REFERENCES
Balasingham K. D., Walter R. P., Mandrak N. E., Heath D. D. J. M. E.,
2018. Environmental DNA detection of rare and invasive fish species in
two Great Lakes tributaries. 27, 112-127.
Barbour M. T., Gerritsen J., Snyder B., Stribling J. Rapid bioassessment
protocols for use in streams and wadeable rivers. Washington, USA:
USEPA, 1999.
Beng K. C., Corlett R. T., 2020. Applications of environmental DNA
(eDNA) in ecology and conservation: opportunities, challenges and
prospects. Biodiversity and Conservation, 29, 2089-2121.
Bernos T. A., Yates M. C., Docker M. F., Fitzgerald A., Hanner R., Heath
D., et al., 2023. Environmental DNA (eDNA) applications in freshwater
fisheries management and conservation in Canada: overview of current
challenges and opportunities. Canadian Journal of Fisheries and Aquatic
Sciences, 80, 1170-1186.
Borcard D., Gillet F., Legendre P. Numerical ecology with R. New York,
USA: Springer, 2011.
Bylemans J., Gleeson D. M., Duncan R. P., Hardy C. M., Furlan E. M.,
2019. A performance evaluation of targeted eDNA and eDNA metabarcoding
analyses for freshwater fishes. Environmental DNA, 1, 402-414.
Civade R., Dejean T., Valentini A., Roset N., Raymond J.-C., Bonin A.,
et al., 2016. Spatial representativeness of environmental DNA
metabarcoding signal for fish biodiversity assessment in a natural
freshwater system. PLOS ONE, 11, e0157366.
Doi H., Inui R., Akamatsu Y., Kanno K., Yamanaka H., Takahara T., et
al., 2017. Environmental DNA analysis for estimating the abundance and
biomass of stream fish. Freshwater Biology, 62, 30-39.
Flotemersch J. E., Stribling J. B., Paul M. J. Concepts and Approaches
for the Bioassessment of Non-wadeable Streams and Rivers. Cincinnati,
Ohio, USA: Office of Research and Development, USEPA, 2006.
Garlapati D., Charankumar B., Ramu K., Madeswaran P., Ramana Murthy M.
V., 2019. A review on the applications and recent advances in
environmental DNA (eDNA) metagenomics. Reviews in Environmental Science
and Bio/Technology, 18, 389-411.
Hauer F. R., Lamberti G. A. Methods in Stream Ecology. London, UK:
Academic Press, 2007.
Kumar G., Reaume A. M., Farrell E., Gaither M. R., 2022. Comparing eDNA
metabarcoding primers for assessing fish communities in a biodiverse
estuary. PLoS One, 17, e0266720.
Lacoursière-Roussel A., Côté G., Leclerc V., Bernatchez L., 2016.
Quantifying relative fish abundance with eDNA: a promising tool for
fisheries management. Journal of Applied Ecology, 53, 1148-1157.
Liu C., Cui Y., Li X., Yao M., 2021. microeco: an R package for data
mining in microbial community ecology. FEMS Microbiology Ecology, 97,
fiaa255.
Magoč T., Salzberg S. L., 2011. FLASH: fast length adjustment of short
reads to improve genome assemblies. Bioinformatics, 27, 2957-63.
Miya M., Sato Y., Fukunaga T., Sado T., Poulsen J. Y., Sato K., et al.,
2015. MiFish, a set of universal PCR primers for metabarcoding
environmental DNA from fishes: detection of more than 230 subtropical
marine species. Royal Society Open Science, 2.
Nguyen B. N., Shen E. W., Seemann J., Correa A. M. S., O’Donnell J. L.,
Altieri A. H., et al., 2020. Environmental DNA survey captures patterns
of fish and invertebrate diversity across a tropical seascape.
Scientific Reports, 10, 6729.
Pont D., Rocle M., Valentini A., Civade R., Jean P., Maire A., et al.,
2018. Environmental DNA reveals quantitative patterns of fish
biodiversity in large rivers despite its downstream transportation.
Scientific Reports, 8, 10361.
Port J. A., O’Donnell J. L., Romero-Maraccini O. C., Leary P. R., Litvin
S. Y., Nickols K. J., et al., 2016. Assessing vertebrate biodiversity in
a kelp forest ecosystem using environmental DNA. Mol Ecol, 25, 527-41.
Rognes T., Flouri T., Nichols B., Quince C., Mahé F., 2016. VSEARCH: a
versatile open source tool for metagenomics. PeerJ, 4, e2584.
