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1. Generating Synthetic Pressures and Temperatures

To treat the problem more generally, we generated synthetic pressures and temperatures to use as32

boundary conditions in the simulations. Our first step in processing was to perform an elevation-pressure33

correction due to change in Curiosity rover’s position in time. We gathered rover positional data, then34

calculated the relative pressure offset caused by elevation change using a simple air-static condition:35

p(z) = p0 + ρairgz, where p(z) is the adjusted air pressure [Pa], p0 is the air pressure [Pa] at the landing36

site, ρair is approximate air density [kg m-3] at the landing site, g is acceleration due to gravity [m s−2],37

and z is the elevation [m] relative to the landing site. This procedure is described in detail in Ortiz et al.38

(2022).39

We then performed an initial decomposition of the pressure and temperature data into the frequency40

domain using a Fast Fourier Transform (FFT) algorithm (Cooley & Tukey, 1965) to get a preliminary41

estimate of the dominant harmonic components. Plots showing the results of spectral decomposition are42

shown in Figure S1 and Figure S2.43

To generate synthetic pressure and temperature records, we compose a summation of sinusoidal com-
ponents described by their frequency (ω), amplitude (A), and phase (γ). We determined the exact
components to use by optimizing the root mean squared error of the synthetic data to the observed
(elevation-adjusted) pressures and temperatures. We started with the dominant periods determined from
the FFT decomposition above, and then and calibrated ω, A, and γ by minimizing the root mean squared
error (RMSE) using the differential evolution algorithm (Storn & Price, 1997). An initial calibration used
a single diurnal amplitude for the barometric pressures (i.e., pressure amplitude of the diurnal component
did not vary seasonally), which caused significant mismatch because the diurnal amplitudes are not con-
stant throughout the Mars year. We therefore used a seasonally modulated synthetic barometric pressure
signal, following Harp, Ortiz, and Stauffer (2019):

Ps(θ) = (Ad +As sin (ωst+ γs)) sin (ωdt+ γd) , (1)

where Ps is the synthetic signal, Ad is the mean diurnal amplitude of given frequency, As is the ampli-44

tude of the seasonal modulation, ωd is the diurnal frequency, ωs is the seasonal modulation frequency45

(seasonal period, Ts = 1 Mars year, where ωs = 2π/Ts), γd and γs are the phase shift of the dominant46

frequency and seasonal modulation, respectively, and θ = [Ad, Td, γd,As, γs] is a vector containing the47

calibration parameters, for which we aim to minimize an objective function F (θ) comparing the measured48

pressures/temperatures to the synthetic values. It is the (Ad +As sin (ωst+ γs)) term that captures the49

seasonal modulation about the mean dominant frequency. The objective function F minimized in the50

calibration is the root mean squared error.51

2. Heat Flow Verification

In this section, we describe several heat flow verification tests that we performed. The purpose of these52

tests is two-fold: to ensure that the physics are represented correctly in the FEHM simulator, and to53

generate confidence in the formulation of our model, which sequentially coupled the heat model to the54

flow and transport model.55

2.1. Conductive Heat Flow Verification
The first step in implementing temperature-dependent adsorption in FEHM is to verify that the heat56

flow model behaves as expected. We perform a heat flow verification test using a simple problem in a57

1-meter square domain (Figure S5) with initial, uniform temperature T0 = 200◦C. From time t > 0, the58

top and right boundaries of the box are assigned a constant T = 100◦C, with zero heat flux boundary59

conditions on the left and bottom boundaries. We then observe the temperature decay two observation60

points (Figure S5).61

The analytical solution for the temperatures in this 2-D heat conduction problem is given by Carslaw
and Jaeger (1959):

T = Ts +
16(T0 − Ts)

π2

∞∑
m=0

∞∑
n=0

(−1)m+n

(2m+ 1)(2n+ 1)
cos

(2m+ 1)πx

2a
cos

(2n+ 1)πy

2b
e−αm,nt (2)

where αm,n = κπ2

4

[
(2m+1)2

a2 + (2n+1)2

b2

]
and the region is taken to be −a < x < a, −b < y < b.62
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2.2. Verification of Subsurface Temperatures

We then verify that we are able to reproduce the expected subsurface temperature variations driven by
surface temperature changes predicted by an analytical solution. As thermal waves propagate through
the subsurface, their amplitude diminishes exponentially with depth from the surface. In the analytical
solution discussed in Jones, Lineweaver, and Clarke (2011), the surface heat variations can be modeled
as sinusoidal curves:

Ts(t) = T0 +∆T cos(ωt) (3)

where Ts is the surface temperature, T0 is the mean surface temperature, ∆T is the amplitude of temper-
ature variation about the mean, and ω is the angular frequency (ω = 2πf , where f is the frequency (i.e.,
cycles per sol, cycles per year) of the temperature signal. The subsurface temperatures are then given by:

