References
1. F. Fresno, A. Iglesias-Juez, J.M. Coronado, Photothermal Catalytic CO2 Conversion: Beyond Catalysis and Photocatalysis, Topics in current chemistry (Cham), 2023; 381(4): 21.https://doi.org/10.1007/s41061-023-00430-z. 2. C.H. Huang, J.X. Huang, Y.H. Chiao, C.M. Chang, W.S. Hung, S.J. Lue, C.F. Wang, C.C. Hu, K.R. Lee, H.H. Pan, J.Y. Lai, Tailoring of a Piezo-Photo-Thermal Solar Evaporator for Simultaneous Steam and Power Generation, Adv. Funct. Mater., 2021; 31(17): 11.https://doi.org/10.1002/adfm.202010422. 3. Y.M. Li, Y.Y. Shi, H.W. Wang, T.F. Liu, X.W. Zheng, S.M. Gao, J. Lu, Recent advances in carbon-based materials for solar-driven interfacial photothermal conversion water evaporation: Assemblies, structures, applications, and prospective, Carbon Energy, 2023; 42.https://doi.org/10.1002/cey2.331. 4. H.W. Liu, B.C. Chen, Y.L. Chen, M.N. Zhou, F.W. Tian, Y.Z. Li, J.J. Jiang, W.T. Zhai, Bioinspired Self-Standing, Self-Floating 3D Solar Evaporators Breaking the Trade-Off between Salt Cycle and Heat Localization for Continuous Seawater Desalination, Adv. Mater., 2023; 14.https://doi.org/10.1002/adma.202301596. 5. P. Xiao, J. He, F. Ni, C. Zhang, Y. Liang, W. Zhou, J.C. Gu, J.Y. Xia, S.W. Kuo, T. Chen, Exploring interface confined water flow and evaporation enables solar-thermal-electro integration towards clean water and electricity harvest via asymmetric functionalization strategy,Nano Energy, 2020; 6810.https://doi.org/10.1016/j.nanoen.2019.104385. 6. Y. Zhou, T.P. Ding, M.M. Gao, K.H. Chan, Y. Cheng, J.Q. He, G.W. Ho, Controlled heterogeneous water distribution and evaporation towards enhanced photothermal water-electricity-hydrogen production, Nano Energy, 2020; 777.https://doi.org/10.1016/j.nanoen.2020.105102. 7. X.M. Geng, D.D. Zhang, Z.M. Zheng, G.M. Ye, S.M. Li, H.Y. Tu, Y.F. Wan, P. Yang, Integrated multifunctional device based on Bi2S3/Pd: Localized heat channeling for efficient photothermic vaporization and real-time health monitoring, Nano Energy, 2021; 8213.https://doi.org/10.1016/j.nanoen.2020.105700. 8. X.D. Sun, S.Y. Jiang, H.W. Huang, H. Li, B.H. Jia, T.Y. Ma, Solar Energy Catalysis, Angew. Chem.-Int. Edit., 2022; 61(29): 18.https://doi.org/10.1002/anie.202204880. 9. S. Sun, M. Li, X.L. Shi, Z.G. Chen, Advances in Ionic Thermoelectrics: From Materials to Devices, Adv. Energy Mater., 2023; 13(9): 45.https://doi.org/10.1002/aenm.202203692.
10. G. Wang, Z.D. Tang, Y. Gao, P.P. Liu, Y. Li, A. Li, X. Chen, Phase Change Thermal Storage Materials for Interdisciplinary Applications,Chem. Rev. , 2023; 72.https://doi.org/10.1021/acs.chemrev.2c00572.
11. Y.F. Zhao, W. Gao, S.W. Li, G.R. Williams, A.H. Mahadi, D. Ma, Solar-versus Thermal-Driven Catalysis for Energy Conversion,Joule , 2019; 3(4): 920.https://doi.org/10.1016/j.joule.2019.03.003.
12. M.F. Dupont, D.R. MacFarlane, J.M. Pringle, Thermo-electrochemical cells for waste heat harvesting - progress and perspectives, Chem. Commun. , 2017; 53(47): 6288.https://doi.org/10.1039/c7cc02160g.
13. L. Huang, S.Z. Lin, Z.S. Xu, H. Zhou, J.J. Duan, B. Hu, J. Zhou, Fiber-Based Energy Conversion Devices for Human-Body Energy Harvesting,Adv. Mater. , 2020; 32(5): 20.https://doi.org/10.1002/adma.201902034.
