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Summary

In this article, a model-free parallel reinforcement learning method is proposed to
solve the suboptimal control problem for the Markov jump singularly perturbed
systems. First, since fast and slow dynamics coexist in Markov jump singularly
perturbed systems, it may lead to ill-conditioned numerical problems during the
controller design process. Therefore, the original system can be decomposed into
independent subsystems at different time-scales by employing the reduced order
method. Besides, a model-based parallel algorithm is designed to obtain the opti-
mal controllers of the fast and slow subsystems respectively. Moreover, within the
framework of reinforcement learning, the composite controller of the Markov jump
singularly perturbed systems can be obtained without system dynamics. Finally, a
numerical example is introduced to prove the effectiveness of proposed algorithms.
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1 INTRODUCTION

In the past several decades, singularly perturbed systems (SPSs) have attracted much attention due to their powerful capability
to model multi-timescale phenomena1,2,3. Such as robot systems4,5,6, energy and power systems7,8,9,10, mechanical systems11,12,
engineering and physics systems13,14. Since some small parasitic parameters inevitably exist in the engineering field, it usually
leads to the coexistence of slow and fast time-scales in SPSs, which may bring an ill-conditional numerical problem. In order
to eliminate the above problem, the singularly perturbed theory (SPT) was introduced. One is the adopted time-scale separation
technique (TSST), which decomposes the original system into pure fast and pure slow subsystems, then the composite controller
for the original system was designed15,16. Compared with the conventional full-order method, this reduced-order method can
save learning time17. Besides, in18, the authors converted the original system algebraic Riccati equations (AREs) into two
asymmetric fast and slow AREs to solve the optimal control for SPSs. Then, the authors in19 provided a new idea for solving
the optimal control problem of the SPSs based on the eigenvector method, which decomposed AREs by employing Newton
iterative approximation of the original equation solution. However, due to the change of internal parameters and the influence
of the external environment, the system dynamics will inevitably change. Subsequently, the Markov jump systems (MJSs) were
developed to describe the system of state changes.

MJSs as a special stochastic system can be used to describe a class of systems with abrupt variations, such as power systems,
economic systems, and communication systems20,21,22. Recently, MJSs have been extensively investigated and have yielded a
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series of notable results23,24,25,26,27. The characteristic of MJSs is that the jumping between different modes obeys the Markov
process28,29. To study the characteristics of the SPSs and the MJSs simultaneously, the Markov jump singularly perturbed sys-
tems (MJSPSs) have attracted considerable attention. In30, a class of parallel algorithms was proposed to deal with optimal
control problem MJSPSs with arbitrary order precision. Moreover, in31,32, the fuzzy 𝐻∞ control problem was solved for nonlin-
ear MJSPSs with partial information. After that, in33, the 𝐻∞ control and filtering problems for nonlinear MJSPSs approximated
by Takagi-Sugeno fuzzy models were addressed. However, the results mentioned above are acquired that the system dynamics
are known or partially known. It is obvious that this condition is tough in many practical applications.

To overcome the limitation mentioned above, reinforcement learning (RL) was introduced to solve the optimal controller
design with unknown or partially unknown system dynamics34,35,36,37,38. The authors in39 developed an integral RL method to
deal with the optimal control problem of continuous-time systems with partial system dynamics. On this basis, in40, a model-
free RL algorithm was proposed to remove the assumption that the dynamic information of the system is partially unknown. In
addition, in41, an adaptive composite control method was proposed for SPSs with unknown slow dynamics by using SPT and RL
approach. Afterwards, in42, a novel model-free off-policy learning algorithm for semi-coupled SPSs with completely unknown
dynamics was proposed. Furthermore, in43, a composite controller was designed with unknown slow dynamics for the MJSPSs
by the RL method. It is worth noting that the system dynamics of the fast-subsystems in43 are assumed to be known, which
is not practical in some real-world situations. Inspired by the above discussions, this article focuses on solving the suboptimal
control problem for the MJSPSs with unknown system dynamics.

The contributions of this paper can be mainly concluded as follows
(1) As the first attempt, the composite controller design problem of linear continuous-time MJSPSs with unknown system

dynamics is solved by employing the RL method.
(2) Based on the reduced order method, the composite controller of MJSPSs can be approximated by combining the optimal

controllers for subsystems of two time-scales.
(3) The accuracy of the composite control solution method proposed in this paper is also demonstrated.
This paper has the following specific organization. Section 2 introduces the system description, problem description as well as

system decomposition of this paper. In section 3, the optimal controllers of fast-subsystems and slow-subsystems are designed
by the proposed model-free algorithms, respectively. Besides, the composite controller is obtained by combining the above
optimal controllers. In section 4, a numerical example is presented to prove the convergence and effectiveness of the proposed
algorithms. Section 5, the conclusion of this paper is presented.
𝐍𝐨𝐭𝐚𝐭𝐢𝐨𝐧 ∶𝑅𝑛 indicates an n-dimensional real matrix. 𝐸 {⋅} represents the mathematical expectation of stochastic processes.

⊗ stands for the Kronecker product. ‖⋅‖ represents the Euclidean norm of vectors. For 𝐻 ∈ 𝑅𝑛×𝑚, 𝑣𝑒𝑐(𝐻) = [ℎ𝑇
1 ℎ𝑇

2 ⋯ ℎ𝑇
𝑚]

𝑇 ,
where ℎ𝑖 ∈ 𝑅𝑛 means the 𝑖th column of the matrix 𝐻 . For 𝐵 ∈ 𝑅𝑚×𝑚, 𝐵′ =

[

𝑏11, 2𝑏12, 𝑏22,… , 2𝑏𝑚1, 2𝑏𝑚2,… , 𝑏𝑚𝑚
]𝑇 . 𝐼𝑝 ∈ 𝑅𝑝×𝑝

means an identity matrix.

