ic, which yields pk ≤

(
Ic−b
A

)2. Therefore, the

transmit power for UT k is upper bounded as pk ≤ min
{(

b
A

)2
,
(
Ic−b
A

)2
}

.

We combine both the direct and RIS-reflecting channels to determine the received signal at

the UT. Integrating (1) and (2), the combined channel gain from the LED to UT k is equal to

h̄k=hk+
∑N

n=1 h̃l,n,k. After removing the DC offset at the UT side, the received signal at UT k

can be written as

yk = κo2eh̄k
√
pksk +$k, (4)

where κo2e is the optical-to-electric conversion factor of the PD, and $k∼N (0, σ2) the additive

white Gaussian noise.
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B. Sum-Rate Maximization Problem Formulation

In this letter, we study the joint RIS unit orientation configuration and resource allocation

problem to maximize the sum-rate of the system. Due to the illumination requirements and

the necessity for the non-negativity of transmitted signal, the classic Shannon capacity formula

cannot be directly employed to describe the achievable rate of the UT. We thus resort to the tight

lower bound of channel capacity for the dimmable VLC systems [11], and particularly employ

the closed-form bound to depict the achievable rate of UT k, which is obtained by

Rk =
B

2
log2

(
1 +

e

2π
·
(
κo2eh̄k

√
pk

σ

)2
)
, (5)

where B is the channel bandwidth of downlink transmission, e is the Euler’s number, and(
κo2eh̄k

√
pk/σ

)2 is the received signal-to-noise ratio (SNR) of UT k.

Define (α,β)={(αnk , βnk ) ,∀k, n}, τ ={τk,∀k}, and P={pk,∀k}. We aim to maximize the

sum-rate across the serving period T by jointly optimizing the RIS unit orientation configuration

(α,β), time fraction assignment τ , and power allocation P, subject to the rotation angle,

communication, and illumination constraints. The problem of our interest is then formulated

as

max
(α,β),τ ,P

K∑
k=1

τkRk (6a)

s.t. Rk ≥ Rmin, ∀k ∈ K, (6b)

αnk , β
n
k ∈

[
−π

2
,
π

2

]
, ∀k ∈ K, n ∈ N , (6c)

K∑
k=1

τk = 1, 0 ≤ τk ≤ 1, ∀k ∈ K, (6d)

Pmin ≤ pk ≤ min

{(
b

A

)2

,

(
Ic − b
A

)2
}
,∀k ∈ K, (6e)

K∑
k=1

pk ≤ P total
l , ∀k ∈ K. (6f)

Here, (6b) sets the lower bound Rmin of achievable rate for the UT. (6c) implies the bounds of

the yaw and roll angles w.r.t. the RIS unit. (6d) details the time fraction allocation constraint.

(6e) ensures the lower bound Pmin and upper bound of transmit power for the UT to satisfy

the communication and illumination intensity requirements. Finally, (6f) limits the total transmit
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power of the LED below an upper bound P total
l .

Note that (6) is a non-convex optimization problem, which is intractable mainly for the non-

convex objective function and the tightly coupling of multiple variables with high dimensions.

In general, alternative optimization can be used to solve (6) by decoupling the optimization

variables of the RIS unit orientation, time fraction, and transmit power, which yields three

subproblems that can be alternatively optimized via sine-cosine algorithm (SCA) [6], Lagrangian

dual decomposition, and minorization-maximization (MM) algorithm [3], respectively. However,

the use of traditional optimization methods cannot obtain the globally optimal solution of (6).

Another challenge lies in the computational cost, which grows exponentially with the scale of

RIS units. Besides, problem (6) usually benefits from the long-term goal that can be achieved by

the solution of sequential decision-making problem suitable for DRL. However, traditional DRL

algorithms like DDPG, cannot manage the high-dimensional continuous variables efficiently and

may easily get stuck in a local optimum. Therefore, we will resort to the SAC method, as an

off-policy maximum entropy actor-critic DRL algorithm [12], to solve (6) with low complexity

due to its better exploratory ability and stability compared with other DRL algorithms.

III. SOFT ACTOR-CRITIC BASED SOLUTION

In this section, we first reformulate the original problem into a CMDP, and then develop the

SAC-based joint optimization algorithm to achieve the maximum long-term average reward.

