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Localization in GNSS-denied environments for Unmanned Aerial Vehi-
cles (UAVs) has recently gained significant interest from the research
community. Most of the research is focused primarily on visual local-
ization. This paper, examines an algorithm which employs Angle of
Departure (AoD) and UAVs payload sensor data for UAV localiza-
tion. First the algorithm uses multiple AoDs from a single base sta-
tion and a travel calculated by applying dead-reckoning on the UAVs
Inertial Measurement Unit (IMU), to compute UAV location in two-
dimensional (2D) coordinates. The 2D location estimate is then fed into
a modified Extended Kalman Filter (EKF), which employs the estimate,
IMU and barometer data to compute the three-dimensional (3D) coordi-
nates for UAV. For the simulation, we applied Simulation-in-the-Loop
(SITL) accompanied by Arducopter and MAVLink to simulate differ-
ent trajectories and collect the required data for the algorithm. We val-
idated our algorithm by comparing the EKF estimates with IMU dead-
reckoned positions. Three simulations were performed, consisting of
linear, zigzag and curved trajectories. We achieved a 90𝑡ℎ percentile
error of 2.5m and 4m for the 𝑥-coordinate and 𝑦-coordinate, respec-
tively, on the zigzag and curved trajectories. Interestingly, the linear
trajectory showed a larger localization error in its 𝑦-coordinate.

Introduction: The use case of autonomous Unmanned Aerial Vehicles
(UAVs) has been drastically increasing over the past few years such as
for search and rescue, fire detection and mitigation and boarder security
[1–3]. The UAV navigation system should be well balanced and redun-
dant. Autonomous operation in dynamic and unknown environments
require precise knowledge of UAV’s state, which is characterized by
position, velocity and attitude [4]. Currently, almost all commercial and
defence UAVs need Global Navigation Satellite System (GNSS) with
the help of Inertial Navigation System (INS) to navigate in unknown
environments [5]. However, the continuous availability of satellite posi-
tioning is not guaranteed. In certain environments and situations, such
as indoors, dense forest, near buildings (multipath) and in the presence
of jamming or spoofing, it is unreliable [6].

To overcome these challenges, many researchers have proposed algo-
rithms and systems based on visual sensors. Further, the scope of com-
puter vision algorithms for path-planning, mapping and localization
have been examined [7]. Absolute Visual Localization (AVL) has been
introduced, adopting the reference satellite map for feature matching
for localization [8]. An algorithm has been developed that fuses stereo
visual odometry and inertial measurements using a Kalman filter [9].

Localization using Radio Frequency (RF) signals has garnered con-
siderable interest among researchers, particularly regarding cellular net-
works due to the already established infrastructure. A survey in [10] pro-
vides a thorough analysis of RF-based localization systems adopting to
various radio communication techniques and localization techniques for
UAV location. The most widely adopted techniques for UAV localiza-
tion are based on Angle of Departure (AoD), Angle of Arrival (AoA),
Time of Arrival (ToA), Time Difference of Arrival (TDoA) and Received
Signal Strength Indicator (RSSI) measurements. When these techniques
are applied, usually a minimum of two base stations are required. In our
previous work [11], we conducted an analysis of AoA estimation imple-
menting two base stations with known locations transmitting RF signals.

This paper, examines the localization of an UAV using a single base
station (BS) with known location that transmits RF signals and the AoD
calculated at the UAV. The final estimate for the UAV 3D coordinates is
computed adopting Extended Kalman Filter (EKF) to fuse Inertial Mea-
surement Unit (IMU) data, barometer data and UAV’s 2D location esti-
mate. Since the system is configured for a single BS and relatively little

research has been conducted regarding UAV localization by employ-
ing a single BS [12], we assessed our results against those achieved
through IMU based dead-reckoning [13]. Simulations were performed
in Simulation-in-the-Loop (SITL) software accompanied by Arducopter
firmware for a quadcopter. We primarily concentrated on exploring three
distinct trajectories that are commonly employed in practical settings.
The simulation section provides more information on the trajectory.