2 PROBLEM FORMULATION

2.1 System Description
Consider a class of continuous-time MJSPSs modeled by

𝑥̇1 (𝜌) = 𝐴11 (𝑠 (𝜌)) 𝑥1 (𝜌) + 𝐴12 (𝑠 (𝜌)) 𝑥2 (𝜌) (1)
𝛾𝑥̇2 (𝜌) = 𝐴22 (𝑠 (𝜌)) 𝑥2 (𝜌) + 𝐵2 (𝑠 (𝜌)) 𝑢 (𝜌) (2)
𝑦 (𝜌) = 𝐶1 (𝑠 (𝜌)) 𝑥1 (𝜌) + 𝐶2 (𝑠 (𝜌)) 𝑥2 (𝜌) (3)

with the transition probabilities

Pr {𝑠 (𝜌 + Δ𝜌) = 𝛽 ∣ 𝑠 (𝜌) = 𝛼} =

{

𝜋𝛼𝛽Δ𝜌 + 𝑜 (Δ𝜌) (𝛼 ≠ 𝛽)
1 + 𝜋𝛼𝛼Δ𝜌 + 𝑜 (Δ𝜌) (𝛼 = 𝛽)

where 𝑥1 (𝜌) ∈ 𝑅𝑛1 and 𝑥2 (𝜌) ∈ 𝑅𝑛2 are the slow and fast state vectors, respectively. 𝑢 (𝜌) ∈ 𝑅𝑚 represents the control
input. 𝑦 (𝜌) ∈ 𝑅𝑝 denotes the control output. 0< 𝛾 ≪ 1 stands for the singularly perturbed parameter (SPP). 𝐴11 (𝑠 (𝜌)) ∈
𝑅𝑛1×𝑛1 , 𝐴12 (𝑠 (𝜌)) ∈ 𝑅𝑛1×𝑛2 , 𝐴22 (𝑠 (𝜌)) ∈ 𝑅𝑛2×𝑛2 , 𝐵2 (𝑠 (𝜌)) ∈ 𝑅𝑛2×𝑚1 , 𝐶1 (𝑠 (𝜌)) ∈ 𝑅𝑝×𝑛1 and 𝐶2 (𝑠 (𝜌)) ∈ 𝑅𝑝×𝑛2 are mode-
independent constant matrices with appropriate dimensions. {𝑠 (𝜌) , 𝜌 ≥ 0} represents the system model subject to Markov
stochastic process, which takes values in a discrete set 𝑀 = {1, 2, ..., 𝑁}. Furthermore, for transition probabilities, 𝛼, 𝛽 ∈ 𝑀 ,
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Δ𝜌 > 0, 𝑙𝑖𝑚Δ𝜌→0
(𝑜(Δ𝜌))
Δ𝜌

= 0, and 𝜋𝛼𝛽 ⩾ 0 represents the system transition rate from mode 𝛼 to mode 𝛽 at time 𝜌 → 𝜌 + Δ𝜌,
with 𝜋𝛼𝛼 = −

∑

𝛼≠𝛽 𝜋𝛼𝛽 . For convenience, assuming that 𝑠 (𝜌) = 𝛼, then 𝐴11 (𝑠 (𝜌)), 𝐴12 (𝑠 (𝜌)), 𝐴22 (𝑠 (𝜌)), 𝐵2 (𝑠 (𝜌)), 𝐶1 (𝑠 (𝜌)),
𝐶2 (𝑠 (𝜌)), 𝑄 (𝑠 (𝜌)), 𝑅 (𝑠 (𝜌)) can be denoted as 𝐴11𝛼 , 𝐴12𝛼 , 𝐴22𝛼 , 𝐵2𝛼 , 𝐶1𝛼 , 𝐶2𝛼 , 𝑄𝛼 , 𝑅𝛼 respectively.

2.2 Problem Description
The mode-dependent optimal control policy for MJSPSs (1)-(3) is written as

𝑢∗(𝜌) = −𝐾∗
𝛼𝑥(𝜌)

which can minimize the performance index in the following

𝐽 (𝑥 (𝜌) , 𝑢 (𝜌)) = 𝐸

⎧

⎪

⎨

⎪

⎩

∞

∫
𝜌

(𝑥𝑇 (𝜎)𝑄𝛼𝑥 (𝜎) + 𝑢𝑇𝛼 (𝜎)𝑅𝛼𝑢𝛼 (𝜎))𝑑𝜎

⎫

⎪

⎬

⎪

⎭

where 𝐾∗
𝛼 refers to the optimal control gain for MJSPSs (1)-(3). 𝑄𝛼 ⩾ 0 and 𝑅𝛼 ⩾ 0 are the mode-dependent positive-definite

weighting matrices with appropriate dimensions.
Before the further presentation, some assumptions are given in below.

Assumption 1. The matrix 𝐴22𝛼 is nonsingular.

Assumption 2. The matrices 𝐴11𝛼 , 𝐴12𝛼 , 𝐴22𝛼 , 𝐵2𝛼 are unknown.

2.3 System Decomposition
For MJSPSs (1)-(3), traditional methods for designing optimal controllers cannot be applied directly due to the existence of
SPP, which may result in ill-conditioned numerical problems. Therefore, under Assumption 1 and Assumption 2, the SPT is
employed to decompose the MJSPSs (1)-(3) into two subsystems based on different time-scales. One is the slow-subsystems and
the other is the fast-subsystems. Then, the optimal controllers of the two subsystems are designed, respectively. Furthermore,
the composite controller of MJSPSs (1)-(3) can be obtained by combining of the subsystems optimal controllers41.

Under Assumption 1, set SPP 𝛾 = 0, then the slow-subsystems can be written as

𝑥̇𝑠 (𝜌) = 𝐴𝑠𝛼𝑥𝑠 (𝜌) + 𝐵𝑠𝛼𝑢𝑠 (𝜌) (4)
𝑦𝑠 (𝜌) = 𝐶𝑠𝛼𝑥𝑠 (𝜌) +𝐷𝑠𝛼𝑢𝑠 (𝜌) (5)

where 𝐴𝑠𝛼 = 𝐴11𝛼 , 𝐵𝑠𝛼 = −𝐴12𝛼𝐴−1
22𝛼𝐵2𝛼 , 𝐶𝑠𝛼 = 𝐶1𝛼 , 𝐷𝑠𝛼 = −𝐶2𝛼𝐴−1

22𝛼𝐵2𝛼 .
For the slow-subsystems, the mode-dependent optimal controller is designed as

