REFERENCES

  1. Albrecht, C., & Viturro, E. (2007). The ABCA subfamily—gene and protein structures, functions and associated hereditary diseases.Pflügers Archiv - European Journal of Physiology ,453, 581–589. https://doi.org/10.1007/s00424-006-0047-8
  2. Allendorf, F. W., & Hard, J. J. (2009). Human-induced evolution caused by unnatural selection through harvest of wild animals.Proceedings of the National Academy of Sciences ,106, 9987–9994. https://doi.org/10.1073/PNAS.0901069106
  3. Ang, G., Brown, L. A., Tam, S. K. E., Davies, K. E., Foster, R. G., Harrison, P. J., Sprengel, R., Vyazovskiy, V. V, Oliver, P. L., Bannerman, D. M., & Peirson, S. N. (2021). Deletion of AMPA receptor GluA1 subunit gene (Gria1) causes circadian rhythm disruption and aberrant responses to environmental cues. Translational Psychiatry , 11, 588. https://doi.org/10.1038/s41398-021-01690-3
  4. Arthur, J. S. C., & Ley, S. C. (2013). Mitogen-activated protein kinases in innate immunity. Nature Reviews Immunology ,13, 679–692. https://doi.org/10.1038/nri3495
  5. Arthur, W. T., Noren, N. K., & Burridge, K. (2002). Regulation of Rho family GTPases by cell-cell and cell-matrix adhesion. Biological Research , 35 , 239–246. http://dx.doi.org/10.4067/S0716-97602002000200016
  6. Bossu, C. M., Heath, J. A., Kaltenecker, G. S., Helm, B., & Ruegg, K. C. (2022). Clock-linked genes underlie seasonal migratory timing in a diurnal raptor. Proceedings of the Royal Society B ,289 , 20212507. https://doi.org/10.1098/rspb.2021.2507
  7. Bustelo, X. R., Sauzeau, V., & Berenjeno, I. M. (2007). GTP‐binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays , 29, 356–370. https://doi.org/10.1002/bies.20558
  8. Cerhan, J. R., Ansell, S. M., Fredericksen, Z. S., Kay, N. E., Liebow, M., Call, T. G., Dogan, A., Cunningham, J. M., Wang, A. H., Liu-Mares, W., Macon, W. R., Jelinek, D., Witzig, T. E., Habermann, T. M., & Slager, S. L. (2007). Genetic variation in 1253 immune and inflammation genes and risk of non-Hodgkin lymphoma. Blood , 110 , 4455–4463. https://doi.org/10.1182/blood-2007-05-088682
  9. Chang, G. B., Liu, X. P., Chang, H., Chen, G. H., Zhao, W. M., Ji, D. J., Chen, R., Qin, Y. R., Shi, X. K., & Hu, G. S. (2009). Behavior differentiation between wild Japanese quail, domestic quail, and their first filial generation. Poultry Science , 88 , 1137–1142. https://doi.org/10.3382/ps.2008-00320
  10. Chepkemoi, M., Macharia, J. W., Sila, D., Oyier, P., Malaki, P., Ndiema, E., Agwanda, B., Obanda, V., Ngeiywa, K. J., & Lichoti, J. (2017). Physical characteristics and nutritional composition of meat and eggs of five poultry species in Kenya. Livestock Research for Rural Development , 29 , 1–11.