14. C. Liu, Q.K. Li, S.J. Wang, W.S. Liu, N.X. Fang, S.P. Feng, Ion regulation in double-network hydrogel module with ultrahigh thermopower for low-grade heat harvesting, Nano Energy , 2022; 929.https://doi.org/10.1016/j.nanoen.2021.106738.
15. S.R. Pu, Y.T. Liao, K.L. Chen, J. Fu, S.L. Zhang, L.R. Ge, G. Conta, S. Bouzarif, T. Cheng, X.J. Hu, K. Liu, J. Chen, Thermogalvanic Hydrogel for Synchronous Evaporative Cooling and Low-Grade Heat Energy Harvesting, Nano Lett. , 2020; 20(5): 3791.https://doi.org/10.1021/acs.nanolett.0c00800.
16. J.J. Shen, Y.L. Ma, C.H. Yang, S.X. Liu, J. Li, Z.J. Chen, B. Tian, S.J. Li, Boosting solar-thermal-electric conversion of thermoelectrochemical cells by construction of a carboxymethylcellulose-interpenetrated polyacrylamide network, J. Mater. Chem. A , 2022; 10(14): 7785.https://doi.org/10.1039/d2ta00025c.
17. A. Taheri, D.R. MacFarlane, C. Pozo-Gonzalo, J.M. Pringle, Quasi-solid-State Electrolytes for Low-Grade Thermal Energy Harvesting using a Cobalt Redox Couple, ChemSusChem , 2018; 11(16): 2788.https://doi.org/10.1002/cssc.201800794.
18. T.Y. Cao, X.L. Shi, Z.G. Chen, Advances in the design and assembly of flexible thermoelectric device, Prog. Mater. Sci. , 2023; 13158.https://doi.org/10.1016/j.pmatsci.2022.101003.
19. J.H. Chen, L. Zhang, Y.Y. Tu, Q. Zhang, F. Peng, W. Zeng, M.Q. Zhang, X.M. Tao, Wearable self-powered human motion sensors based on highly stretchable quasi-solid state hydrogel, Nano Energy , 2021; 888.https://doi.org/10.1016/j.nanoen.2021.106272.
20. Y. Wang, L. Yang, X.L. Shi, X. Shi, L.D. Chen, M.S. Dargusch, J. Zou, Z.G. Chen, Flexible Thermoelectric Materials and Generators: Challenges and Innovations, Adv. Mater. , 2019; 31(29): 47.https://doi.org/10.1002/adma.201807916.
21. L. Zhang, X.L. Shi, Y.L. Yang, Z.G. Chen, Flexible thermoelectric materials and devices: From materials to applications, Mater. Today , 2021; 4662.https://doi.org/10.1016/j.mattod.2021.02.016.
22. M. Tan, W.D. Liu, X.L. Shi, Q. Sun, Z.G. Chen, Minimization of the electrical contact resistance in thin-film thermoelectric device,Appl. Phys. Rev. , 2023; 10(2): 9.https://doi.org/10.1063/5.0141075.
23. C.H. Tian, C.H. Bai, T. Wang, Z.F. Yan, Z.Y. Zhang, K. Zhuo, H.L. Zhang, Thermogalvanic hydrogel electrolyte for harvesting biothermal energy enabled by a novel redox couple of SO4/3 2-ions, Nano Energy , 2023; 1068.https://doi.org/10.1016/j.nanoen.2022.108077.
24. Y.W. Zhang, Y. Dai, F. Xia, X.J. Zhang, Gelatin/polyacrylamide ionic conductive hydrogel with skin temperature-triggered adhesion for human motion sensing and body heat harvesting, Nano Energy , 2022; 10411.https://doi.org/10.1016/j.nanoen.2022.107977.
25. C.H. Bai, X.B.A. Li, X.J. Cui, X.R. Yang, X.R. Zhang, K. Yang, T. Wang, H.L. Zhang, Transparent stretchable thermogalvanic PVA/gelation hydrogel electrolyte for harnessing solar energy enabled by a binary solvent strategy, Nano Energy , 2022; 1008.https://doi.org/10.1016/j.nanoen.2022.107449.