𝑢∗𝑠𝛼 (𝜌) = −𝐾∗
𝑠𝛼𝑥𝑠 (𝜌) (6)

which can minimize the performance index as follows

𝐽𝑠𝛼
(

𝑥𝑠 (𝜌) , 𝑢𝑠𝛼 (𝜌)
)

= 𝐸

⎧

⎪

⎨

⎪

⎩

∞

∫
𝜌

(𝑥𝑇𝑠 (𝜎)𝐶𝑇
𝑠𝛼𝐶𝑠𝛼𝑥𝑠 (𝜎) + 2𝑢𝑇𝑠𝛼 (𝜎)𝐷

𝑇
𝑠𝛼𝐶𝑠𝛼𝑥𝑠 (𝜎)

+𝑢𝑇𝑠𝛼 (𝜎)
(

𝑅𝛼 +𝐷𝑇
𝑠𝛼𝐷𝑠𝛼

)

𝑢𝑠𝛼 (𝜎))𝑑𝜎
}

where 𝐾∗
𝑠𝛼 is the optimal control gain for slow-subsystems (4)-(5).

On the other hand, the fast-subsystems can be described as

𝛾𝑥̇𝑓 (𝜌) = 𝐴22𝛼𝑥𝑓 (𝜌) + 𝐵2𝛼𝑢𝑓 (𝜌) (7)
𝑦𝑓 (𝜌) = 𝐶2𝛼𝑥𝑓 (𝜌) (8)

where 𝑥𝑓 (𝜌) = 𝑥2(𝜌) + 𝐴−1
22𝛼𝐵2𝛼𝑢𝑠 (𝜌), 𝑦𝑓 (𝜌) = 𝑦 (𝜌) − 𝑦𝑠 (𝜌).

Furthermore, the mode-dependent optimal controller design for the fast-subsystems is shown below

𝑢∗𝑓𝛼 (𝜌) = −𝐾∗
𝑓𝛼𝑥𝑓 (𝜌) (9)
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which can minimize the performance index in the following

𝐽𝑓𝛼
(

𝑥𝑓 (𝜌) , 𝑢𝑓𝛼 (𝜌)
)

= 𝐸

⎧

⎪

⎨

⎪

⎩

∞

∫
𝜌

(𝑥𝑇𝑓 (𝜎)𝐶𝑇
2𝛼𝐶2𝛼𝑥𝑓 (𝜎) + 𝑢𝑇𝑓𝛼 (𝜎)𝑅𝛼𝑢𝑓𝛼 (𝜎))𝑑𝜎

⎫

⎪

⎬

⎪

⎭

(10)

where 𝐾∗
𝑓𝛼 is the optimal control gain for fast-subsystems (7)-(8).

Therefore, the composite controller of MJSPSs (1)-(3) has the following form

𝑢∗𝑐𝛼(𝜌) = 𝑢∗𝑠𝛼(𝜌) + 𝑢∗𝑓𝛼(𝜌) = −𝐾∗
𝑠𝛼𝑥𝑠(𝜌) −𝐾∗

𝑓𝛼𝑥𝑓 (𝜌). (11)

According to41, Lemma 1 is given to explain the relationship between the original system and decomposit- ion subsystems.

Lemma 1. Assuming that the control policies (6), (9), and (11) are used for systems (4)-(5), (7)-(8), and (1)-(3), respectively.
Moreover, if both 𝐴11𝛼 − 𝐵2𝛼𝐾𝑠𝛼 and 𝐴22𝛼 − 𝐵2𝛼𝐾𝑓𝛼 are asymptotically stable, then all of the following equations hold for
𝜌 ∈ [0,+∞)

𝑥1 (𝜌) = 𝑥𝑠 (𝜌) + 𝑜 (𝛾)
𝑥2 (𝜌) = 𝑥𝑓 (𝜌) + 𝐴−1

22𝛼𝐵2𝛼𝐾𝑠𝛼𝑥𝑠 (𝜌) + 𝑜 (𝛾)
𝑢𝛼(𝜌) = 𝑢𝑠𝛼(𝜌) + 𝑢𝑓𝛼(𝜌) + 𝑜 (𝛾)
𝑦(𝜌) = 𝑦𝑠(𝜌) + 𝑦𝑓 (𝜌) + 𝑜 (𝛾) .

Next section, we will propose different learning methods to design the optimal controllers for the fast and slow subsystems
based on the different characteristics, respectively. Thus, the composite controller of MJSPSs (1)-(3) will be obtained by (11).

3 MAIN RESULTS

In this section, under Assumption 2, two off-policy algorithms are developed for designing optimal controllers for each
subsystem. Furthermore, the convergence of the proposed methods is proved.

3.1 Optimal Controller Design for Slow-subsystems
With unknown system dynamics, an adaptive dynamic programming technique was proposed in41 that can obtain the optimal
controller. However, it is notable that the performance index for the slow-subsystems is different from41, which means that
this method cannot be directly applied. Therefore, a novel learning method that can design the optimal controller of the slow-
subsystems satisfying Assumption 1 is proposed below.

Before proceeding further in the analysis, the following conversion for subsequent calculation is given

𝑣𝑠 (𝜌) = 𝑢𝑠 (𝜌) + (𝑅𝛼 +𝐷𝑇
𝑠𝛼𝐷𝑠𝛼)−1𝐸𝑠𝛼𝑥𝑠 (𝜌)

𝑥̇𝑠(𝜌) = 𝐴𝑠𝑠𝛼𝑥𝑠 (𝜌) + 𝐵𝑠𝛼𝑣𝑠 (𝜌) (12)

where 𝐸𝑠𝛼 = 𝐷𝑇
𝑠𝛼𝐶𝑠𝛼 , 𝐴𝑠𝑠𝛼 = 𝐴𝑠𝛼 − 𝐵𝑠𝛼(𝑅𝛼 +𝐷𝑇

𝑠𝛼𝐷𝑠𝛼)−1𝐸𝑠𝛼 .
For (12), the optimal control policy has the form as

𝑣∗𝑠𝛼 (𝜌) = −𝐺∗
𝑠𝛼𝑥𝑠 (𝜌) = −(𝑅𝛼 +𝐷𝑇

𝑠𝛼𝐷𝑠𝛼)−1𝐵𝑇
𝑠𝛼𝑃

∗
𝑠𝛼𝑥𝑠 (𝜌)

which can minimize the following performance index

𝐽𝑣𝑠𝛼
(

𝑥𝑠 (𝜌) , 𝑣𝑠𝛼 (𝜌)
)

