References
Batten, K. M., et al. 2006. Two invasive plants alter soil microbial
community composition in serpentine grasslands. - Biol. Invasions 8:
217-230.
Bennett, J. A. and Klironomos, J. 2019. Mechanisms of plant–soil
feedback: interactions among biotic and abiotic drivers. - New Phytol.
222: 91-96.
Bürkner, P. C. 2017. brms: An R Package for Bayesian Multilevel Models
Using Stan. - Journal of Statistical Software 80.
Callaway, R. M., et al. 2013. Native congeners provide biotic resistance
to invasive Potentilla through soil biota. - Ecology 94: 1223-1229.
Callaway, R. M., et al. 2004. Soil biota and exotic plant invasion. -
Nature 427: 731-733.
Casper, B. B. and Jackson, R. B. 1997. Plant competition underground. -
Annu. Rev. Ecol. Syst. 28: 545-570.
Davis, E. J. 2018. A Widespread Nitrogen-fixing Invader Experiences
Negative Soil Feedbacks Despite Increased Root Nodulation and
Mycorrhizal Colonization.
Day, N. J., et al. 2015. Temporal dynamics of plant–soil feedback and
root‐associated fungal communities over 100 years of invasion by a
non‐native plant. - J. Ecol. 103: 1557-1569.
Diez, J. M., et al. 2010. Negative soil feedbacks accumulate over time
for non-native plant species. - Ecol. Lett. 13: 803-809.
Dostál, P., et al. 2013. The impact of an invasive plant changes over
time. - Ecol. Lett. 16: 1277-1284.
Dukes, J. S. and Mooney, H. A. 1999. Does global change increase the
success of biological invaders? - Trends Ecol. Evol. 14: 135-139.
Kawecki, T. J. and Ebert, D. 2004. Conceptual issues in local
adaptation. - 7: 1225-1241.
Keane, R. M. and Crawley, M. J. 2002. Exotic plant invasions and the
enemy release hypothesis. - Trends Ecol. Evol. 17: 164-170.
Lankau, R. A. 2011. Resistance and recovery of soil microbial
communities in the face of Alliaria petiolata invasions. - New
Phytol. 189: 536-548.
Lau, J. A. and Suwa, T. J. B. I. 2016. The changing nature of
plant–microbe interactions during a biological invasion. - Biol.
Invasions 18: 3527-3534.
Lewis, S. L. and Maslin, M. A. 2015. Defining the Anthropocene. - Nature
519: 171-180.
Liu, Y., et al. 2023. Invaders responded more positively to soil biota
than native or noninvasive introduced species, consistent with enemy
escape. - Biol. Invasions 25: 351-364.
Ma, J. S. and Li, H. R. 2018. The Checklist of the Alien Invasive Plants
in China.
Maron, J. L., et al. 2011. Soil fungal pathogens and the relationship
between plant diversity and productivity. - Ecol. Lett. 14: 36-41.
McGinn, K. J., et al. 2018. The influence of residence time and
geographic extent on the strength of plant–soil feedbacks for
naturalised Trifolium. - J. Ecol. 106: 207-217.
Mitchell, C. E., et al. 2010. Controls on pathogen species richness in
plants’ introduced and native ranges: roles of residence time, range
size and host traits. - Ecol. Lett. 13: 1525-1535.
Packer, A. and Clay, K. 2003. Soil pathogens and Prunus serotianseedling and sapling growth near conspecific trees. - Ecology 84:
108-119.
Poorter, H. and Nagel, O. 2000. The role of biomass allocation in the
growth response of plants to different levels of light, CO2, nutrients
and water: a quantitative review. - Funct. Plant Biol. 27: 1191-1191.
Pyšek, P., et al. 2020. MAcroecological Framework for Invasive Aliens
(MAFIA): disentangling large-scale context dependence in biological
invasions. - NeoBiota.
R Core Team. (2020). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
Reinhart, K. O. and Callaway, R. M. 2006. Soil biota and invasive
plants. - New Phytol. 170: 445-457.
Reinhart, K. O., et al. 2003. Plant–soil biota interactions and spatial
distribution of black cherry in its native and invasive ranges. - Ecol.
Lett. 6: 1046-1050.
Reinhart, K. O., et al. 2010. Virulence of soil-borne pathogens and
invasion by Prunus serotina . - New Phytol. 186: 484-495.
Schad, D. J., et al. 2020. How to capitalize on a priori contrasts in
linear (mixed) models: A tutorial. - Journal of Memory and Language 110:
104038.
Schaffner, U., et al. 2020. Biological weed control to relieve millions
from Ambrosia allergies in Europe. - Nature Communications 11:
1745.
Seebens, H., et al. 2020. Projecting the continental accumulation of
alien species through to 2050. - Global Change Biol. 27: 970-982.
Seifert, E. K., et al. 2009. Evidence for the evolution of reduced
mycorrhizal dependence during plant invasion. - Ecology 90: 1055-1062.
Stricker, K. B., et al. 2016. Emergence and accumulation of novel
pathogens suppress an invasive species. - Ecol. Lett. 19: 469-477.
Tian, B., et al. 2021. Increasing flavonoid concentrations in root
exudates enhance associations between arbuscular mycorrhizal fungi and
an invasive plant. - The ISME Journal 15: 1919-1930.
van Kleunen, M., et al. 2010. A meta-analysis of trait differences
between invasive and non-invasive plant species. - Ecol. Lett. 13:
235-245.
Vilà, M., et al. 2011. Ecological impacts of invasive alien plants: a
meta-analysis of their effects on species, communities and ecosystems. -
Ecol. Lett. 14: 702-708.
Zhang, X., et al. 2022. Invasive plants have greater growth than
co‐occurring natives in live soil subjected to a drought‐rewetting
treatment. - Funct. Ecol. 37: 513-522.
Zhang, Z., et al. 2020. Soil-microorganism-mediated invasional meltdown
in plants. - Nature Ecology & Evolution 4: 1612-1621.
Tables
Table 1 Output of the Bayesian multilevel models testing
effects of plant invasion status (invasive vs native), soil (livevs sterilized), harvest time (first vs second) treatments,
and their interactions on total biomass and root mass fraction of four
pairs of invasive and native plants. Shown are the model estimates and
standard errors (SE), as well as the lower (L) and upper (U) values of
the 95% and 90% credible intervals (CI).