Tsub(y, t) = T0 +∆T exp

(
− y

dω

)
cos

(
ωt− y

dω

)
(4)

where y is depth beneath the surface [m], dω is the thermal skin depth (dω =
√

2α
ω ) where the thermal63

diffusivity α = κ
ρcp

, where κ is thermal conductivity, ρ is density, and cp is specific heat capacity.64

We simulated surface thermal wave propagation in to the subsurface using a homogeneous domain65

with the following properties: κ = 2.5 W/(m · K), ρ = 2900 kg m−3, cp = 800 J/(kg · K). For the66

surface forcing, we used a period of 1 day (period = ω
2π ), and ∆T = 10 ◦C. Our results in Figure S7 show67

good agreement between simulated and analytical subsurface temperatures. We performed verification68

at several longer periods (up to annual) for temperature forcing that are not shown here, but likewise69

indicated good agreement with the analytical solution.70

2.3. Pure Conduction vs Conduction-Convection
The adsorption mechanism is dependent on temperature, which is dependent on depth below ground71

surface and time. Using the surface temperatures collected by Curiosity, we simulate transient 2D heat72

flow in the subsurface by comparing simple conduction to matrix conduction/fracture convection in a73

single-fracture model. Because of the high level of mesh refinement required for accurate representation74

of heat flow, we wanted to be able to simulate the subsurface temperatures (with a fine mesh) using a75

1-D model, implicitly ignoring the effects of fractures. To determine if this can be done with without76

sacrificing accuracy, we needed to show that convective heat transfer effects is negligible compared to the77

overall effects of conduction.78

We compared the subsurface temperature perturbation depths for these cases to determine whether79

subsurface convection can be considered negligible. In the case that convection is negligible, we can80

likely perform separate simulations for heat flow and methane transport (sequential coupling) rather81

than perform a fully-coupled thermo-physico-chemical simulation, which would be more computationally82

demanding. It is likely that a pure conduction model will sufficiently capture the subsurface temperature83

behavior; previous work has estimated that the seasonal thermal skin depth does not extend down to84

more than a few meters (Mellon & Phillips, 2001; Meslin et al., 2011; Moores et al., 2019; Gough et al.,85

2010). Nevertheless, it was important for us to perform this check since the presence of fractures may86

cause the thermal skin depth to be deeper than previous estimates, at least along the fractures.87

The pure, single-phase heat conduction equation is as follows:

∂T

∂t
= α∇2T (5)

where T is the temperature [K], t is time [s], and α is the thermal diffusivity coefficient [m2 s−1] (α = κ
cρ ,88

where κ is the thermal conductivity of the material [J s−1 m−1 K−1], c is the specific heat capacity [J89

K−1 kg−1], and ρ is the density of the material [kg m−3]).90

In the case where flowing air currents in porous media transport significant amounts of heat, the energy
conservation equation for conduction-diffusion is as follows:

[(1− ϕ)ρrcpr + ϕρvcpv]
∂T

∂t
= ∇ · (κ∇T )−∇ · (v⃗ρvhv) (6)

where ϕ is matrix porosity [–], ρi is the density for rock (r) or vapor (v) [kg m-3], respectively, cpi is
the specific heat capacity for constituent i [J K-1 kg-1], T is temperature [K], t is time [s], κ is thermal
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conductivity of the rock [J s-1 m-1 K-1], hv is the specific enthalpy of the vapor [m2 s-2], and ∇ is the
gradient operator. The fluid velocity vector v⃗ is assumed to follow Darcy’s law:

v⃗ = − k

µv
(∇P − ρv g⃗) , (7)

where k is the rock permeability [m2], µv is the dynamic vapor viscosity [Pa s], P is pressure [Pa], and91

g⃗ is the gravitational acceleration vector [m s-2]. In (6), we assume instantaneous thermal equilibration92

between the rock and the fluid.93

2.3.1. Thermal Péclet Number Analysis94

The above result makes intuitive sense if we consider the thermal Péclet number, a dimensionless
number that quantifies the relative importance of conduction and convection:

PeT =
uL

α
(8)

where u is the fluid flow velocity [m s−1], L is the characteristic length [m], and α is the thermal diffusivity95

[m2 s−1] (α = κ
ρcp

, where κ is the thermal conductivity, ρ is the bulk density, and cp is the specific heat96

capacity).97

We calculate an approximate velocity of air flow (u) in the subsurface using the single-fracture, double-98

porosity pressure response solution in (Equation 8 in Nilson et al., 1991). The air flow velocity is the key99

quantity in heat convection for this problem, and we assume that the air flow is driven by the barometric100

pressure gradient at ground surface. We use representative values for a diurnal pressure perturbation101