= 𝑬
⎧

⎪

⎨

⎪

⎩

∞

∫
𝜌

[𝑥𝑇𝑠 (𝜎)𝑄𝑠𝑠𝛼𝑥𝑠 (𝜎) + 𝑣𝑇𝑠𝛼 (𝜎) (𝑅𝛼 +𝐷𝑇
𝑠𝛼𝐷𝑠𝛼)𝑣𝑠𝛼 (𝜎)]𝑑𝜎

⎫

⎪

⎬

⎪

⎭

(13)

where
𝑄𝑠𝑠𝛼 = 𝐶𝑇

𝑠𝛼𝐶𝑠𝛼 − 𝐸𝑇
𝑠𝛼𝑅

−1
𝑠𝛼𝐸𝑠𝛼 = 𝐶𝑇

𝑠𝛼(𝐼𝑝 −𝐷𝑠𝛼(𝑅𝛼 +𝐷𝑇
𝑠𝛼𝐷𝑠𝛼)−1𝐷𝑇

𝑠𝛼)𝐶𝑠𝛼
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and 𝑃𝑠𝛼 are the solutions of the following coupled algebraic Riccati equations (CAREs)

𝐴̂𝑇
𝑠𝑠𝛼𝑃𝑠𝛼 + 𝑃𝑠𝛼𝐴̂𝑠𝑠𝛼 +𝑄𝑠𝑠𝛼 +

𝑁
∑

𝛼≠𝛽,𝛽=1
𝜋𝛼𝛽𝑃𝑠𝛽 − 𝑃𝑠𝛼𝐵𝑠𝛼(𝑅𝛼 +𝐷𝑇

𝑠𝛼𝐷𝑠𝛼)−1𝐵𝑇
𝑠𝛼𝑃𝑠𝛼 = 0

where 𝐴̂𝑠𝑠𝛼 = 𝐴𝑠𝑠𝛼 +
1
2
𝜋𝛼𝛼 .

Therefore, the optimal controller design problem for (4) is equivalent to accessing the optimal controller of (12). By employing
the value function 𝑉

(

𝑥𝑠 (𝜌)
)

= 𝑥𝑇𝑠 𝑃𝑠𝛼𝑥𝑠 and (13), the integral Bellman equation can be acquired as

𝑥𝑇𝑠,𝜌+Δ𝜌𝑃𝑠𝛼(𝜉)𝑥
𝑇
𝑠,𝜌+Δ𝜌 − 𝑥𝑇𝑠,𝜌𝑃𝑠𝛼(𝜉)𝑥𝑠,𝜌 = −

𝜌+Δ𝜌

∫
𝜌

𝑥𝑇𝑠 (𝜎) 𝑄̄𝑠𝑠𝛼(𝜉)𝑥𝑠 (𝜎) 𝑑𝜎 + 2

𝜌+Δ𝜌

∫
𝜌

[

(𝑣𝑠𝛼 (𝜎)

+ 𝐺𝑠𝛼(𝜉)𝑥𝑠 (𝜎))𝑇 (𝑅𝛼 +𝐷𝑇
𝑠𝛼𝐷𝑠𝛼)𝐺𝑠𝛼(𝜉+1)𝑥𝑠 (𝜎)

]

𝑑𝜎 (14)

where 𝑄̄𝑠𝑠𝛼(𝜉) = 𝑄𝑠𝑠𝛼 +
∑𝑁

𝛼≠𝛽,𝛽=1 𝜋𝛼𝛽𝑃𝑠𝛽(𝜉−1) + 𝐺𝑇
𝑠𝛼(𝜉)(𝑅𝛼 +𝐷𝑇

𝑠𝛼𝐷𝑠𝛼)𝐺𝑠𝛼(𝜉).
According to Assumption 2, the optimal controllers of fast and slow subsystems can not be directly acquired by solving

CAREs. Therefore, an online off-policy parallel learning method is proposed in Algorithm 1. Furthermore, 𝑥1(𝜌) is introduced
in the data collection process to replace the state 𝑥𝑠(𝜌), which is virtual. Thus, rewriting the above mentioned 𝑃𝑠𝛼 , 𝐺𝑠𝛼 into 𝑃𝑠𝛼 ,
𝐺̄𝑠𝛼 when using 𝑥1(𝜌) as the actual data. For further analysis, some definitions are given in below

𝐼𝛼𝑥1𝑥1 ≜
⎡

⎢

⎢

⎣

𝜌1

∫
𝜌0

𝑥𝑇1𝛼,𝜎 ⊗ 𝑥𝑇1𝛼,𝜎𝑑𝜎,

𝜌2

∫
𝜌1

𝑥𝑇1𝛼,𝜎 ⊗ 𝑥𝑇1𝛼,𝜎𝑑𝜎,… ,

𝜌𝑙

∫
𝜌𝑙−1

𝑥𝑇1𝛼,𝜎 ⊗ 𝑥𝑇1𝛼,𝜎𝑑𝜎
⎤

⎥

⎥

⎦

𝑇

∈ 𝑅𝑙×𝑛21

𝐼𝛼𝑥1𝑣𝑠 ≜
⎡

⎢

⎢

⎣

𝜌1

∫
𝜌0

𝑥𝑇1𝛼,𝜎 ⊗ 𝑣𝑇𝑠𝛼,𝜎𝑑𝜎,

𝜌2

∫
𝜌1

𝑥𝑇1𝛼,𝜎 ⊗ 𝑣𝑇𝑠𝛼,𝜎𝑑𝜎,… ,

𝜌𝑙

∫
𝜌𝑙−1

𝑥𝑇1𝛼,𝜎 ⊗ 𝑣𝑇𝑠𝛼,𝜎𝑑𝜎
⎤

⎥

⎥

⎦

𝑇

∈ 𝑅𝑙×𝑚1𝑛1

𝛿𝛼𝑥1𝑥1 ≜
[

𝑥̂1𝛼
(

𝜌1
)