A. CMDP Formulation

The problem (6) can be modeled as a CMDP, described by a tuple 〈S,A,P, r, c〉 with a state

space S, an action space A, and a state transition probability P:S×A×S→[0, 1]. We consider

the CC serving as an agent that learns a stochastic policy π (at|st) :S×A→ [0, 1], by interacting

with the RIS-VLC environment. At time t, the agent observes a state st∈S and then chooses

an action at∼π (at|st)∈A according to a policy π. After taking action at, the environment

transits to next state st+1 ∼ P (st+1|st, at) ∈ S and returns a reward r (st, at) via the reward

function r :S×A→R and the cost function c :S×A→R. The agent stores the state transition

tuple 〈st, at, r (st, at) , st+1〉 into an experience replay buffer D. Denote by ρπ the state-action

trajectory induced by policy π. The basic elements of the CMDP are designed as follows.
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1) Action: The action taken by the agent at time t can be defined by at =
({(

αtk,n, β
t
k,n

)}
∀k,n ,

{τ tk}∀k , {ptk}∀k), which consists of the rotation angles of the RIS unit, time fraction for the UT,

and transmit power of the LED to the UT.

2) State: Denote by ηk=
∑N

n=1 h̃l,n,k the channel gain component via the RIS reflecting for

UT k. We organize the state of the agent at time t by st=(at−1, {htk}∀k , {ηtk}∀k), where at−1 is

the previous action of the agent at time t−1, and htk and ηtk are the direct and reflecting channel

gains for UT k at time t, respectively.

3) Reward: We derive the reward obtained by the agent via well capturing both the objective

and constraints of (6). Since the objective in (6) is to maximize the sum-rate, the reward function

should be correlated positively with (6a), and it thus can be denoted by r (t)=
∑K

k=1 τ
t
kR

t
k. Due

to the fact that constraints (6c)-(6e) can be easily satisfied through some regulations on action

space A, we then examine constraints (6b) and (6f) to design the cost function. For (6b), we

define cost c1 (t)=
∑K

k=1 1 [Rt
k < Rmin] as the first penalty term implying the total numbers of

UTs with the achievable rate being below bound Rmin. Here, 1 [·] refers to an indicator function.

For (6f), we model cost c2 (t)=1

[∑K
k=1 p

t
k > P total

l

]
as the second penalty term showing the

total transmit power of the LED being out of bound P total
l . Therefore, the reward of the agent

taking action at under state st can be achieved by

r (st, at) = r (t)− µ1 · c1 (t)− µ2 · c2 (t) , (7)

where µ1, µ2>0 are the adjustable penalty parameters.

B. SAC-Based Joint Optimization Algorithm

The objective of SAC is to learn an optimal stochastic policy π∗ that maximizes the expected

cumulative reward along with the expected entropy of the policy over ρπ [12], i.e.,

π∗=arg max
π

E
(st,at)∼ρπ

[
∞∑
i=t

γi−t[r (si, ai)+ωH(π (·|si))]

]
, (8)

where γ∈[0, 1) is the discount factor, H (π (·|st)) is the policy entropy, given by H (π (·|st))=

Eat∼π [− log π (at|st)], and ω>0 is the temperature parameter that controls the tradeoff between

the policy entropy and the expected return.

The SAC consists of the actor network to generate a policy that decides the actions to be taken,

and the critic network to assess the actions taken and guide the actor to learn an optimal policy.
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The learning process alternates between optimizing both networks via the policy improvement

and evaluation, respectively, for maximizing the expected return and entropy.

1) Critic: For the critic network, the SAC employs two main Q-networks to avoid over-

estimation of soft Q-values, and also uses two target Q-networks for enhancing the stability

of learning process. Here, one Q-network Qθj with parameter θj approximates soft Q-function

Qθj (st, at) while maintaining one target Q-network Qθ̄j with parameter θ̄j , for j ∈ {1, 2}. The

soft Q-function parameters can be trained at time t by minimizing the mean-squared Bellman

error (MSBE) between evaluated Q-value Qθj (st, at) and target Q-value yt, i.e.,

LQ (θj) = E〈st,at,r(st,at),st+1〉∼D

[
1

2

(
Qθj(st, at)−yt

)2
]
. (9)

Here, yt = rt+γ

(
min
j
Qθ̄j(st+1, at+1)−ω log πφ (at+1|st+1)

)
, where rt , r (st, at) for notational

simplicity, and parameter θj of Qθj can be updated through the gradient of L (θj), i.e., θj←

θj−δQ∇θjL (θj) with δQ being the learning rate. Besides, parameter θ̄j of Qθ̄j can be updated

using the soft update method as θ̄j ← Γθj + (1− Γ) θ̄j with 0 < Γ � 1 being the soft update

coefficient.