26. P.H. Yang, K. Liu, Q. Chen, X.B. Mo, Y.S. Zhou, S. Li, G. Feng, J. Zhou, Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat, Angew. Chem.-Int. Edit. , 2016; 55(39): 12050.https://doi.org/10.1002/anie.201606314.
27. K.K. Liu, J.C. Lv, G.D. Fan, B.J. Wang, Z.P. Mao, X.F. Sui, X.L. Feng, Flexible and Robust Bacterial Cellulose-Based Ionogels with High Thermoelectric Properties for Low-Grade Heat Harvesting, Adv. Funct. Mater. , 2022; 32(6): 12.https://doi.org/10.1002/adfm.202107105.
28. S. Li, Q. Zhang, Ionic Gelatin Thermoelectric Generators,Joule , 2020; 4(8): 1628.https://doi.org/10.1016/j.joule.2020.07.020.
29. D. Zhang, Y. Mao, F. Ye, Q. Li, P.J. Bai, W. He, R.J. Ma, Stretchable thermogalvanic hydrogel thermocell with record-high specific output power density enabled by ion-induced crystallization,Energy Environ. Sci. , 2022; 15(7): 2974.https://doi.org/10.1039/d2ee00738j.
30. Z.A. Akbar, J.W. Jeon, S.Y. Jang, Intrinsically self-healable, stretchable thermoelectric materials with a large ionic Seebeck effect,Energy Environ. Sci. , 2020; 13(9): 2915.https://doi.org/10.1039/c9ee03861b.
31. C. Cho, B. Kim, S. Park, E. Kim, Bisulfate transport in hydrogels for self-healable and transparent thermoelectric harvesting films,Energy Environ. Sci. , 2022; 15(5): 2049.https://doi.org/10.1039/d2ee00341d.
32. Y.H. Guo, J. Bae, Z.W. Fang, P.P. Li, F. Zhao, G.H. Yu, Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability,Chem. Rev. , 2020; 120(15): 7642.https://doi.org/10.1021/acs.chemrev.0c00345.
33. C. Xu, Y. Sun, J.J. Zhang, W. Xu, H. Tian, Adaptable and Wearable Thermocell Based on Stretchable Hydrogel for Body Heat Harvesting,Adv. Energy Mater. , 2022; 12(42): 9.https://doi.org/10.1002/aenm.202201542.
34. T.J. Abraham, D.R. MacFarlane, J.M. Pringle, High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting, Energy Environ. Sci. , 2013; 6(9): 2639.https://doi.org/10.1039/c3ee41608a.
35. A. Taheri, D.R. MacFarlane, C.P. Pozo-Gonzalo, J.M. Pringle, Flexible and non-volatile redox active quasi-solid state ionic liquid based electrolytes for thermal energy harvesting, Sustain. Energ. Fuels , 2018; 2(8): 1806.https://doi.org/10.1039/c8se00224j.
36. J. Wu, J.J. Black, L. Aldous, Thermoelectrochemistry using conventional and novel gelled electrolytes in heat-to-current thermocells, Electrochim. Acta , 2017; 225482.https://doi.org/10.1016/j.electacta.2016.12.152.
37. Y. Wang, J.P. Park, S.H. Hong, H. Lee, Biologically Inspired Materials Exhibiting Repeatable Regeneration with Self-Sealing Capabilities without External Stimuli or Catalysts, Adv. Mater. , 2016; 28(45): 9961.https://doi.org/10.1002/adma.201603290.
38. Y.L. Zhang, R.N. Xu, W.Y. Zhao, X.D. Zhao, L.Q. Zhang, R. Wang, Z.F. Ma, W.B. Sheng, B. Yu, S.H. Ma, F. Zhou, Successive Redox-Reaction-Triggered Interface Radical Polymerization for Growing Hydrogel Coatings on Diverse Substrates, Angew. Chem.-Int. Edit. , 2022; 61(39): 7.https://doi.org/10.1002/anie.202209741.
39. L.W. Yang, L.L. Han, J. Ren, H.L. Wei, L.Y. Jia, Coating process and stability of metal-polyphenol film, Colloid Surf. A-Physicochem. Eng. Asp. , 2015; 484197.https://doi.org/10.1016/j.colsurfa.2015.07.061.
40. H.D. Graham, Stabilization of the Prussian blue color in the determination of polyphenols, Journal of Agricultural and Food Chemistry , 1992; 40(5): 801.https://doi.org/10.1021/jf00017a018.