− 𝑥̂1𝛼
(

𝜌0
)

, 𝑥̂1𝛼
(

𝜌2
)

− 𝑥̂1𝛼
(

𝜌1
)

,… 𝑥̂1𝛼
(

𝜌𝑙
)

− 𝑥̂1𝛼
(

𝜌𝑙−1
)]𝑇 ∈ 𝑅𝑙× 𝑛1(𝑛1+1)

2

𝑃 ′

𝑠𝛼 ≜
[

𝑝11𝛼 , 2𝑝12𝛼 , ..., 2𝑝1𝑛1𝛼 , 𝑝22𝛼 , 2𝑝23𝛼 , ..., 𝑝𝑛1𝑛1𝛼
]𝑇

where

𝑥1𝛼 ≜
[

𝑥11𝛼 , 𝑥12𝛼 , 𝑥13𝛼 ,… 𝑥1𝑛1𝛼
]𝑇

𝑥̂1𝛼 ≜ 𝑥𝑇1𝛼 ⊗ 𝑥𝑇1𝛼 =
[

𝑥211𝛼 , 𝑥11𝛼𝑥12𝛼 , ...𝑥11𝛼𝑥1𝑛1𝛼 , 𝑥
2
12𝛼 , 𝑥12𝛼𝑥13𝛼 , ...𝑥12𝛼𝑥1𝑛1𝛼 , ..., 𝑥

2
1𝑛1𝛼

]𝑇

𝑃𝑠𝛼 ∈ 𝑅𝑛1×𝑛1 → 𝑃 ′

𝑠𝛼 ∈ 𝑅
𝑛1(𝑛1+1)

2 , 𝑥1𝛼 ∈ 𝑅𝑛1 → 𝑥̂1𝛼 ∈ 𝑅
𝑛1(𝑛1+1)

2 .

Thus, (14) can be described as

Θ𝑠𝛼(𝜉)

[

𝑃 ′

𝑠𝛼(𝜉)
𝑣𝑒𝑐

(

𝐺̄𝑠𝛼(𝜉+1)
)

]

= Ξ𝑠𝛼(𝜉) (15)

where

Θ𝑠𝛼(𝜉) =
[

𝛿𝛼𝑥1𝑥1 −2
[

𝐼𝛼𝑥1𝑥1
(

𝐼𝑛1 ⊗ 𝐺̄𝑇
𝑠𝛼(𝜉)(𝑅𝛼 +𝐷𝑇

𝑠𝛼𝐷𝑠𝛼)
)

+ 𝐼𝛼𝑥1𝑣𝑠
(

𝐼𝑛1 ⊗ (𝑅𝛼 +𝐷𝑇
𝑠𝛼𝐷𝑠𝛼)

)

] ]

Ξ𝑠𝛼(𝜉) = −𝐼𝛼𝑥1𝑥1𝑣𝑒𝑐
(

𝑄̄𝑠𝑠𝛼(𝜉)
)

with Θ𝑠𝛼(𝜉) ∈ ℜ𝑙×
[

1
2
𝑛1(𝑛1+1)+𝑚1𝑛1

]

, Ξ𝑠𝛼(𝜉) ∈ ℜ𝑙.
Moreover, the (15) can be solved if Lemma 2 is satisfied

[

𝑃 ′

𝑠𝛼(𝜉)
𝑣𝑒𝑐

(

𝐺̄𝑠𝛼(𝜉+1)
)

]

=
(

Θ𝑇
𝑠𝛼(𝜉)Θ𝑠𝛼(𝜉)

)−1
Θ𝑇

𝑠𝛼(𝜉)Ξ𝑠𝛼(𝜉). (16)

Lemma 2. In40, to ensure that every step of the algorithm can be implemented online, matrix Θ𝑠𝛼(𝜉) should satisfy

𝑟𝑎𝑛𝑘
([

𝐼𝛼𝑥1𝑥1 , 𝐼𝛼𝑥1𝑣𝑠
])

=
𝑛1

(

𝑛1 + 1
)

2
+ 𝑚1𝑛1.
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Algorithm 1 is used for obtaining the control law of the slow-subsystems, and the algorithm can solve 𝑃𝑠𝛼(𝜉) and 𝐺̄𝑠𝛼(𝜉),
furthermore the slow-subsystems controller gains all can be acquired. Its form is as follows

𝐾̄𝑠𝛼 = 𝐺̄𝑠𝛼(𝜉) + (𝑅𝛼 +𝐷𝑇
𝑠𝛼𝐷𝑠𝛼)−1𝐸𝑠𝛼 .

Algorithm 1: Off-policy Model-Free Parallel RL Algorithm for Slow-subsystems
1 Initialization
2 Give the initial stabilizing sequence

{

𝐺̄𝑠1(0), 𝐺̄𝑠2(0), 𝐺̄𝑠3(0) … 𝐺̄𝑠𝑁(0)
}

, and select a threshold 𝜖 > 0.
3 for 𝛼 = 1 ∶ 𝑁 do
4 Data collection:
5 Employ initial control policies 𝑣𝑠𝛼 = −𝐺̄𝑠𝛼(0)𝑥1 (𝜌) + 𝑒𝑠𝛼 in time interval

[

𝜌0, 𝜌𝑙
]

, where 𝑒𝑠𝛼 is the exploration noise.
Compute 𝐼𝛼𝑥1𝑥1 , 𝐼𝛼𝑥1𝑣𝑠 .

6 while max{||𝑃𝑠𝛼(𝜉+1) − 𝑃𝑠𝛼(𝜉)||} ≥ 𝜖 do
7 Iterative computation:
8 Parallel solve 𝐺̄𝑠𝛼(𝜉) and 𝑃𝑠𝛼(𝜉) from (16)
9 𝜉 ← 𝜉 + 1;

10 end
11 end

Remark 1. By Algorithm 1, which is a model-free and off-policy parallel algorithm, the optimal control policy can be obtained
for the slow-subsystems without system dynamics. It is worth mentioning that 𝑣𝑠 derived here is not the same as the optimal
control law 𝑢𝑠.