(period = 1 sol, ∆P = 40 Pa, mean pressure P0 = 800 Pa). For the subsurface we use properties repre-102

sentative of our flow and transport simulations: fracture aperture δf = 1 mm, fracture spacing δm = 5 m,103

matrix permeability km = 10−14 m2, and matrix porosity ϕm = 0.35. To estimate the air flow velocity104

using equation 8 from Nilson et al. (1991), we calculate the pressure gradient at 30 m and 5 m depth,105

with 2 mm lateral displacement from the fracture. We set the characteristic length L to the respective106

depth at which we calculated the flow velocity.107

108

Rock Thermal Properties:109

Rock thermal properties were taken as: density ρr = 2900 kg m−3, thermal conductivity κr = 2.7 W110

/ (m · K), and specific heat capacity cp = 800 J / (kg · K). The rock thermal diffusivity αr, then, is111

1.16× 10−6 m2 s−1.112

113

Air Thermal Properties:114

Mars air thermal properties were taken as: density ρa = 0.018 kg m−3, thermal conductivity κa =115

0.01663 W / (m · K), and specific heat capacity cp = 849 J / (kg · K). The air thermal diffusivity αa,116

then, is 1.03× 10−3 m2 s−1.117

118

Bulk Thermal Properties:119

To estimate the thermal response of the subsurface as a whole, we calculate thermal properties of the120

subsurface in bulk, taking into account both the fluid (air) volume (Va) and the solid volume (Vr). The121

bulk density ρb = 1884 kg m−3, bulk thermal conductivity (κb = (κaVa + κrVr)/Vtotal) is 1.76 W / (m122

· K), and bulk specific heat capacity cp = 817 J / (kg · K). The bulk thermal diffusivity αb, then, is123

1.14× 10−6 m2 s−1.124

125

At 30 m depth, the maximum velocity, u, in the matrix is 1.1 × 10−9 m s−1. Using this depth for126

L, we calculate a thermal Péclet number of ∼ 0.027, which indicates that conduction should dominate127

over convection. At 5 m depth, the maximum velocity u = 3.1 × 10−9 m s−1. Using this depth for128

L, we calculate a thermal Péclet number of ∼ 0.011, which similarly indicates that conduction should129

dominate over convection. This result is not surprising; one would expect that the heat capacity in the130

system is dominated by the matrix/rock solids rather than the low-density CO2 carrier gas. Although air131

flow velocities in the fractures are orders of magnitude greater than the velocity in the rock matrix, the132

fractures make up a relatively small portion of the total porosity and, thus, a small portion of the energy133

transport. If the flowing fluid were a liquid, rather than a gas, a much greater portion of heat transport134

would be due to convection, and likely could not be considered negligible.135

2.4. Effect of Temperature on Air Flow Properties
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Due to increased computational costs associated with performing fully-coupled thermo-physico-136

chemical simulations, we chose to perform sequentially-coupled simulations by running heat flow first,137

then applying the calculated subsurface temperatures as boundary conditions for the adsorption mecha-138

nism in the flow and transport model. The temperatures are applied to the isothermal flow and transport139

simulations by varying the Langmuir adsorption coefficients in the adsorption process based on the ambi-140

ent temperature. In reality, temperature would also affect fluid properties such as density and viscosity,141

which could affect flow and transport. From the CO2 equation of state, we calculated that a 50 ◦C142

change in temperature results in only a 0.96% change in density from reference conditions T = −50◦C143

and P = 700 Pa. The same temperature change results in a 22% change in viscosity. Although this seems144

like a large effect, the actual amplitude of the temperature changes in the subsurface is much smaller.145

3. Modified Dual-Enrichment Run Procedure

The typical dual-enrichment run is described in Webster et al. (2018a). It involves first the evacuation146

of the Herriott cell, followed by opening of an inlet to the ambient atmosphere. The ingested atmospheric147

sample is passed through scrubbers to remove CO2 and H2O before entering the Herriott cell, eventually148

reaching 5–6 mbar after 2 hours. This results in an enrichment in the CH4 by a factor of 25. The valve149

to the Herriott cell is then closed and 26 spectra are taken of the sample over ∼75 min. The Herriott cell150

is then evacuated and another 26 spectra are taken to record “empty cell” spectra to allow subtraction151

of any methane contribution from the foreoptics chamber. Finally, the Herriott cell is again filled up152

by opening another inlet to make a direct ingest of the atmosphere without passing the sample through153

scrubbers. A final 26 spectra are taken of the sample before the instrument is powered down (Figure S1154

in Webster et al., 2018b). The entire process takes ∼8.5 hours (shorter in daytime from less heating155

required).156

Prior to each run, the scrubbers are cleaned up by heating. This cleanup process typically takes 2157

hours 21 min.158

A slightly modified procedure would introduce two changes to the typical dual-enrichment run:159