Two-Dimensional Cartesian coordinate estimation using multiple AoD:
This section, discusses the algorithm to estimate the 2D coordinate of the
UAV using AoD angles, yaw angles and distance traveled between each
AoD measurements. Figure 1, shows the 3D model of the environment
with all the parameters required to calculate the 3D position of the UAV.
Heights ℎ0 and ℎ1 are obtained by fusing IMU and barometer height
in the EKF. Figure 2 presents the parameters used to calculate the 2D
location of the UAV. The main concept of the algorithm is to use multiple
azimuth angles (𝜃), yaw angle (𝜓) and distance travelled (𝐷) to solve
a linear equation using a matrix (4). The main parameter to determine
is the projected range 𝑑. From which we can determine the X and Y
coordinates in the NED (North, East and Down) frame by converting the
polar coordinates 𝑑𝑖 and 𝜃𝑖 . From Figure 2 we calculate 𝐷 𝑗 as:

𝐷1 = −𝑝0 + 𝑝1

𝐷1 = |𝐷1 |𝑒𝑖𝜓1 , 𝑝0 = 𝑑0𝑒
𝑖𝜃0 and 𝑝1 = 𝑑1𝑒

𝑖𝜃1

𝐷 𝑗 = |𝐷 𝑗 |𝑒𝑖𝜓𝑗 , 𝑗 = 1, 2...𝑁

𝑝𝑖 = 𝑑𝑖𝑒
𝑖𝜃𝑖 , 𝑖 = 0, 1...𝑁

(1)

where, 𝐷 𝑗 is the distance travelled, in other words the difference
between the dead reckoned position and the previous location estimate.
𝜓𝑗 is the yaw angle that is the heading of the UAV with respect to north,
𝑝𝑖 is desired position at the 𝑖𝑡ℎ measurement of AoD, 𝑑𝑖 is the projected
range in meter, 𝜃𝑖 is the azimuth angle from AoD in radians and 𝑁 is
the number of measurements.

From (1), we can write the real and imaginary parts of the equation
as:

−𝑑0𝑐𝑜𝑠 (𝜃0 ) + 𝑑1𝑐𝑜𝑠 (𝜃1 ) = |𝐷1 |𝑐𝑜𝑠 (𝜓1 )
−𝑑0𝑠𝑖𝑛(𝜃0 ) + 𝑑1𝑠𝑖𝑛(𝜃1 ) = |𝐷1 |𝑠𝑖𝑛(𝜓1 )

−𝑝0 + 𝑝𝑁 =

𝑁∑︁
𝑗=1
𝐷 𝑗

(2)

Equation (2) can be written in a matrix form by applying multiple
measurements of all the parameters mentioned above as:



−𝑐𝑜𝑠(𝜃0) 𝑐𝑜𝑠(𝜃1) 0 . 0
−𝑠𝑖𝑛(𝜃0) 𝑠𝑖𝑛(𝜃1) 0 . 0
−𝑐𝑜𝑠(𝜃0) 0 𝑐𝑜𝑠(𝜃2) . 0
−𝑠𝑖𝑛(𝜃0) 0 𝑠𝑖𝑛(𝜃2) . 0

. . . . .

. . . . .
−𝑐𝑜𝑠(𝜃0) 0 0 . 𝑐𝑜𝑠(𝜃𝑁 )
−𝑠𝑖𝑛(𝜃0) 0 0 . 𝑠𝑖𝑛(𝜃𝑁 )

︸                                                           ︷︷                                                           ︸
𝐴



𝑑0
𝑑1
𝑑2
.
.

𝑑𝑁

︸︷︷︸
𝑑

=



𝑐𝑜𝑠(𝜓1) 0 0 . 0
𝑠𝑖𝑛(𝜓1) 0 0 . 0
𝑐𝑜𝑠(𝜓1) 𝑐𝑜𝑠(𝜓2) 0 . 0
𝑠𝑖𝑛(𝜓1) 𝑠𝑖𝑛(𝜓2) 0 . 0

. . . . .

. . . . .
𝑐𝑜𝑠(𝜓1) 𝑐𝑜𝑠(𝜓2) 0 . 𝑐𝑜𝑠(𝜓𝑁 )
𝑠𝑖𝑛(𝜓1) 𝑠𝑖𝑛(𝜓2) 0 . 𝑠𝑖𝑛(𝜓𝑁 )

︸                                                 ︷︷                                                 ︸
𝐵


|𝐷1 |
|𝐷2 |
.
.

|𝐷𝑁 |

︸  ︷︷  ︸
𝐷

(3)

which can be written as:

𝑑 = 𝐴−1𝐵𝐷 (4)

𝑋𝑚,𝑖 = 𝑑𝑖𝑐𝑜𝑠 (𝜃𝑖 )
𝑌𝑚,𝑖 = 𝑑𝑖𝑠𝑖𝑛(𝜃𝑖 )

(5)

We assume the position of the BS to be at (0,0) in the NED frame,
we can calculate the location of the UAV (𝑋𝑚,𝑖 ,𝑌𝑚,𝑖) from (5), which
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will be applied as measurements in the update step of the EKF. The
application of multiple AoDs will improve the localization result. In our
case the EKF estimate improves the predicted state after the first five
AoD measurements are implemented in the computation.