3.2 Optimal Controller Design for Fast-subsystems
For the fast-subsystems, 𝑃𝑓𝛼 can be obtained by solving the following CAREs

𝐴𝑇
𝑓𝛼𝑃𝑓𝛼 + 𝑃𝑓𝛼𝐴𝑓𝛼 +𝑄𝑓𝛼 +

𝑁
∑

𝛼≠𝛽,𝛽=1
𝜋𝛼𝛽𝑃𝑓𝛽 − 𝑃𝑓𝛼𝐵𝑓𝛼𝑅

−1
𝑓𝛼𝐵

𝑇
𝑓𝛼𝑃𝑓𝛼 = 0

where 𝐴𝑓𝛼 = 𝐴22𝛼 +
1
2
𝜋𝛼𝛼 , 𝑄𝑓𝛼 = 𝐶𝑇

2𝛼𝐶2𝛼 , 𝐵𝑓𝛼 = 𝐵2𝛼 , 𝑅𝑓𝛼 = 𝑅𝛼 .
Therefore, the optimal control policy can be shown below

𝑢∗𝑓𝛼 (𝜌) = −𝐾∗
𝑓𝛼𝑥𝜌 (𝜌) = −𝑅−1

𝑓𝛼𝐵
𝑇
𝑓𝛼𝑃

∗
𝑓𝛼𝑥𝑓 (𝜌) .

However, due to the system dynamics needing to be known in advance, CAREs are usually difficult to be solved in practical
applications. In order to overcome this limitation, a model-free parallel control scheme is presented in Algorithm 2. Moreover,
the online implementation of Algorithm 2 is shown below.

Combining with the value function as 𝑉
(

𝑥𝑓 (𝜌)
)

= 𝑥𝑇𝑓𝑃𝑓𝛼𝑥𝑓 and (10), we have

𝑥𝑇𝑓,𝜌+Δ𝜌𝑃𝑓𝛼(𝜉)𝑥
𝑇
𝑓,𝜌+Δ𝜌 − 𝑥𝑇𝑓,𝜌𝑃𝑓𝛼(𝜉)𝑥𝑓,𝜌 = −

𝜌+Δ𝜌

∫
𝜌

𝑥𝑇𝑓 (𝜎) 𝑄̄𝑓𝛼(𝜉)𝑥𝑓 (𝜎) 𝑑𝜎

+ 2

𝜌+Δ𝜌

∫
𝜌

[

(

𝑢𝑓𝛼 (𝜎) +𝐾𝑓𝛼(𝜉)𝑥𝑓 (𝜎)
)𝑇 𝑅𝑓𝛼𝐾𝑓𝛼(𝜉+1)𝑥𝑓 (𝜎)

]

𝑑𝜎 (17)

where 𝑄̄𝑓𝛼(𝜉) = 𝑄𝑓𝛼 +
∑𝑁

𝛼≠𝛽,𝛽=1 𝜋𝛼𝛽𝑃𝑓𝛽(𝜉−1) +𝐾𝑇
𝑓𝛼(𝜉)𝑅𝑓𝛼𝐾𝑓𝛼(𝜉).
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Rewrite the above-mentioned 𝑃𝑓𝛼 , 𝐾𝑓𝛼 into 𝑃𝑓𝛼 , 𝐾̄𝑓𝛼 . Before further analysis, some definitions are given in the following

𝐼𝛼𝑥𝑓𝑥𝑓 ≜
⎡

⎢

⎢

⎣

𝜌1

∫
𝜌0

𝑥𝑇𝑓𝛼,𝜎 ⊗ 𝑥𝑇𝑓𝛼,𝜎𝑑𝜎,

𝜌2

∫
𝜌1

𝑥𝑇𝑓𝛼,𝜎 ⊗ 𝑥𝑇𝑓𝛼,𝜎𝑑𝜎,… ,

𝜌𝑙

∫
𝜌𝑙−1

𝑥𝑇𝑓𝛼,𝜎 ⊗ 𝑥𝑇𝑓𝛼,𝜎𝑑𝜎
⎤

⎥

⎥

⎦

𝑇

∈ 𝑅𝑙×𝑛22

𝐼𝛼𝑥𝑓 𝑢𝑓 ≜
⎡

⎢

⎢

⎣

𝜌1

∫
𝜌0

𝑥𝑇𝑓𝛼,𝜎 ⊗ 𝑢𝑇𝑓𝛼,𝜎𝑑𝜎,

𝜌2

∫
𝜌1

𝑥𝑇𝑓𝛼,𝜎 ⊗ 𝑢𝑇𝑓𝛼,𝜎𝑑𝜎,… ,

𝜌𝑙

∫
𝜌𝑙−1

𝑥𝑇𝑓𝛼,𝜎 ⊗ 𝑢𝑇𝑓𝛼,𝜎𝑑𝜎
⎤

⎥

⎥

⎦

𝑇

∈ 𝑅𝑙×𝑚2𝑛2

𝛿𝛼𝑥𝑓𝑥𝑓 ≜
[

𝑥̂𝑓𝛼
(

𝜌1
)

− 𝑥̂𝑓𝛼
(

𝜌0
)

, 𝑥̂𝑓𝛼
(

𝜌2
)

− 𝑥̂𝑓𝛼
(

𝜌1
)

,… , 𝑥̂𝑓𝛼
(

𝜌𝑙
)

− 𝑥̂𝑓𝛼
(

𝜌𝑙−1
)]𝑇 ∈ 𝑅𝑙× 𝑛2(𝑛2+1)

2

𝑃 ′

𝑓𝛼 ≜
[

𝑝11𝛼 , 2𝑝12𝛼 , ..., 2𝑝1𝑛2𝛼 , 𝑝22𝛼 , 2𝑝23𝛼 , ..., 𝑝𝑛2𝑛2𝛼
]𝑇

where

𝑥𝑓𝛼 ≜
[

𝑥11𝛼 , 𝑥12𝛼 , 𝑥13𝛼 ,… 𝑥1𝑛2𝛼
]𝑇

𝑥̂𝑓𝛼 ≜ 𝑥𝑇𝑓𝛼 ⊗ 𝑥𝑇𝑓𝛼 =
[

𝑥211𝛼 , 𝑥11𝛼𝑥12𝛼 , ...𝑥11𝛼𝑥1𝑛2𝛼 , 𝑥
2
12𝛼 , 𝑥12𝛼𝑥13𝛼 , ...𝑥12𝛼𝑥1𝑛2𝛼 , ..., 𝑥

2
1𝑛2𝛼

]𝑇

𝑃𝑓𝛼 ∈ 𝑅𝑛2×𝑛2 → 𝑃 ′

𝑓𝛼 ∈ 𝑅
𝑛2(𝑛2+1)