  11. Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., & Sherry, S. T. (2011). The variant call format and VCFtools.Bioinformatics , 27 , 2156–2158. https://doi.org/10.1093/bioinformatics/btr330
  12. Delaneau, O., Howie, B., Cox, A. J., Zagury, J.-F., & Marchini, J. (2013). Haplotype estimation using sequencing reads. The American Journal of Human Genetics , 93 , 687–696. https://doi.org/10.1016/j.ajhg.2013.09.002
  13. Dillon, L. A. L., Suresh, R., Okrah, K., Corrada Bravo, H., Mosser, D. M., & El-Sayed, N. M. (2015). Simultaneous transcriptional profiling of Leishmania major and its murine macrophage host cell reveals insights into host-pathogen interactions. BMC Genomics , 16 , 1108. https://doi.org/10.1186/s12864-015-2237-2
  14. Dominiczak, M. H., & Caslake, M. J. (2011). Apolipoproteins: metabolic role and clinical biochemistry applications. Annals of Clinical Biochemistry , 48 , 498–515. https://doi.org/10.1258/acb.2011.011111
  15. Eide Erik., J., F., W. M., Heeseog, K., Peter, W., William, H., Fernando, C., L., V. E., Andrew, G., & M., V. D. (2005). Control of Mammalian Circadian Rhythm by CKIε-Regulated Proteasome-Mediated PER2 Degradation. Molecular and Cellular Biology , 25 , 2795–2807. https://doi.org/10.1128/MCB.25.7.2795-2807.2005
  16. Fang, Y., Sathyanarayanan, S., & Sehgal, A. (2007). Post-translational regulation of the Drosophila circadian clock requires protein phosphatase 1 (PP1). Genes & Development , 21 , 1506–1518. https://doi.org/10.1101/gad.1541607
  17. Fariello, M. I., Boitard, S., Naya, H., SanCristobal, M., & Servin, B. (2013). Detecting Signatures of Selection Through Haplotype Differentiation Among Hierarchically Structured Populations.Genetics , 193 , 929–941. https://doi.org/10.1534/genetics.112.147231
  18. Fischer, A. M., Katayama, C. D., Pagès, G., Pouysségur, J., & Hedrick, S. M. (2005). The Role of Erk1 and Erk2 in Multiple Stages of T Cell Development. Immunity , 23 , 431–443. https://doi.org/10.1016/j.immuni.2005.08.013
  19. Gallego, M., Kang, H., & Virshup, D. M. (2006). Protein phosphatase 1 regulates the stability of the circadian protein PER2.Biochemical Journal , 399 , 169–175. https://doi.org/10.1042/BJ20060678
  20. Gautier, M., Klassmann, A., & Vitalis, R. (2017). rehh 2.0: a reimplementation of the R package rehh to detect positive selection from haplotype structure. Molecular Ecology Resources , 17 , 78–90. https://doi.org/10.1111/1755-0998.12634
  21. Guo, F., Cancelas, J. A., Hildeman, D., Williams, D. A., & Zheng, Y. (2008). Rac GTPase isoforms Rac1 and Rac2 play a redundant and crucial role in T-cell development. Blood , 112 , 1767–1775. https://doi.org/10.1182/blood-2008-01-132068
  22. Han, F., Li, W., Liu, X., Zhang, D., Liu, L., & Wang, Z. (2019). Rac1 GTPase is a critical factor in phagocytosis in the large yellow croaker Larimichthys crocea by interacting with tropomyosin.Fish & Shellfish Immunology , 91 , 148–158. https://doi.org/https://doi.org/10.1016/j.fsi.2019.04.056
  23. Han, J., Wu, J., & Silke, J. (2020). An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000Research , 9 . https://doi.org/10.12688/f1000research.22092.1
  24. Heallen, T., Zhang, M., Wang, J., Bonilla-Claudio, M., Klysik, E., Johnson, R. L., & Martin, J. F. (2011). Hippo Pathway Inhibits Wnt Signaling to Restrain Cardiomyocyte Proliferation and Heart Size.Science , 332 , 458–461. https://doi.org/10.1126/science.1199010