N

D

E

X

Z

Y

 !

 "

#$!
%!

N

E

D! Trajectory

Base Station

h"

h!

D!

Fig 1 3D Model setup

E

X

Y

 !
 "

N

E

#"

 ! = Azimuth Loc1 

 " = Azimuth Loc2 

#" = Yaw Loc2 

D 1= Distance
N = North
E = East
$% = Projected range

&! = '!, (!
&" = '", ("

N

D"

Fig 2 2D Model setup

Azimuth 

( & )

, , , , , , , , ,

Distance

(D )

Yaw

( )

Dead 

Reckoning

AHRSMUSIC

IMU

( , , , , , )
Barometer

( , )

Prediction

Update

EKF

, , ,

Quaternions

(Q = , , , )

Fig 3 Algorithm architecture

EKF sensor Fusion: This section, analyzes the implementation of the
EKF algorithm. Figure 3 shows the algorithm architecture. Here, for
simplicity and to validate the algorithm instead of implementing a Mul-
tiple Signal Classification (MUSIC) algorithm, we used the spherical
coordinates of the GPS with an additional noise 𝜃𝑛 ∼ N

(
0, 𝜎2

𝜃

)
, where

𝜎2
𝜃
= 5◦, as the measured azimuth angle 𝜃𝑖 . The present solution relies

on an EKF due to the nonlinear nature of the process and measurements
model, because the classic Kalman Filter functions properly only under
the linear assumption. The EKF is utilized to compute estimates of atti-
tude, position, and velocity based on noisy sensor readings.

Kalman filters operates a continuous loop of prediction and updat-
ing [14]. The system status at the next time frame is determined by
the present states and the system inputs. In the attitude calculations,
the angular rate-sensor measurements generate the input; on the other
hand, accelerometer measurements serve as the basis for velocity and
position calculations. The update phase rectifies the predicted states to
account for discrepancies in the measurement signals (e.g., sensor bias
and drift) using true attitude, position, and velocity estimates. The atti-
tude is collected from the UAV system’s AHRS (Attitude and Heading

Reference System), height from the barometer, and 2D Cartesian coor-
dinates computed by the multiple AoD algorithm. For the velocity mea-
surement we apply the time-distance-velocity formula, we calculate the
difference between the dead reckoned position and the previous location
estimate to attain the distance. As for the time, AoD measurements have
0.2 seconds sampling interval, because the GPS measurements are taken
on a 5 Hz frequency.

®𝑥𝑘 |𝑘−1 = 𝑓 ( ®𝑥𝑘−1|𝑘−1, ®𝑢𝑘 |𝑘−1 ) + ®𝑤𝑘−1

𝑃𝑘 |𝑘−1 = 𝐹𝑘𝑃𝑘−1|𝑘−1𝐹𝑘
𝑇 +𝑄𝑘−1

𝐹𝑘−1 =
𝜕 𝑓

𝜕𝑥

���
®𝑥𝑘−1 , ®𝑢𝑘

(6)

Equation group (6), presents the discrete-time prediction equations
where the states propagate in time adopting the acceleration, gyroscope
and magnetometer sensor readings. ®𝑥𝑘 |𝑘−1 is the state prediction model
and 𝑃𝑘 |𝑘−1 is the covariance estimate. 𝐹𝑘−1 and 𝑄𝑘−1 are the process
jacobian and the process-noise covariance matrices, respectively. Since
the state-transition model is nonlinear, the covariance cannot be propa-
gated with a direct implementation of the state-transition vector ®𝑓 . To
address this issue, ®𝑓 is linearized in every EKF computation round by
taking partial derivatives with respect to the system state ®𝑥, which gen-
erates the process jacobian 𝐹.

