References

Batten, K. M., et al. 2006. Two invasive plants alter soil microbial community composition in serpentine grasslands. - Biol. Invasions 8: 217-230.
Bennett, J. A. and Klironomos, J. 2019. Mechanisms of plant–soil feedback: interactions among biotic and abiotic drivers. - New Phytol. 222: 91-96.
Bürkner, P. C. 2017. brms: An R Package for Bayesian Multilevel Models Using Stan. - Journal of Statistical Software 80.
Callaway, R. M., et al. 2013. Native congeners provide biotic resistance to invasive Potentilla through soil biota. - Ecology 94: 1223-1229.
Callaway, R. M., et al. 2004. Soil biota and exotic plant invasion. - Nature 427: 731-733.
Casper, B. B. and Jackson, R. B. 1997. Plant competition underground. - Annu. Rev. Ecol. Syst. 28: 545-570.
Davis, E. J. 2018. A Widespread Nitrogen-fixing Invader Experiences Negative Soil Feedbacks Despite Increased Root Nodulation and Mycorrhizal Colonization.
Day, N. J., et al. 2015. Temporal dynamics of plant–soil feedback and root‐associated fungal communities over 100 years of invasion by a non‐native plant. - J. Ecol. 103: 1557-1569.
Diez, J. M., et al. 2010. Negative soil feedbacks accumulate over time for non-native plant species. - Ecol. Lett. 13: 803-809.
Dostál, P., et al. 2013. The impact of an invasive plant changes over time. - Ecol. Lett. 16: 1277-1284.
Dukes, J. S. and Mooney, H. A. 1999. Does global change increase the success of biological invaders? - Trends Ecol. Evol. 14: 135-139.
Kawecki, T. J. and Ebert, D. 2004. Conceptual issues in local adaptation. - 7: 1225-1241.
Keane, R. M. and Crawley, M. J. 2002. Exotic plant invasions and the enemy release hypothesis. - Trends Ecol. Evol. 17: 164-170.
Lankau, R. A. 2011. Resistance and recovery of soil microbial communities in the face of Alliaria petiolata invasions. - New Phytol. 189: 536-548.
Lau, J. A. and Suwa, T. J. B. I. 2016. The changing nature of plant–microbe interactions during a biological invasion. - Biol. Invasions 18: 3527-3534.
Lewis, S. L. and Maslin, M. A. 2015. Defining the Anthropocene. - Nature 519: 171-180.
Liu, Y., et al. 2023. Invaders responded more positively to soil biota than native or noninvasive introduced species, consistent with enemy escape. - Biol. Invasions 25: 351-364.
Ma, J. S. and Li, H. R. 2018. The Checklist of the Alien Invasive Plants in China.
Maron, J. L., et al. 2011. Soil fungal pathogens and the relationship between plant diversity and productivity. - Ecol. Lett. 14: 36-41.
McGinn, K. J., et al. 2018. The influence of residence time and geographic extent on the strength of plant–soil feedbacks for naturalised Trifolium. - J. Ecol. 106: 207-217.
Mitchell, C. E., et al. 2010. Controls on pathogen species richness in plants’ introduced and native ranges: roles of residence time, range size and host traits. - Ecol. Lett. 13: 1525-1535.
Packer, A. and Clay, K. 2003. Soil pathogens and Prunus serotianseedling and sapling growth near conspecific trees. - Ecology 84: 108-119.
Poorter, H. and Nagel, O. 2000. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. - Funct. Plant Biol. 27: 1191-1191.
Pyšek, P., et al. 2020. MAcroecological Framework for Invasive Aliens (MAFIA): disentangling large-scale context dependence in biological invasions. - NeoBiota.
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Reinhart, K. O. and Callaway, R. M. 2006. Soil biota and invasive plants. - New Phytol. 170: 445-457.
Reinhart, K. O., et al. 2003. Plant–soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. - Ecol. Lett. 6: 1046-1050.
Reinhart, K. O., et al. 2010. Virulence of soil-borne pathogens and invasion by Prunus serotina . - New Phytol. 186: 484-495.
Schad, D. J., et al. 2020. How to capitalize on a priori contrasts in linear (mixed) models: A tutorial. - Journal of Memory and Language 110: 104038.
Schaffner, U., et al. 2020. Biological weed control to relieve millions from Ambrosia allergies in Europe. - Nature Communications 11: 1745.
Seebens, H., et al. 2020. Projecting the continental accumulation of alien species through to 2050. - Global Change Biol. 27: 970-982.
Seifert, E. K., et al. 2009. Evidence for the evolution of reduced mycorrhizal dependence during plant invasion. - Ecology 90: 1055-1062.
Stricker, K. B., et al. 2016. Emergence and accumulation of novel pathogens suppress an invasive species. - Ecol. Lett. 19: 469-477.
Tian, B., et al. 2021. Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant. - The ISME Journal 15: 1919-1930.
van Kleunen, M., et al. 2010. A meta-analysis of trait differences between invasive and non-invasive plant species. - Ecol. Lett. 13: 235-245.
Vilà, M., et al. 2011. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. - Ecol. Lett. 14: 702-708.
Zhang, X., et al. 2022. Invasive plants have greater growth than co‐occurring natives in live soil subjected to a drought‐rewetting treatment. - Funct. Ecol. 37: 513-522.
Zhang, Z., et al. 2020. Soil-microorganism-mediated invasional meltdown in plants. - Nature Ecology & Evolution 4: 1612-1621.
Tables
Table 1 Output of the Bayesian multilevel models testing effects of plant invasion status (invasive vs native), soil (livevs sterilized), harvest time (first vs second) treatments, and their interactions on total biomass and root mass fraction of four pairs of invasive and native plants. Shown are the model estimates and standard errors (SE), as well as the lower (L) and upper (U) values of the 95% and 90% credible intervals (CI).