41. I. Gulcin, F. Topal, S.B.O. Sarikaya, E. Bursal, G. Bilsel, A.C. Goren, Polyphenol Contents and Antioxidant Properties of Medlar (Mespilus germanica L.), Rec. Nat. Prod. , 2011; 5(3): 158.
42. J.J. Duan, G. Feng, B.Y. Yu, J. Li, M. Chen, P.H. Yang, J.M. Feng, K. Liu, J. Zhou, Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest, Nat. Commun. , 2018; 98.https://doi.org/10.1038/s41467-018-07625-9.
43. Z.Y. Lei, W. Gao, P.Y. Wu, Double-network thermocells with extraordinary toughness and boosted power density for continuous heat harvesting, Joule , 2021; 5(8): 2211.https://doi.org/10.1016/j.joule.2021.06.003.
Figure 1. Schematic illustrating the construction of the PTEH-Interlocking and their potental application for photo-thermo-electric energy conversion.Figure1.tif
Figure 2. a) Digital photos of TEH and PTEH-Interlocking. b) Digital photos and SEM image of PA-PEI-Fe photothermal film. c) The SEM elemental mapping of PA-PEI-Fe photothermal film. d) FTIR spectra of PA and PA-PEI-Fe photothermal film. e) O 1s XPS spectra. f) UV-Vis absorption spectra of PA-PEI aqueous solution, [Fe(CN)6]3−/[Fe(CN)6]4−aqueous solution and mixture solution of PA-PEI and [Fe(CN)6]3−/[Fe(CN)6]4−.Figure2.tif
Figure 3. a) Temperature changes of the PA-PEI-Fe photothermal film consturcted with different proportions of PA (simulated sunlight intensity is 100 mW cm−2); b) UV diffuse reflection spectra of PA-PEI-Fe and PA-PEI film; c) Temperature changes of PA-PEI-Fe, PA-PEI and CNT film (simulated sunlight intensity is 100 mW cm−2); d) The corresponding infrared images of PA-PEI-Fe, PA-PEI and CNT film over time; e) Photothermal conversion efficiency of PA-PEI-Fe, PA-PEI and CNT film; f) Photothermal stability estimation of PA-PEI-Fe over 10 UV light “on-off” cycles. (g) Temperature increase of TEH, TEH-CNT and PTEH-Interlocking under the simulated light of 100 mW cm−2 for 1 h.Figure3.tif
Figure 4. a) schematic illustrating thermoelectric conversion process of the PTEH-Interlocking; b) The voltage generated by PTEH-Interlocking and its dependence on temperature differences, as well as the impact of eliminating these temperature differences between the two sides. c) Voltages generated by TEH and its dependence on temperature differences, as well as the impact of eliminating these temperature differences between the two sides.; d) Seebeck coefficient of PTEH-Interlocking (red) and TEH (blue); e) The current density-voltage curves depict the performance of the PTEH-Interlocking system under varying temperature differences, and the corresponding power densities are determined for each scenario.; f) output voltages of PTEH-Interlocking with different proportions of PA; g) Voltage generated by PTEH-Interlocking after stretching to a strain of 100% and 400%. h) The thermal conductivity of different structures between TEH, THE/PA-PEI-Fe, PTEH-Interlocking; i) The electrical conductivity of different structures between TEH, THE/PA-PEI-Fe, PTEH-Interlocking.Figure4.tif
Figure 5. a) Voltage output of solar-driven PTEH-Interlocking upon simulated sunlight intensity (100, 150 and 200 mW cm−2); b) The power of solar-driven PTEH-Interlocking with different simulated sunlight intensity (100, 150 and 200 mW cm−2); c) Voltage output of solar-driven TEH, THE-CNT and PTEH-Interlocking on switching on/off simulated solar source at 100 mW·cm-1; d) Voltage output of solar-driven PTEH-Interlocking for long time at 100 mW cm-1; e) Voltage output of PTEH-Interlocking for 15 “on-off” cycles of the simulated sunlight (150 mW cm−2); f) Schematic diagrams and visual representations demonstrate the utilization of a solar-driven PTEH-Interlocking device as an electricity supplier for a motor and LED; g) Visual depictions showcase the implementation of a solar-driven PTEH-Interlocking device as the power source for a house alarm system. Figure5.tif