2 , 𝑥𝑓𝛼 ∈ 𝑅𝑛2 → 𝑥̂𝑓𝛼 ∈ 𝑅
𝑛2(𝑛2+1)

2

Then (17) can be described as

Θ𝑓𝛼(𝜉)

[

𝑃 ′

𝑓𝛼(𝜉)
𝑣𝑒𝑐

(

𝐾̄𝑓𝛼(𝜉+1)
)

]

= Ξ𝑓𝛼(𝜉) (18)

where

Θ𝑓𝛼(𝜉) =
[

𝛿𝛼𝑥𝑓𝑥𝑓 −2
[

𝐼𝛼𝑥𝑓𝑥𝑓
(

𝐼𝑛2 ⊗ 𝐾̄𝑇
𝑓𝛼(𝜉)𝑅𝑓𝛼

)

+ 𝐼𝛼𝑥𝑓 𝑢𝑓
(

𝐼𝑛2 ⊗𝑅𝑓𝛼
)

] ]

Ξ𝑓𝛼(𝜉) = −𝐼𝛼𝑥𝑓𝑥𝑓 𝑣𝑒𝑐
(

𝑄̄𝑓𝛼(𝜉)
)

with Θ𝑓𝛼(𝜉) ∈ ℜ𝑙×
[

1
2
𝑛2(𝑛2+1)+𝑚2𝑛2

]

, Ξ𝑓𝛼(𝜉) ∈ ℜ𝑙.
Thus, under Lemma 2, the (18) can be solved by

[

𝑃 ′

𝑓𝛼(𝜉)
𝑣𝑒𝑐

(

𝐾̄𝑓𝛼(𝜉+1)
)

]

=
(

Θ𝑇
𝑓𝛼(𝜉)Θ𝑓𝛼(𝜉)

)−1
Θ𝑇

𝑓𝛼(𝜉)Ξ𝑓𝛼(𝜉). (19)

Algorithm 2: Off-policy Model-Free Parallel RL Algorithm for Fast-subsystems
Input: A initial sequence

{

𝐾̄𝑓1(0), 𝐾̄𝑓2(0), 𝐾̄𝑓3(0) … 𝐾̄𝑓𝑁(0)
}

. A threshold 𝜖 > 0.
Output: The optimal control policy of fast-subsystems as 𝑢𝑓𝛼 (𝜌) = −𝐾̄𝑓𝛼(𝜉)𝑥𝑓 (𝜌).

1 for all 𝛼 ∈ 𝑀 do
2 Data Collection:
3 Employ initial control policies 𝑢𝑓𝛼 = −𝐾̄𝑓𝛼(0)𝑥𝑓 (𝜌) + 𝑒𝑓𝛼 in

[

𝜌0, 𝜌𝑙
]

, where 𝑒𝑓𝛼 denotes the exploration noise.
Compute 𝐼𝛼𝑥𝑓𝑥𝑓 , 𝐼𝛼𝑥𝑓 𝑣𝑓 .

4 while max{||𝑃𝑓𝛼(𝜉+1) − 𝑃𝑓𝛼(𝜉)||} ≥ 𝜖 do
5 Iterative computation:
6 Parallel learn 𝐾̄𝑓𝛼(𝜉) and 𝑃𝑓𝛼(𝜉) from (19)
7 𝜉 ← 𝜉 + 1;
8 end
9 end

Remark 2. Different from previous studies, the dynamics of the fast-subsystems are unknown in this article. Moreover, a new
model-free online parallel Algorithm 2 is designed to obtain the optimal control policy for the fast-subsystems.
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3.3 Composite Controller Design for MJSPSs
According to the proposed methods, the optimal control gains for each subsystems are both obtained. Thus, the composite
controller gain has the following form

𝐾̄𝑐𝛼 =
[ (

𝐼 + 𝐾̄𝑓𝛼𝐴−1
22𝛼𝐵2𝛼

)

𝐾̄𝑠𝛼 𝐾̄𝑓𝛼
]

. (20)
Furthermore, the convergence analysis of the proposed method is shown in Theorem 1.

Theorem 1. The relationship between performance index 𝐽𝑜𝑝𝑡𝛼
(

𝑥 (𝜌) , 𝑢𝑜𝑝𝑡𝛼 (𝜌)
)

corresponding to the optimal controller 𝑢𝑜𝑝𝑡𝛼 (𝜌)
and 𝐽𝑐𝛼

(

𝑥 (𝜌) , 𝑢∞𝑐𝛼 (𝜌)
)

corresponding to the composite controller 𝑢∞𝑐𝛼 (𝜌) satisfy

𝐽𝑐𝛼
(

𝑥 (𝜌) , 𝑢∞𝑐𝛼 (𝜌)
)

= 𝐽𝑜𝑝𝑡𝛼
(

𝑥 (𝜌) , 𝑢𝑜𝑝𝑡𝛼 (𝜌)
)

+ 𝑜 (𝜀) .

Proof. Due to the existence of SPP, the ideal data 𝑥𝑠(𝜌) is difficult to be measured directly, therefore, 𝑥1(𝜌) takes place of
𝑥𝑠(𝜌). Then, the controller of the original system has the form as follows

𝑢∞𝑐𝛼 (𝜌) = 𝑙𝑖𝑚
𝑘→∞

𝑢𝑠𝛼(𝜉)(𝜌) + 𝑢𝑓𝛼(𝜌) + 𝑜 (𝛾)

= 𝑢∗𝑠𝛼(𝜌) + 𝑜 (𝛾) + 𝑢∗𝑓𝛼(𝜌) + 𝑜 (𝛾)