1. The direct ingest segment would be dropped. The direct ingest measurements were a low-resource160

way to observe CH4 spikes in coordination with TGO measurements, but this is not expected to be very161

useful in answering the question at hand. Leaving out the direct ingest segment would conserve pump162

life and reduce the runtime of the experiment by ∼100 min to ∼7 hours.163

2. Spectra would be taken over the two hours as the Herriott cell is being filled for the enriched164

measurements (“ingest scans”). These scans would be taken at the same cadence as the sets of 26 scans.165

These ingest scans serve two purposes. Firstly, they can also provide another way of quantifying the166

background CH4 levels. Secondly, the scans could be used to detect any drastic changes in the ambient167

VMR that may occur.168

The long duration of the enrichment run and the scrubber cleanup, in addition to the large power169

requirements, make it difficult to conduct more than one run within a single sol. The next best thing170

would be to conduct both of our proposed dual-enrichment runs as close together as possible in order to171

reduce the likelihood of significant changes in local weather conditions or other factors that could impact172

the assumed diurnal cycle of methane at Gale.173

4. Diffusive Atmospheric Mixing Model

We attempt to visually illustrate the implementation of the atmospheric diffusion model within an174

expanding/contracting domain (Figure S10).175

We initially took a more simplified approach to the atmospheric mixing model by assuming that176

methane released into the column mixed instantaneously across its entire height, as was done in Moores177

et al. (2019). The atmospheric methane concentration is then controlled predominantly by the PBL height178

varying in time, as this controls the mixing volume. An issue with this approach is that the mixing time179

is so fast that individual methane flux pulses are not observable in terms of the resulting abundance that180

would be measured by SAM-TLS. While instantaneous mixing may be a reasonable approximation for181

when PBL conditions are extremely unstable (Lin & McElroy, 2010), a partial mixing diffusive model is182

likely more representative of mixing under general atmospheric conditions in response to highly transient183

surface flux pulses.184
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5. Dust Devil-Induced Flux Simulations

A gradual increase in dust devil activity has been predicted by previous research (Richardson et al.,185

2007) as Curiosity climbs the slopes of Aeolis Mons for the remainder of its campaign. rooted in the186

mechanisms behind dust devil formation. Dust devils are convective vortices that occur during periods187

of strong convective heating of the ground surface, specifically when the ground temperature exceeds the188

ambient air temperature. Heating of the ground surface warms the air directly above it, causing the air189

to rise. As the air rises, any existing vorticity becomes more vertical and more intense, developing a190

low-pressure zone at the vortex core surrounded by strong tangential winds. The winds can be assisted191

by the suction effect imbued by the pressure drop. Lower thermal inertias, a property representing the192

ability of a material to conduct and store heat, of the ground surface can be a contributing factor to193

increased dust devil activity, since such conditions favor larger differences between the ground and air194

temperatures. However, Newman et al. (2019) found that this effect was less important overall than the195

increase in topographic elevation, which encourages vortex formation because of the cooler near-surface196

daytime air temperatures.197

To investigate the effects of dust devils on surface methane flux, we simulated methane transport
induced by pressure drops with a range of properties representative of the REMS pressure drop data
analyzed by Ordóñez-Etxeberria, Hueso, and Sánchez-Lavega (2020). From Ordonez-Etxeberria, Hueso,
and Sánchez-Lavega (2018), pressure drops in the REMS record are defined by two parameters: intensity
of the pressure drop, and its duration. Individual pressure drop events are extracted by numerically
describing the data in terms of these parameters by fitting the pressure data with a Gaussian function in
a moving window of 60 s:

P (t) = P0 −∆P · exp
[
−
(
t− t0
σ

)2
]

(9)

where P (t) is the pressure as a function of time [Pa], P0 is the baseline/ambient pressure [Pa], ∆P is198

the intensity of the pressure drop [Pa] computed as the difference between P0 and the minimum pressure199

value, t0 is the time corresponding to the pressure minimum [s], and σ is related to the duration, or Full200

Width at Half Maximum (FWHM) of the Gaussian through FWHM = 2
√
ln 2σ.201

5.1. Boundary and Initial Conditions: Dust Devil Simulations

Because pressure drops measured by REMS typically last on the order of seconds, they require highly202

refined temporal resolution to simulate properly, which is numerically intensive. Therefore, rather than203

run multi-year scenarios with sub-second temporal resolution, we estimate the upper bounds of fluxes204

that could be generated by performing truncated simulations (120 s) with high temporal resolution using205

conditions ideal for inducing subsurface gas flux (i.e., the best case scenario for generating flux). We206

performed the dust devil simulations after our running our preliminary subsurface-atmosphere model207

simulations so that we would only have to consider fracture-rock architectures that best matched the208

observed atmospheric methane abundances. We populate the subsurface initially with a uniform methane209