2) Actor: For the actor network, the stochastic policy πφ (·|st) is generated as a Gaussian

function with parameter φ to approximate policy π (·|st). Particularly, parameter φ can be learned

by minimizing the loss function as follows

Lπ(φ)=Est∼D
[
Eat∼πφ

[
ω log πφ(at|st)−Qθj(st, at)

]]
. (10)

Here, policy parameter φ of the actor network can be updated via the gradient descent φ ←

φ− δπ∇φLπ (φ) with δπ being the learning rate.

The loss function of temperature parameter ω is given by

L (ω) = Eat∼πt [−ω log πt(at|st)− ωH0] , (11)

where H0 is a desired expected entropy constant. By minimizing (11) via the gradient descent,

parameter ω can be updated by ω ← ω − δω∇ωL (ω) with δω being the learning rate.

3) Algorithm Implementation: The proposed SAC-based joint optimization design is a two-

phase procedure enabled by the environment interactions and parameter updates, which can

be summarized in Algorithm 1. After initializing the neural network parameters φ, θ1, θ2, θ̄1,
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Algorithm 1 Proposed SAC-Based Joint Optimization Algorithm.

1: Initialize φ, θ1, θ2, ω, and experience replay buffer D.
2: Set θ̄j ← θj , for j ∈ {1, 2}.
3: for each episode do
4: Initialize the environment and obtain initial state s0.
5: for each time step do
6: Observe state st and take action at∼π (at|st).
7: Obtain next state st+1 given action at, and calculate reward r (st, at).
8: Store transition tuple 〈st, at, r (st, at) , st+1〉 into replay buffer D ← D ∪

{〈st, at, r (st, at) , st+1〉}.
9: Randomly sample a mini-batch of transition tuples from replay buffer D with size of

Ξ.
10: Update φ, θ1, θ2, θ̄1, θ̄2, ω.
11: end for
12: end for

θ̄2, ω, and experience replay buffer D, each time step consists of two phases: 1) interacting

with the environment (Lines 6-7), and 2) updating the network parameters (Lines 8-10). In

the first phase, the agent observes system state st and selects action at sampled from current

actor network πφ (at|st). Afterward, the agent executes the RIS unit orientation configuration

and resource allocation policies based on at, and then transits to next state st+1 and gets the

reward r (st, at). In the second phase, the agent stores the transition tuple 〈st, at, r (st, at) , st+1〉

into replay buffer D. Then, we randomly sample a batch of transition tuples from D with size

of Ξ. The parameters of φ, θ1, θ2, θ̄1, θ̄2, ω are updated with the sampled batch accordingly.

Through the continuous interactions with the RIS-VLC environment as well as the updates of

neural network parameters, the agent can optimizes its policy accordingly, and finally get the

optimal policy π∗ for achieving the sum-rate maximization.

IV. SIMULATION RESULTS

This section evaluates the performance of the proposed SAC-based joint optimization scheme.

For comparison, the following baselines are also performed: 1) SAC with random unit orientation

(Random RIS), where the rotation angles of RIS uint are randomly generated, following the

uniform distribution within
(
−π

2
, π

2

)
; 2) SAC without RIS (W/O RIS) [2], where the wall serves

as the reflector with a reflection coefficient of 0.8, and the wall reflective surface is divided into

M identical surfaces, each with the same area as the RIS unit, for M =N ; 3) DDPG-based
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TABLE I
SUMMARY OF SIMULATION PARAMETERS.