  25. Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research , 37 , 1–13. https://doi.org/10.1093/nar/gkn923
  26. Huang, X., Zhang, H., Cao, H., Zhou, W., Xiang, X., & Yin, Z. (2022). Transcriptomics and Metabolomics Analysis of the Ovaries of High and Low Egg Production Chickens. Animals, 12, 2010. https://doi.org/10.3390/ani12162010
  27. Inaba, M., & Chuong, C.M. (2020). Avian Pigment Pattern Formation: Developmental Control of Macro- (Across the Body) and Micro- (Within a Feather) Level of Pigment Patterns. Frontiers in Cell and Developmental Biology, 8, 620. https://doi.org/10.3389/fcell.2020.00620
  28. Jeke, A., Phiri, C., Chitiindingu, K., & Taru, P. (2018). Nutritional compositions of Japanese quail (Coturnix coturnix japonica) breed lines raised on a basal poultry ration under farm conditions in Ruwa, Zimbabwe. Cogent Food & Agriculture , 4 , 1473009. https://doi.org/10.1080/23311932.2018.1473009
  29. Jeon, D.J., Paik, S., Ji, S., & Yeo, J.S. (2021). Melanin-based structural coloration of birds and its biomimetic applications.Applied Microscopy , 51 , 1-11. https://doi.org/10.1186/s42649-021-00063-w
  30. Justice, R. W., Zilian, O., Woods, D. F., Noll, M., & Bryant, P. J. (1995). The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes & Development , 9 , 534–546. https://doi.org/10.1101/gad.9.5.534
  31. Kiernan, A. E., Pelling, A. L., Leung, K. K. H., Tang, A. S. P., Bell, D. M., Tease, C., Lovell-Badge, R., Steel, K. P., & Cheah, K. S. E. (2005). Sox2 is required for sensory organ development in the mammalian inner ear. Nature , 434 , 1031–1035. https://doi.org/10.1038/nature03487
  32. Kikuchi, A., Yamamoto, H., Sato, A., & Matsumoto, S. (2012). Wnt5a: its signalling, functions and implication in diseases. Acta Physiologica , 204 , 17–33. https://doi.org/https://doi.org/10.1111/j.1748-1716.2011.02294.x
  33. Kinjo, K., Sandoval, S., Sakamoto, K. M., & Shankar, D. B. (2005). The Role of CREB as a Proto-oncogene in Hematopoiesis. Cell Cycle , 4 , 1134–1135. https://doi.org/10.4161/cc.4.9.1991
  34. Krachler, A. M., Woolery, A. R., & Orth, K. (2011). Manipulation of kinase signaling by bacterial pathogens. The Journal of Cell Biology , 195 , 1083–1092. https://doi.org/10.1083/jcb.201107132
  35. Lee, D. J., Cox, D., Li, J., & Greenberg, S. (2000). Rac1 and Cdc42 Are Required for Phagocytosis, but Not NF-kB-dependent Gene Expression, in Macrophages Challenged with Pseudomonas aeruginosa*.Journal of Biological Chemistry , 275 , 141–146. https://doi.org/10.1074/jbc.275.1.141
  36. Lee, H.-J., Woo, Y., Hahn, T.-W., Jung, Y. M., & Jung, Y.-J. (2020). Formation and Maturation of the Phagosome: A Key Mechanism in Innate Immunity against Intracellular Bacterial Infection.Microorganisms , 8 , 1298. https://doi.org/10.3390/microorganisms8091298
  37. Lee, H., Chen, R., Kim, H., Etchegaray, J.-P., Weaver, D. R., & Lee, C. (2011). The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proceedings of the National Academy of Sciences , 108 , 16451–16456. https://doi.org/10.1073/pnas.1107178108
  38. Lewis, A., & Pomeroy, D. (1989). A bird atlas of Kenya (1st ed.). Routledge. https://doi.org/10.1201/9781315136264
  39. Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics , 27 , 2987–2993.