𝑆𝑘 = 𝐻𝑘𝑃𝑘 |𝑘−1𝐻𝑘
𝑇 + 𝑅𝑘

𝐾𝑘 = 𝑃𝑘 |𝑘−1𝐻
𝑇
𝑘 𝑆𝑘

−1

®𝑥𝑘 |𝑘 = ®𝑥𝑘 |𝑘 + 𝐾𝑘

(
®𝑧𝑘 − ®ℎ𝑘

)
𝑃𝑘 |𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘 )𝑃𝑘 |𝑘−1 (𝐼 − 𝐾𝑘𝐻𝑘 )𝑇 + 𝐾𝑘𝑅𝑘𝐾

𝑇
𝑘

𝐻𝑘 =
𝜕ℎ

𝜕𝑥

���
®𝑥𝑘

(7)

Equation group (7), consists of the final stage of the EKF. The
discrete-time update equations are used to update or correct the pre-
dicted state estimate based on the quality of the process models, process
inputs and measurements. 𝑆𝑘 , 𝐾𝑘 , ®𝑥𝑘 |𝑘 , 𝑃𝑘 |𝑘 and 𝐻𝑘 denote the innova-
tion covariance, kalman gain, updated state estimate, updated covariance
estimate and observation jacobian, respectively. 𝐻𝑘 is defined as the par-
tial derivative of the observation vector ®ℎ𝑘 with respect to the state ®𝑥𝑘 .

®𝑥 =


®𝑝𝑁

®𝑣𝑁
𝑁 ®𝑞𝐵

®𝑎𝐵
𝑏𝑖𝑎𝑠

®𝑤𝐵
𝑏𝑖𝑎𝑠


=


NED Position(3)
NED Velocity(3)
Body Attitude(4)

Acceleration Bias(3)
Angular − Rate Bias(3)


(8)

The state vector ®𝑥𝑘 has 16 states as seen in (8), namely the posi-
tion ( ®𝑝𝑁 ), velocity ( ®𝑣𝑁 ) , acceleration bias ( ®𝑎𝐵

𝑏𝑖𝑎𝑠
) , and angular rate

bias ( ®𝑤𝐵
𝑏𝑖𝑎𝑠

) , each having three coordinates and finally the quaternions
(𝑁 ®𝑞𝐵 ) are used to characterize the body attitude.

𝑓 ( ®𝑥𝑘−1, ®𝑢𝑘−1 ) =



®𝑝𝑁
𝑘−1 + ®𝑣𝑁

𝑘−1 . 𝑑𝑡

®𝑣𝑁
𝑘−1 +

[
𝑁𝑅𝐵

𝑘−1 .

(
®𝑎𝐵
𝑚𝑒𝑎𝑠,𝑘

− 𝑎̂𝐵
𝑏𝑖𝑎𝑠,𝑘

)
− ®𝑎𝑁

𝑔𝑟𝑎𝑣,𝑘

]
. 𝑑𝑡[

𝐼4 + 𝑑𝑡
2 .

(
Ω𝑚𝑒𝑎𝑠,𝑘 − Ω𝑏𝑖𝑎𝑠,𝑘

)]
. 𝑁 ®𝑞𝐵

𝑘−1

®𝑎𝐵
𝑏𝑖𝑎𝑠,𝑘−1

®𝑤𝐵
𝑏𝑖𝑎𝑠,𝑘−1


(9)

®𝑤𝑘−1 =



− 𝑁𝑅𝐵
𝑘−1 . ®𝑎

𝐵
𝑛𝑜𝑖𝑠𝑒

. 𝑑𝑡2

− 𝑁𝑅𝐵
𝑘−1 . ®𝑎

𝐵
𝑛𝑜𝑖𝑠𝑒

. 𝑑𝑡

− 𝑑𝑡
2 . Ξ𝑘−1 . ®𝑤𝐵

𝑛𝑜𝑖𝑠𝑒

®𝑁
(
0, 𝜎2

𝑑𝑑,𝑎

)
®𝑁
(
0, 𝜎2

𝑑𝑑,𝑤

)


, Ξ𝑘−1 =

[
®𝑞𝑇𝑣

𝑞0.𝐼3 + [ ®𝑞𝑣×]

]
(10)

The state-transition model presented in (9) - (10) is integral to the
EKF prediction stage. It presents the equations that propagate the sys-
tem states from one time-step to the next, utilizing high-quality sensors
as inputs. Additionally, the model also includes the process-noise vec-
tors linking each state to sensor noise. Moreover, they enable computing
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of the process covariance matrix, Q, and process Jacobian, F; both are
pivotal for propagating the system covariance, P, from one time-step to
subsequent time-steps. ®𝑓 represents the state-transition vector with five
individual models and ®𝑤𝑘−1 symbolize, the process noise vector shown
in Equation10, where ®𝑁 depicts the sensor noise vector corresponding
to the angular-rate and accelerometer bias with zero-mean Gaussian dis-
tribution and variance 𝜎2

𝑑𝑑
.