concentration equal to the maximum near-surface concentration achieved in the corresponding subsurface-210

atmospheric transport model at steady-state. So doing essentially represents the time of year with the211

highest methane concentrations in the shallow subsurface, and thus the chance for the greatest fluxes212

vented to the atmosphere for a given drop in pressure. We prescribe an initial atmospheric pressure equal213

to the mean surface pressure at Gale crater. We then perform a suite of simulations with dust devil214

duration (FWHM) ranging from 5 to 25 s, and pressure drops ranging from 1 to 5 Pa. The timing of the215

pressure drop minimum (t0) occurs halfway through the 120 s simulation.216

5.2. Dust Devil Pressure Drop Results

6. Fracture Network

6.1. Fracture Generation Algorithm

We randomly generated orthogonal discrete fractures using the 2-D Lévy-Lee algorithm (Clemo &217

Smith, 1997), a fractal-based fracture model (Geier et al., 1988). In this model, fracture centers are218

created sequentially by a “Lévy flight” process, – a termed coined by Benôıt Mandelbrot and named219

for Paul Lévy – in which the step lengths in a random walk follow the heavy-tailed Lévy distribution220
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(Viswanathan et al., 1999). In a similar manner, fracture center locations in the Lévy-Lee algorithm are221

produced by random walk, and the distance between fracture centers L′ is sampled from the power law222

distribution:223

PL (L′ > L) = L−D (10)

where D is a specified fractal dimension. The direction of the separation between fracture centers is224

uniformly distributed between 0◦ and 360◦. Fracture length and the variation in orientation are propor-225

tional to the distance from the previous fracture. The Lévy-Lee model generates a fracture network with226

a continuum of scales for both fracture length and spacing between fractures and uses the same exponent227

for fracture trace length and spacing. Structurally, the fracture networks generated by the Lévy-Lee228

algorithm tend to have clusters of fractures, with tighter clusters resulting from larger values of D. Since229

individual fracture lengths are assigned stochastically, we generated fracture networks with the desired230

fracture densities using a differential evolution optimization approach (Storn & Price, 1997) to determine231

the number of fractures required in each domain.232

This mesh was then mapped onto a 3-D grid and extended across the width of the domain in the y233

direction – a single cell across – since FEHM does not solve true 2-D problems. This mapping essentially234

embeds the fractures in the rock matrix via upscaling of properties, allowing transfer of fluids and tracers235

to occur at the fracture-matrix interface. This mesh was then mapped onto a uniform grid.236

6.2. Fracture Network Topology

The fracture network used in this study was designed to be representative of a fractured subsurface on237

Mars. Without rock cores or detailed logs, we know very little about fracture networks on Mars below238

the surface, though it is believed to be highly fractured (Figure S12). We want to generate a fracture239

network such that it would have a fracture density (i.e., the ratio of fracture volume to bulk rock volume)240

comparable to that in Mars’ subsurface. Because the subsurface on Mars is so poorly characterized, we241

have made estimates of the fracture density based on rover photographs depicting surface expressions242

of fracture networks at Gale crater using a fracture trace method (Figure S13). Because the observed243

surface is roughly two-dimensional – and also due to the 2-D nature of our model – we calculate an “areal244

fracture density” (the ratio of fracture area to bulk rock area) and assume a similar fracture distribution245

in cross-section. We track the area of the fracture traces relative to the total image area using a script246

in Adobe Illustrator (Adobe Inc., 2019). The calculated areal fracture density of the fracture network in247

Figure S13 was ∼ 0.1%. In reality, the subsurface on average will be less fractured than this view of the248

surface, so we consider fracture densities in our simulations in the range 0.0% to 0.035%.249

7. Additional Results

To conserve space in the main text, we here include several results additional from the coupled250

subsurface-atmospheric mixing model, as well as results examining parameter combinations within the251

candidate solution space.252

7.1. Out-of-Phase Methane Variations

We observed that subsurface architectures with fracture density ≤ 0.005% produced seasonal methane253

variations that were out of phase with the SAM-TLS observations. We here include the “best” scenarios254

associated with of these fracture density cases.255

7.2. Seasonal Methane Variation
7.2.1. Fracture Density 0.02% and 0.035%256

Other subsurface fracture cases that performed well were 0.035% (Figure S18) and 0.02% (Figure S17)257

fracture density, in that order. Compared to 0.01% fracture density, both of these higher fracture density258

cases better match the abundance observations in Northern Spring (Ls 0-90
◦). These cases also tended to259

better capture the increase in methane abundance that seems to occur in Northern Winter (Ls 270-360
◦),260

especially the case with fracture density 0.035%. That being said, methane abundance in these higher261

fracture density cases tends to fall off quicker as Northern Summer transitions into Northern Autumn,262

generally underpredicting methane concentrations relative to the apparent gradual decline in methane263

observed. The rapid fall-off is less pronounced for fracture density 0.02% versus 0.035%, which can be264

seen when comparing the fit to the SAM-TLS observation at Ls = 189.2◦.265
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7.3. Sub-diurnal Methane Variation
7.3.1. Fracture Density 0.02% and 0.035%266