  40. Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics , 25 , 1754–1760. https://doi.org/10.1093/bioinformatics/btp324
  41. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics , 25 , 2078–2079. https://doi.org/10.1093/bioinformatics/btp352
  42. Li, Y., Yuan, P., Fan, S., Zhai, B., Jin, W., Li, D., Li, H., Sun, G., Han, R., Liu, X., Tian, Y., Li, G., & Kang, X. (2022). Weighted gene co-expression network indicates that the DYNLL2 is an important regulator of chicken breast muscle development and is regulated by miR-148a-3p. BMC Genomics , 23 , 258. https://doi.org/10.1186/s12864-022-08522-8
  43. Liu, Y., Shepherd, E. G., & Nelin, L. D. (2007). MAPK phosphatases — regulating the immune response. Nature Reviews Immunology , 7 , 202–212. https://doi.org/10.1038/nri2035
  44. Luan, X., Liu, D., Cao, Z., Luo, L., Liu, M., Gao, M., & Zhang, X. (2014). Transcriptome Profiling Identifies Differentially Expressed Genes in Huoyan Goose Ovaries between the Laying Period and Ceased Period. PLOS ONE , 9 , e113211. https://doi.org/10.1371/journal.pone.0113211
  45. Lukanov, H., & Pavlova, I. (2020). Domestication changes in Japanese quail (Coturnix japonica): a review. World’s Poultry Science Journal , 76 , 787–801. https://doi.org/10.1080/00439339.2020.1823303
  46. Luo, C., Qu, H., Ma, J., Wang, J., Li, C., Yang, C., Hu, X., Li, N., & Shu, D. (2013). Genome-wide association study of antibody response to Newcastle disease virus in chicken. BMC Genetics , 14 , 42. https://doi.org/10.1186/1471-2156-14-42
  47. Ma, Y., Ding, X., Qanbari, S., Weigend, S., Zhang, Q., & Simianer, H. (2015). Properties of different selection signature statistics and a new strategy for combining them. Heredity , 115 , 426–436. https://doi.org/https://doi.org/10.1038/hdy.2015.42
  48. Mason, N. A., & Bowie, R. C. K. (2020). Plumage patterns: Ecological functions, evolutionary origins, and advances in quantification.The Auk , 137 , ukaa060. https://doi.org/10.1093/auk/ukaa060
  49. Mills, A. D., Crawford, L. L., Domjan, M., & Faure, J. M. (1997). The behavior of the Japanese or domestic quail Coturnix japonica.Neuroscience & Biobehavioral Reviews , 21 , 261–281. https://doi.org/10.1016/S0149-7634(96)00028-0
  50. Nielsen, R. (2005). Molecular signatures of natural selection.Annu. Rev. Genet. , 39 , 197–218. https://doi.org/10.1146/annurev.genet.39.073003.112420
  51. Nishibori, M., Hayashi, T., Tsudzuki, M., Yamamoto, Y., & Yasue, H. (2001). Complete sequence of the Japanese quail (Coturnix japonica) mitochondrial genome and its genetic relationship with related species. Animal Genetics , 32 , 380–385. https://doi.org/10.1046/j.1365-2052.2001.00795.x
  52. Oesterle, E. C., Campbell, S., Taylor, R. R., Forge, A., & Hume, C. R. (2008). Sox2 and Jagged1 Expression in Normal and Drug-Damaged Adult Mouse Inner Ear. Journal of the Association for Research in Otolaryngology , 9 , 65–89. https://doi.org/10.1007/s10162-007-0106-7
  53. Ogada, S., Otecko, N. O., Moraa Kennedy, G., Musina, J., Agwanda, B., Obanda, V., … & Ommeh, S. (2021). Demographic history and genetic diversity of wild African harlequin quail (Coturnix delegorguei delegorguei) populations of Kenya. Ecology and evolution,11 , 18562-18574. https://doi.org/10.1002/ece3.8458
  54. Ogada, S., Lichoti, J., Musina, J., & Ommeh, S. (2022). A review of the distribution, nutritional value and conservation status of wild harlequin quails (Coturnix delegorguei delegorguei) in Kenya.Journal of Agriculture, Science and Technology , 21 , 43-48. 10.4314/jagst.v21i1.5
  55. Oleksyk, T. K., Smith, M. W., & O’Brien, S. J. (2010). Genome-wide scans for footprints of natural selection. Philosophical Transactions of the Royal Society B: Biological Sciences , 365 , 185–205. https://doi.org/https://doi.org/10.1098/rstb.2009.0219
  56. Pavlidis, P., Živković, D., Stamatakis, A., & Alachiotis, N. (2013). SweeD: likelihood-based detection of selective sweeps in thousands of genomes. Molecular Biology and Evolution , 30 , 2224–2234. https://doi.org/10.1093/molbev/mst112