Parameters Value

Channel model [3]
m=1, Ap =1 cm2, Au =0.01 m2

gf
(
ψlk

)
=gf

(
ψnk

)
=1, B=200 MHz

f=1.5, Ψ=80◦, ζu =0.95, κo2e =0.5 A/W
Signal model [10] A = 2, b=14 A, Ic = 29 A

Problem formulation [3] Rmin=1 Mbps, Pmin=3 W, P total
l =25 W

SAC |D|=1, 000, 000, δQ=δπ=δω=0.0001
hyperparameters [12] γ=0.95, Γ=0.005, Ξ=256, ω=0.036

algorithm for solving our formulated CMDP; 4) the deterministic policy based SAC (DP-SAC)

algorithm, where the temperature parameter ω=0.

In our simulation, we configure an indoor VLC system that K = 5 UTs are randomly

distributed at their different heights, confined within [1 m, 1.6 m], inside a 5 m×5 m×3 m room.

An LED is mounted at the center of the ceiling, and a mirror array-based RIS is installed on the

wall. We define the area of each RIS unit as 10×10 cm2, and set the interval between the adjacent

units to 0.25 cm [3]. The 3D coordinate of the RIS unit’s center point for the first row and the

first column of the mirror array is set as (0 m, 4 m, 2 m). For Algorithm 1, we adopt a five-layer

fully connected neural network structure, which consists of three hidden layer, each with 256

neurons. The ReLU is used as the activation function in all hidden layers. During the training

process, both the policy network and the Q-networks are trained by the Adam optimizer. Unless

otherwise stated, the remaining system parameters and the hyperparameter settings of Algorithm

1 are given in Table I.

Fig. 2(a) shows the learning curves of the proposed scheme and the baselines for 12, 000

episodes of training. As shown, the proposed scheme needs more episodes to achieve convergence

in comparison with the baselines. The reason is that stochastic policy can enable the agent

to obtain enhanced exploratory abilities, resulting in a longer learning process. However, the

proposed scheme exhibits superior performance than the baselines when all the schemes reach

the convergence. Noteworthy, since the baselines of Random RIS and W/O RIS fail to optimize

the RIS unit orientation, they need less time to reach their maximum rewards than other schemes.

Fig. 2(b) plots the sum-rate of the system w.r.t. N . As shown, the proposed scheme can obtain

an average sum-rate gain of about 40.43% when comparing to the Random RIS scheme. Besides,

even for the case of the wall as reflector, it still outperforms the case of Random RIS without

optimizing the RIS unit orientation under any values of N . The results show the sum-rate gains

benefit a lot from the optimization of the RIS unit orientation. We can also see that the proposed
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Fig. 2. (a) The average reward versus the episodes of training, with N = 100 and σ2 = 10−8 W; (b) The sum-rate versus the
number of RIS units N , with σ2 = 10−8 W; (c) The percentage of sum-rate improvement versus the number of RIS units N
under different noise power σ2.

scheme outperforms the baselines, and the gap between them becomes larger as N grows. The

reason is that the stochastic policy allows for the exploration of a wider range of actions and

obtain better performance than the deterministic policy as the variable dimension becomes larger.

Fig. 2(c) depicts the percentage of sum-rate improvement w.r.t. N under different noise power

σ2. The percentage of interest is used to reflect the relationship between the proposed scheme

and the W/O RIS scheme. It can be seen that the proposed scheme outperforms the W/O RIS

scheme for any values of N and σ2. Besides, more improvements can be significantly obtained

as σ2 becomes larger under the same value of N . Noteworthy, the percentage of the sum-rate

improvement can reach up to 198.53% with N = 300 when σ2 = 10−5 W. This important

observation indicates that the proposed scheme can still achieve superior performance than the

W/O RIS scheme under the relatively high noise power.
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V. CONCLUSION

In this letter, we proposed an SAC-based framework for maximizing the sum-rate of all UTs in

the mirror array-based RIS aided indoor VLC system. Specifically, we formulated an optimization

problem that jointly considers the RIS unit orientation configuration, time fraction assignment,

and power allocation. To solve this problem efficiently, we reformulated it as a CMDP, and

further presented the SAC-based joint optimization algorithm that aims to obtain the maximum

long-term average reward. The simulation results indicated that our proposed scheme improves

the sum-rate significantly and obtains higher average reward compared with other baselines.

Besides, our proposed scheme is still able to achieve superior sum-rate performance when the

noise power is relatively large owing to the deployment of RIS in VLC systems.
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