Fracture networks that are less sparse (e.g., fracture density 0.02 and 0.035%, which compared to the267

0.01% case have 2 and 3.5 times greater volume of fractures, respectively) produce flux patterns that268

are more diffuse (Figures S20f, S19f). The surface emissions in such cases are characterized by more269

frequent pulses of methane because transport through individual fracture pathways is less important270

than the overall contribution of multiple connected pathways. The resulting atmospheric abundances271

are, likewise, necessarily different than for cases with more sparse fracture networks (Figures S19, S20).272

For fracture density 0.02%, smaller values of Dc (≤ 0.2 m2 s−1) better matched the inferred diurnal273

abundance variation. Such scenarios were in general agreement with SAM-TLS observations, with the274

exception of the intermediate positive detection on Ls 126.3◦ (at 23:56 LMST) mentioned in the previous275

section. Early-evening methane (17:00 - 21:00) pulses at certain Ls create methane abundance spikes276

that tend to quickly decay to background as the evening progresses. It is worth noting that the candidate277

parameter space for this fracture case was relatively small with regard to the range of Dc (0.06 < Dc <278

1.2).279

For fracture density 0.035%, larger values of Dc (≥ 1 m2 s−1) tended to better match the inferred280

diurnal abundance variation, though this relationship was not firm, as evidence by scenario c. As above,281

however, it is worth noting that the candidate parameter space for this fracture case was relatively small282

with regard to the range of Dc (0.10 < Dc < 1.4). In terms of surface methane flux, the majority of283

mass emitted occurs mid-sol, between the hours of 10:00 and 17:00 LMST (Figure S20f). A rising limb of284

methane abundance culminating in a sharp “lip” occurs just prior to PBL expansion due to a late morning285

methane flux pulse. There is also a smaller, less pronounced lip and falling limb that occurs just after286

PBL collapse, which is primarily due a sharp methane pulse occurring at that time. The lip and falling287

limb is due to this pulse and not because the bulk of methane is emitted mid-sol during the expanded288

PBL state, as evidenced by the late-season abundance (Ls = 156.3◦), which has no corresponding pulse289

and likewise, no early-evening falling limb.290

7.4. Analysis of Candidate Parameter Space

We further interrogated the candidate solution parameter space generated by the differential evolution291

optimization algorithm in order to understand the interaction between atmospheric mixing parameters,292

with results below. We analyzed the parameter space for fracture density cases where the overall χ2
ν293

for the “best” set of parameters was less than 4.0. This choice of error value was somewhat arbitrarily294

chosen, as it appeared to be the cutoff error, over which the seasonal abundance variations were out of295

phase with the observations. This cutoff thereby limited the best fracture densities to 0.01%, 0.02%, and296

0.035%. Candidate solutions in each case were populated from the results of the differential evolution297

optimization by including results with error χ2
ν ≤ minχ2

ν + 0.5 – this defines the “candidate solution298

parameter space”.299

7.4.1. Fracture Density 0.01%300

The entire candidate solution parameter space is shown in Figure S21. Diffusion coefficients Dc and301

De, unsurprisingly, are correlated such that smaller Dc begets a smaller De. The candidate solution302

space contains diffusion coefficient values such that range of the ratio De/Dc is between 59 and 678303

(Figure S22), with a mean value of 351. We initially provided bounds to the algorithm for this ratio304

of 1 ≤ De/Dc ≤ 1000, so the atmospheric mixing model apparently favors comparatively large daytime305

eddy diffusivities compared to those during the collapsed state, although the absolute magnitudes of these306

diffusivities do not overly affect the results. A linear regression on De = f(Dc) yields a slope of 10.8, with307

an adjusted R2 value of 0.85. Also unsurprisingly, first-order methane loss terms kc and ke are inversely308

correlated in order to preserve mass balance in time. The range in the ratio of ke/kc is 1.01 to 3.21 having309

mean value 1.46, with the overall best scenarios in terms of error coming out of ratios close to unity. A310

linear regression on ke = f(kc) yields a slope of -1.1, with an adjusted R2 value of 0.67.311

7.4.2. Fracture Density 0.02%312

The candidate solution space contains diffusion coefficient values such that range of the ratio of De/Dc313

is between 848 and 873 (Figure S24), with a mean value of 862. A linear regression on De = f(Dc) yields314

a slope of 9.91, with an adjusted R2 value of 1.00. The range in the ratio of ke/kc is 1.00 to 1.52 having315

mean value 1.12, with the overall best scenarios in terms of error coming out of ratios close to unity.316