  57. Pedersen, E., Wang, Z., Stanley, A., Peyrollier, K., Rösner, L. M., Werfel, T., Quondamatteo, F., & Brakebusch, C. (2012). RAC1 in keratinocytes regulates crosstalk to immune cells by Arp2/3-dependent control of STAT1. Journal of Cell Science , 125 , 5379–5390. https://doi.org/10.1242/jcs.107011
  58. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., De Bakker, P. I. W., & Daly, M. J. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics , 81 , 559–575. https://doi.org/10.1086/519795
  59. Qanbari, S., & Simianer, H. (2014). Mapping signatures of positive selection in the genome of livestock. Livestock Science , 166 , 133–143. https://doi.org/10.1016/j.livsci.2014.05.003
  60. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., & Hall, A. (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell , 70 , 401–410. https://doi.org/10.1016/0092-8674(92)90164-8
  61. Santos, W. B., Schettini, G. P., Maiorano, A. M., Bussiman, F. O., Balieiro, J. C., Ferraz, G. C., … & Curi, R. A. (2021). Genome-wide scans for signatures of selection in Mangalarga Marchador horses using high-throughput SNP genotyping. BMC genomics , 22 , 1-17. https://doi.org/10.1186/s12864-021-08053-8
  62. Schmutz, I., Wendt, S., Schnell, A., Kramer, A., Mansuy, I. M., & Albrecht, U. (2011). Protein Phosphatase 1 (PP1) Is a Post-Translational Regulator of the Mammalian Circadian Clock.PLOS ONE , 6 , e21325. https://doi.org/10.1371/journal.pone.0021325
  63. Schuchardt, A., D’Agati, V., Larsson-Blomberg, L., Costantini, F., & Pachnis, V. (1994). Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature , 367 , 380–383. https://doi.org/10.1038/367380a0
  64. Sekelova, Z., Polansky, O., Stepanova, H., Fedr, R., Faldynova, M., Rychlik, I., & Vlasatikova, L. (2017). Different roles of CD4, CD8 and γδ T-lymphocytes in naive and vaccinated chickens during Salmonella Enteritidis infection. PROTEOMICS , 17 , 1700073. https://doi.org/https://doi.org/10.1002/pmic.201700073
  65. Seo, E., Basu-Roy, U., Gunaratne, P. H., Coarfa, C., Lim, D.-S., Basilico, C., & Mansukhani, A. (2013). SOX2 Regulates YAP1 to Maintain Stemness and Determine Cell Fate in the Osteo-Adipo Lineage.Cell Reports , 3 , 2075–2087. https://doi.org/https://doi.org/10.1016/j.celrep.2013.05.029
  66. Shankar, D. B., Cheng, J. C., Kinjo, K., Federman, N., Moore, T. B., Gill, A., Rao, N. P., Landaw, E. M., & Sakamoto, K. M. (2005). The role of CREB as a proto-oncogene in hematopoiesis and in acute myeloid leukemia. Cancer Cell , 7 , 351–362. https://doi.org/https://doi.org/10.1016/j.ccr.2005.02.018
  67. Soares-Silva, M., Diniz, F. F., Gomes, G. N., & Bahia, D. (2016). The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids. Frontiers in Microbiology ,7, 183. https://doi.org/10.3389/fmicb.2016.00183
  68. Speck, N. A., Stacy, T., Wang, Q., North, T., Gu, T.-L., Miller, J., Binder, M., & Marín-Padilla, M. (1999). Core-Binding Factor: A Central Player in Hematopoiesis and Leukemia1. Cancer Research , 59 , 1789s-1793s.
  69. Sun, Y., Liu, W.-Z., Liu, T., Feng, X., Yang, N., & Zhou, H.-F. (2015). Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. Journal of Receptors and Signal Transduction , 35 , 600–604. https://doi.org/10.3109/10799893.2015.1030412
  70. Taraviras, S., Marcos-Gutierrez, C. V, Durbec, P., Jani, H., Grigoriou, M., Sukumaran, M., Wang, L.-C., Hynes, M., Raisman, G., & Pachnis, V. (1999). Signalling by the RET receptor tyrosine kinase and its role in the development of the mammalian enteric nervous system.Development , 126 , 2785–2797. https://doi.org/10.1242/dev.126.12.2785
  71. Tomalka, J. A., Pelletier, A. N., Fourati, S., Latif, M. B., Sharma, A., Furr, K., Carlson, K., Lifton, M., Gonzalez, A., Wilkinson, P., Franchini, G., Parks, R., Letvin, N., Yates, N., Seaton, K., Tomaras, G., Tartaglia, J., Robb, M. L., Michael, N. L., … Sekaly, R. P. (2021). The transcription factor CREB1 is a mechanistic driver of immunogenicity and reduced HIV-1 acquisition following ALVAC vaccination. Nature Immunology , 22 , 1294–1305. https://doi.org/10.1038/s41590-021-01026-9
  72. Urban, E. K., Fry, C. H., Keith, S., Woodcock, M., & Willis, I. (1986). The Birds of Africa: Volume II (1st ed.). Bloomsbury Publishing.