Simulations: Simulations were executed through a Flight Dynamics
Model (FDM) to replicate the physical components associated with UAV
motion. Inputs from a SITL program, running ArduPilot firmware, are
accepted and simulation outputs such as vehicle status, position and
velocities are then provided back to the firmware. This mimics the
behaviour of sensors within a true-world environment. Mavproxy with
Pymavlink was used to communicate and collect the IMU and other
telemetry data from the UAV. The telemetry data we collected from the
IMU consisted of the measurements of following sensors: accelerome-
ter, gyroscope, magnetometer at 100 Hz, barometer with absolute pres-
sure at 10 Hz, AHRS providing roll, pitch and yaw at 10 Hz, and GPS
coordinates (WGS84) at 5 Hz. Finally, we collected the output of the
UAV navigation system (position and velocity at 10 Hz) for algorithm
validation.

The simulations focused on trajectories that mimic real-world scenar-
ios. A zigzag trajectory, mainly used for land survey missions, a linear
trajectory, and finally a curved trajectory. The curved trajectory is analo-
gous to zigzag and is utilized to illustrate how the new algorithm stacks
up against IMU dead-reckoning over time.

Results: From the three trajectories simulated, we visualize the zigzag
trajectory. Figure 4 shows the 3D trajectory of the estimated values and
the data from the UAV navigation system. It can be seen that the EKF
estimated trajectory and the UAV trajectory are similar with several cen-
timetre level deviation, mean of 5cm, in the height. Since we are using
a single base station and there are limited methods implemented using
single base station for localization, we compared our algorithm to IMU
dead-reckoning. It is known that localizing with dead-reckoning is very
dependent on time due to the bias and noise accumulation.

We evaluated the accuracy of the EKF and IMU for the X and Y
coordinates with respect to the UAV navigation system, as illustrated
in Figures 5 and 6, which displays the Cumulative Distribution Function
(CDF) for both coordinates. It is clearly visible that the EKF outperforms
the IMU dead-reckoning. 90% of the error in the X-coordinate is below
2.56 m and below 4.08 m in the Y-coordinate, with both coordinates hav-
ing a maximum error below 5 m. Table. 1 provides a more detailed error
analysis for all the trajectories in the simulations. It includes the 90𝑡ℎ
percentile, mean and the median error. The results show that the linear
trajectory has larger position error especially in the y-coordinate com-
pared to other trajectories. This is due to the calculation of the distance
travelled using the IMU. For the linear trajectory, we simulated the drone
to fly parallel to the y-axis, hence the y-coordinate of the accelerometer
was varying largely and accumulating more error effecting the distance
traveled calculation.

Conclusion: In this paper, we presented an algorithm for UAV localiza-
tion and evaluated its performance through simulations. The algorithm
uses single base station’s AoD masurements, IMU dead-reckoning and
custom EKF for location computation. Algorithm performance was eval-
uated by simulating it with three different UAV trajectories, which are
deployed in practice in real world scenarios. The results show that for a
dynamic trajectory like zigzag and a curved trajectory the algorithm is
able to achieve a mean error ranging from 1m to 2m, when compared
to IMU dead-reckoning, which has a mean error above 100m. For the
linear trajectory, the calculation of the distance travelled effects the 2D

Fig 4 3D Trajectory
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estimates due to the accumulation of error over time. The algorithm is
successful in achieving an accuracy of 1m to 5m for dynamic trajectories
and 1m to 10m for linear trajectories, with the caveat that the UAV must
remain in motion and AoD measurements must be taken every 0.2 sec-
onds. Future work would involve testing the algorithm with actual data
from the real world and conducting outdoor experiments.
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Table 1. Error analysis
Error 90𝑡ℎ Percentile (m) Mean (m) Median (m)

Trajectory Linear Zigzag X-curve Linear Zigzag X-curve Linear Zigzag X-curve
Method EKF IMU EKF IMU EKF IMU EKF IMU EKF IMU EKF IMU EKF IMU EKF IMU EKF IMU

X 4.15 52.62 2.56 124.7 2.28 42.62 2.58 32.5 1.05 44.25 0.95 17.58 2.85 34.84 0.64 23.08 0.50 13.98
Y 11.72 261.6 4.08 92.65 2.74 167.54 6.47 139.3 2.05 182.5 1.36 62.17 6.36 132.43 1.99 112.46 1.26 37.94
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