First-order methane loss terms kc and ke do not have a clear linear correlation.317
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7.4.3. Fracture Density 0.035%318

The candidate solution space for the case where fracture density is 0.035% contains diffusion coefficient319

values such that range of the ratio De/Dc is between 469 and 994 (Figure S26), with a mean value of 729.320

We initially provided bounds to the algorithm for this ratio of 1 ≤ De/Dc ≤ 1000, so the atmospheric321

mixing model apparently favors comparatively large daytime eddy diffusivities compared to those during322

the collapsed state. A linear regression on De = f(Dc) yields a slope of 9.5, with an adjusted R2 value323

of 0.95. Also unsurprisingly, first-order methane loss terms kc and ke are inversely correlated (though to324

a lesser degree than in the fracture density 0.01$ case) in order to preserve mass balance in time. The325

range in the ratio of ke/kc is 1.02 to 1.66, having mean value 1.22, with the overall best scenarios in terms326

of error coming out of ratios close to unity. A linear regression on ke = f(kc) yields a slope of -0.48, with327

an adjusted R2 value of 0.27.328
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Figure S1. Spectral decomposition of the elevation-corrected barometric pressure data

collected by Curiosity rover through mission sol 2713: (top) barometric record time series

with data gaps filled using the procedure outlined previously; (middle) spectral decom-

position of the barometric record into its associated amplitude/period pairs, showing the

relative strength of each periodic component; (bottom) zoomed in portion of the spectral

decomposition to highlight the roughly diurnal barometric component.
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Figure S2. Spectral decomposition of the ambient temperature data collected by Cu-

riosity : (top) temperature record time series; (middle) spectral decomposition of the tem-

perature record into its associated amplitude/period pairs, showing the relative strength

of each periodic component; (bottom) zoomed in portion of the spectral decomposition

to highlight the roughly diurnal temperature component.
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Figure S3. Generated synthetic pressures compared to elevation-corrected observed

pressures for the first four Mars years of the MSL mission. (Top) The 1-year synthetic

pressures repeated to match the extent of the observed pressures. (Bottom) Zooming in

on a 10-sol segment of the barometric record to illustrate diurnal variations.
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Figure S4. Generated synthetic surface temperatures compared to observed tempera-

tures for the first four Mars years of the MSL mission. (Top) The 1-year synthetic tem-

peratures repeated to match the extent of the observed temperatures. (Bottom) Zooming

in on a 10-sol segment of the barometric record to illustrate diurnal variations.
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Figure S5. Schematic of the simple heat conduction verification problem set up in

FEHM.
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Figure S6. Results of the simulated simple heat conduction verification problem

compared to the corresponding analytical solution.
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Figure S7. Comparison of simulated to analytical subsurface oscillatory thermal wave

propagation.
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Figure S8. Comparison of subsurface temperature oscillations in purely conductive and

conductive-convective regimes. The difference in subsurface temperatures is negligible due

to the low density of CO2 gas in Mars’ atmosphere.
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Figure S9. Difference between subsurface temperatures in time for convective and

conductive heat flow using diurnal forcing. Results indicate very small differences in

temperatures.
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Figure S10. Schematic of the implementation of the diffusive atmospheric mixing

model. (a) Delineation of the modeled atmospheric transport variables Dn and kn based

on PBL state change, where subscript n represents either c or e to indicate collapsed or

expanded PBL states, respectively. PBL time series shown is representative of N. Summer,

and varies throughout the Mars year in 30◦ Ls increments according to Newman et al.

(2017). Transition from collapsed to expanded-state conditions is demarcated by PBL

height cross threshold column height hthresh. (b) Illustration showing the transition of

initial state of the vertical concentration profile C(z) in the model for an expanding PBL

column (i.e., going from collapsed to expanded state). Total CH4 mass in the atmospheric

column is conserved during this transition.
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Figure S11. Surface methane fluxes induced by a large dust devil detected by MSL-

REMS. Duration of the pressure drop was 25 s, with a drop in pressure (∆P ) of 5 Pa.
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Figure S12. Examples of macroscopic surface fractures at Gale crater photographed

by Curiosity ’s Mastcam. (Top) A view of a patch of veined, flat-lying rock selected as the

first drilling site for Curiosity, taken on sol 153 in the Yellowknife Bay geologic formation.