  73. Van Hoorebeke, S., Van Immerseel, F., Haesebrouck, F., Ducatelle, R., & Dewulf, J. (2011). The influence of the housing system on Salmonella infections in laying hens: a review. Zoonoses and Public Health , 58 , 304–311. https://doi.org/10.1111/j.1863-2378.2010.01372.x
  74. Voight, B. F., Kudaravalli, S., Wen, X., & Pritchard, J. K. (2006). A map of recent positive selection in the human genome. PLoS Biology , 4 , e72–e72. https://doi.org/10.1371/journal.pbio.0040072
  75. Walmsley, M. J., Ooi, S. K. T., Reynolds, L. F., Smith, S. H., Ruf, S., Mathiot, A., Vanes, L., Williams, D. A., Cancro, M. P., & Tybulewicz, V. L. J. (2003). Critical roles for Rac1 and Rac2 GTPases in B cell development and signaling. Science , 302 , 459–462. DOI: 10.1126/science.10897
  76. Wamuyu, L., Mberu, M., Imboma, T., Obanda, V., Agwanda, B., Lichoti, J., & Ommeh, S. C. (2017). Phenotypic variations between wild and farm-reared quails of Kenya. Livestock Res for Rural Development , 29, 111.
  77. Wang, E. T., Kodama, G., Baldi, P., & Moyzis, R. K. (2006). Global landscape of recent inferred Darwinian selection for Homo sapiens.Proceedings of the National Academy of Sciences , 103 , 135–140. https://doi.org/10.1073/pnas.0509691102
  78. Wang, K., Wu, P., Yang, Q., Chen, D., Zhou, J., Jiang, A., Ma, J., Tang, Q., Xiao, W., & Jiang, Y. (2018). Detection of selection signatures in Chinese Landrace and Yorkshire pigs based on genotyping-by-sequencing data. Frontiers in Genetics , 9 , 119. https://doi.org/10.3389/fgene.2018.00119
  79. Wei, X., Zhang, Y., Li, C., Ai, K., Li, K., Li, H., & Yang, J. (2020). The evolutionarily conserved MAPK/Erk signaling promotes ancestral T-cell immunity in fish via c-Myc–mediated glycolysis.Journal of Biological Chemistry , 295 , 3000–3016. https://doi.org/https://doi.org/10.1074/jbc.RA119.012231
  80. Wen, A. Y., Sakamoto, K. M., & Miller, L. S. (2010). The role of the transcription factor CREB in immune function. The Journal of Immunology , 185 , 6413–6419. https://doi.org/10.4049/jimmunol.1001829
  81. Williamson, S. H., Hubisz, M. J., Clark, A. G., Payseur, B. A., Bustamante, C. D., & Nielsen, R. (2007). Localizing Recent Adaptive Evolution in the Human Genome. PLOS Genetics , 3 , e90. https://doi.org/10.1371/journal.pgen.0030090
  82. Winge, M. C. G., & Marinkovich, M. P. (2019). Epidermal activation of the small GTPase Rac1 in psoriasis pathogenesis. Small GTPases , 10 , 163–168. https://doi.org/10.1080/21541248.2016.1273861
  83. Wu, Z., & Guan, K.-L. (2021). Hippo Signaling in Embryogenesis and Development. Trends in Biochemical Sciences , 46 , 51–63. https://doi.org/10.1016/j.tibs.2020.08.008
  84. Xu, T., Wang, W., Zhang, S., Stewart, R. A., & Yu, W. (1995). Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development , 121 , 1053–1063. https://doi.org/10.1242/dev.121.4.1053
  85. Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., Benner, C., & Chanda, S. K. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications , 10 , 1523. https://doi.org/10.1038/s41467-019-09234-6