Rourke M. L., Fowler A. M., Hughes J. M., Broadhurst M. K., DiBattista
J. D., Fielder S., et al., 2022. Environmental DNA (eDNA) as a tool for
assessing fish biomass: A review of approaches and future considerations
for resource surveys. Environmental DNA, 4, 9-33.
Sakata M. K., Watanabe T., Maki N., Ikeda K., Kosuge T., Okada H., et
al., 2020. Determining an effective sampling method for eDNA
metabarcoding: a case study for fish biodiversity monitoring in a small,
natural river. Limnology.
Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W.
S., et al., 2011. Metagenomic biomarker discovery and explanation.
Genome Biology, 12, 1-18.
Shu L., Ludwig A., Peng Z., 2021. Environmental DNA metabarcoding
primers for freshwater fish detection and quantification: In silico and
in tanks. Ecology and Evolution, 11, 8281-8294.
Stewart K. A., 2019. Understanding the effects of biotic and abiotic
factors on sources of aquatic environmental DNA. Biodiversity and
Conservation, 28, 983-1001.
Stoeckle M. Y., Lyubov S., Zachary C. P., Hideyuki D., 2017. Aquatic
environmental DNA detects seasonal fish abundance and habitat preference
in an urban estuary. Plos One, 12, e0175186.
Wang S., Luo B.-K., Qin Y.-J., Zhao J.-G., Wang T.-T., Stewart S. D., et
al., 2020a. Fish isotopic niches associated with environmental
indicators and human disturbance along a disturbed large subtropical
river in China. Science of The Total Environment, 750, 141667.
Wang S., Su L.-H., Luo B.-K., Qin Y.-J., Stewart S. D., Tang J.-P., et
al., 2020b. Stable isotopes reveal effects of natural drivers and
anthropogenic pressures on isotopic niches of invertebrate communities
in a large subtropical river of China. Environmental Science and
Pollution Research, 27, 36132-36146.
Wang S., Tang J.-P., Su L.-H., Fan J.-J., Chang H.-Y., Wang T.-T., et
al., 2019a. Fish feeding groups, food selectivity, and diet shifts
associated with environmental factors and prey availability along a
large subtropical river, China. Aquatic Sciences, 81, 31.
Wang S., Wang L., Chang H.-Y., Li F., Tang J.-P., Zhou X.-A., et al.,
2018a. Longitudinal variation in energy flow networks along a large
subtropical river, China. Ecological Modelling, 387, 83-95.
Wang S., Wang L., Zheng Y., Chen Z.-B., Yang Y., Lin H.-J., et al.,
2019b. Application of mass-balance modelling to assess the effects of
ecological restoration on energy flows in a subtropical reservoir,
China. Science of The Total Environment, 664, 780-792.
Wang S., Wang T.-T., Lin H.-J., Stewart S. D., Cheng G., Li W., et al.,
2021a. Impacts of environmental factors on the food web structure,
energy flows, and system attributes along a subtropical urban river in
southern China. Science of The Total Environment, 794, 148673.
Wang S., Wang T.-T., Tang J.-P., Wang L., Yang Y., Lin H.-J., et al.,
2018b. Longitudinal variation in fish prey utilization, trophic guilds,
and indicator species along a large subtropical river, China. Ecology
and Evolution, 8, 11467-11483.
Wang S., Wang T.-T., Xia W.-T., Chen Z.-B., Stewart S. D., Yang F.-J.,
et al., 2021b. Longitudinal pattern of resource utilization by aquatic
consumers along a disturbed subtropical urban river: Estimating the
relative contribution of resources with stable isotope analysis. Ecology
and Evolution, 11, 16763-16775.
Wang T.-T., Wang X.-D., Wang D.-Y., Fan S.-D., Wang S., Chen Z.-B., et
al., 2023. Aquatic invertebrate diversity profiling in heterogeneous
wetland habitats by environmental DNA metabarcoding. Ecological
Indicators, 150, 110126.
Yao M., Zhang S., Lu Q., Chen X., Zhang S. Y., Kong Y., et al., 2022.
Fishing for fish environmental DNA: Ecological applications,
methodological considerations, surveying designs, and ways forward. Mol
Ecol, 31, 5132-5164.
Zhang S., Lu Q., Wang Y., Wang X., Zhao J., Yao M., 2020. Assessment of
fish communities using environmental DNA: Effect of spatial sampling
design in lentic systems of different sizes. Molecular Ecology
Resources, 20, 242-255.
Zou K., Chen J., Ruan H., Li Z., Guo W., Li M., et al., 2020. eDNA
metabarcoding as a promising conservation tool for monitoring fish
diversity in a coastal wetland of the Pearl River Estuary compared to
bottom trawling. Science of the Total Environment, 702, 134704.