Three boxes, each about 10 cm across, designate enlargements illustrating attributes of

the area: (a) a high concentration of ridge-like veins protruding above the surface, with

some veins having two walls and an eroded interior; (b) a horizontal discontinuity a few

centimeters beneath the surface, which may be a bed, a fracture, or a horizontal vein; (c)

a hole developed in the sand overlying a fracture, which implies a shallow infiltration of

sand down into the fracture system. (Bottom) mosaic of the area, called “John Klein”,

where the rover performed its first sample drilling. Surface expression of these fractures

show apertures on the scale of 1-2 cm, with most of the fracture volume occupied by un-

consolidated material filling. Image credits: (top) NASA/JPL-Caltech/MSSS; (bottom)

NASA/JPL-Caltech/MSSS.
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Using entire frame:
total area:  251.531 cm2
fractures:  0.245 cm2
fracture density (areal):   0.00097 (~0.1%)

Using frame of just the fractured area:
total area: 180.142 cm2
fractures:  0.245 cm2
fracture density (areal):   0.00136 (0.1%)

Figure S13. Fracture trace method used to approximate the areal “fracture density”

of Mars’ subsurface, applied to a Mastcam-34 mosaic (Kronyak et al., 2019) of the Gar-

den City vein (mineral-filled fracture) complex at Gale crater. Centimeter-thick sandwich

veins comprise the positive-relief intersecting network. Note that annotated areal dimen-

sions are based on screen dimensions rather than the physical outcrop.
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Figure S14. “Best” scenario atmospheric methane abundance and surface flux for

scenario with fracture density 0.0%. (Top) Comparison of simulated (gray) to measured

(circles) atmospheric methane abundance values plotted against solar longitude, Ls [◦].

Night-time averages of the simulated abundance (thick black line) is plotted to aid visual-

ization because of the large diurnal variations present (gray band). Measured abundances

are from Webster et al. (2021). Note that some measurements were taken in different Mars

years. (Bottom) Surface methane fluxes generated by barometric pumping over the same

time period. These surface fluxes are input to the coupled atmospheric mixing model to

generate the atmospheric mixing ratios above.
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Figure S15. Same as Figure S14, but for fracture density 0.001%.
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Figure S16. Same as Figure S14, but for fracture density 0.005%.
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Figure S17. Composite of atmospheric methane abundance simulations for end-member

scenarios analyzed for the case with fracture density 0.020%. Panel letters a-d correspond

to lettering of atmospheric transport parameter end-member scenarios. Panel e is the

“best” fitting scenario, and panel f is the surface methane flux. Comparison of simulated

(gray) to measured (circles) atmospheric methane abundance values plotted against solar

longitude, Ls [◦]. Night-time averages of the simulated abundance (thick black line) is

plotted to aid visualization because of the large diurnal variations present (gray band).

Measured abundances are from Webster et al. (2021). Note that some measurements were

collected in different Mars years.
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Figure S18. Same as in Figure S17, but for the case with fracture density 0.035%.
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Figure S19. Composite of atmospheric mixing end-member scenarios simulating at-

mospheric methane abundance for the case with fracture density 0.020%. Panels a-e

compare simulated (stars, lines) to measured (circles) atmospheric abundance values in

local time, LMST, for Northern Summer, which highlights the day-night difference in

abundance largely caused by the elevated planetary boundary layer (PBL) height hPBL.

Simulated abundances of the sols with non-detections are indicated by dashed lines. Mea-

sured abundances from Webster et al. (2021). Note that all measurements were taken

on different sols and, in some cases, different Mars years, with the solar longitude, Ls [
◦]

of the measurement indicated on the plot by its color. Panel letters a-d correspond to

lettering of end-member scenarios. Panel e is the “best” fitting scenario, and panel f is the

surface methane flux. Surface flux in local time (solid and dashed lines as above) plotted

against PBL height (dotted line). Atmospheric pressure (blue line) is plotted without

visible scale, but the minimum and maximum values shown are approximately 703 and

781 Pa, respectively. The pressure time series shown is from Ls = 120.7◦; pressures on

the dates of the other measurements are different but similar in shape.
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Figure S20. Same as in Figure S19, but for the case with fracture density 0.035%.



31

log(Dc )

−1.0
−0.5

0.0
0.5

1.0

log
(D

e)

1.5

2.0

2.5

3.0

3.5

lo
g(

k e
/k

c)

0.0

0.1

0.2

0.3

0.4

0.5

Subset Parameter Space (w/in 0.5 of min(χ2
ν) )

2.2

2.3

2.4

2.5

2.6
E

rror,
χ

2ν

Figure S21. Candidate solution parameter space for the case with fracture density

0.010%.
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Figure S22. Comparison of individual atmospheric mixing parameters within the

candidate solution parameter space for fracture density 0.010%.
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Figure S23. Candidate solution parameter space for the case with fracture density

0.020%.
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Figure S24. Comparison of individual atmospheric mixing parameters within the

candidate solution parameter space for fracture density 0.020%.
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Figure S25. Candidate solution parameter space for the case with fracture density

0.035%.
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Figure S26. Comparison of individual atmospheric mixing parameters within the

candidate solution parameter space for fracture density 0.035%.