= 𝑢𝑜𝑝𝑡𝛼 (𝜌) + 𝑜 (𝛾)

where 𝑢𝑜𝑝𝑡𝛼 (𝜌) = −𝐾𝑜𝑝𝑡𝛼𝑥 (𝜌) = −𝑅−1
𝛼 𝐵𝑇

𝛼𝛾𝑃𝑜𝑝𝑡𝛼𝑥 (𝜌). 𝑃𝑜𝑝𝑡𝛼 is the solution of the following CAREs

𝐴𝑇
𝛼𝛾𝑃𝑜𝑝𝑡𝛼 + 𝑃𝑜𝑝𝑡𝛼𝐴𝛼𝛾 +𝑄𝛼 +

𝑁
∑

𝛽=1
𝜋𝛼𝛽𝑃𝑜𝑝𝑡𝛽 − 𝑃𝑜𝑝𝑡𝛼𝐵𝛼𝛾𝑅

−1
𝛼 𝐵𝑇

𝛼𝛾𝑃𝑜𝑝𝑡𝛼 = 0

where 𝐴𝛼𝛾 =
[

𝐴11𝛼 𝐴12𝛼
𝑜 𝛾−1𝐴22𝛼

]

, 𝐵𝛼𝛾 =
[

𝑜
𝛾−1𝐵2𝛼

]

and 𝑃𝑜𝑝𝑡𝛽 represents the solution of CAREs for the MJSPSs (1)-(3) in mode 𝛽.

Thus, 𝐽𝑐𝛼
(

𝑥 (𝜌) , 𝑢∞𝑐𝛼 (𝜌)
)

and 𝐽𝑜𝑝𝑡𝛼
(

𝑥 (𝜌) , 𝑢𝑜𝑝𝑡𝛼 (𝜌)
)

can be defined as

𝐽𝑜𝑝𝑡𝛼
(

𝑥 (𝜌) , 𝑢𝑜𝑝𝑡𝛼 (𝜌)
)

=

∞

∫
0

(𝑥𝑇 (𝜎)𝑄𝛼𝑥 (𝜎) + 𝑢𝑇𝑜𝑝𝑡𝛼 (𝜎)𝑅𝛼𝑢𝑜𝑝𝑡𝛼 (𝜎))𝑑𝜎 (21)

𝐽𝑐𝛼
(

𝑥 (𝜌) , 𝑢∞𝑐𝛼 (𝜌)
)

=

∞

∫
0

(𝑥𝑇 (𝜎)𝑄𝛼𝑥 (𝜎) +
(

𝑢∞𝑐𝛼 (𝜎)
)𝑇 𝑅𝛼𝑢

∞
𝑐𝛼 (𝜎))𝑑𝜎. (22)

Comparing (21) with (22), we have

𝐽𝑐𝛼
(

𝑥 (𝜌) , 𝑢∞𝑐𝛼 (𝜌)
)

= 𝐽𝑜𝑝𝑡𝛼
(

𝑥 (𝜌) , 𝑢𝑜𝑝𝑡𝛼 (𝜌)
)

+ 𝑜 (𝛾) .

This ends the proof.

Remark 3. According to two model-free parallel algorithms proposed above, we can obtain the optimal controller of (4)-(5) and
(7)-(8) respectively, so as to derive the composite controller of the original system, which reduces the computational complexity.

4 AN ILLUSTRATIVE EXAMPLE

In this section, a numerical example is presented to verify the validity of the above-proposed algorithms. To show the
applicability of Algorithm 1 and Algorithm 2, consider the following MJSPSs with two jump modes described as

𝐴1 =
[

−5.2 −1
0 −52

]

, 𝐴2 =
[

−5 −1
0 −50

]

, 𝐵1 =
[

0
0.5

]

, 𝐵2 =
[

0
0.5

]

,

with the transition probabilities as

Π =
[

−3 3
1.5 −1.5

]

.

The weighting matrices in the performance index can be expressed as

𝑄1 = 𝑄2 =
[

1 1
1 1

]

, 𝑅1 = 𝑅2 = 𝐼,
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FIGURE 1 Convergence of 𝑃𝑠1 and 𝑃𝑠2 for slow-subsystems.
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FIGURE 2 Convergence of 𝑃𝑓1 and 𝑃𝑓2 for fast-subsystems.

in the simulation, let 𝛾 = 0.1, the error value 𝜖 = 1 × 10−5 and the initial stabilizing feedback gains of the slow-subsystems and
fast-subsystems are viewed as 𝐺̄𝑠𝛼(0), 𝐾̄𝑓𝛼(0).

In the time interval [0, 2]s, the controllers are described as following

𝑣𝑠𝛼 = −𝐺̄𝑠𝛼(0)𝑥𝑠𝛼 + 𝑒𝑠𝛼
𝑢𝑓𝛼 = −𝐾̄𝑓𝛼(0)𝑥𝑓𝛼 + 𝑒𝑓𝛼

where 𝑒𝑠𝛼 = 𝑒𝑓𝛼 = 100
∑100

𝑛=1 𝑠𝑖𝑛
(

𝜔𝑛𝜌
)

refer to the exploration noises, and the 𝜔𝑛 represents a constant randomly choosing from
[−500, 500].

By employing Algorithm 1 and Algorithm 2, the optimal results for fast-subsystems and slow-subsystems can be calculated
respectively after 9 iterations and 5 iterations as follows

𝑃𝑠1(9) = 0.0969, 𝑃𝑠2(9) = 0.0996, 𝐺̄𝑠1(9) = −9.3183 × 10−4, 𝐺̄𝑠2(9) = −9.9582 × 10−4,
𝑃𝑓1(5) = 0.0096,𝑃𝑓2(5) = 0.0100, 𝐾̄𝑓1(5) = 0.0048, 𝐾̄𝑓2(5) = 0.0050.

Based on the (20), the composite control feedback gains can be acquired as below

𝐾𝑐1 =
[

0.0087 0.0048
]

, 𝐾𝑐2 =
[

0.0090 0.0050
]

,

and by employing the CAREs, the optimal control feedback gains are presented as

𝐾𝑜𝑝𝑡1 =
[

0.0088 0.0048
]

, 𝐾𝑜𝑝𝑡2 =
[

0.0090 0.0050
]

.

In Figure 1, the matrices 𝑃𝑠1 and 𝑃𝑠2 converge to the optimal value by Algorithm 1, which means that the optimal controllers
of slow-subsystems are obtained. Similarly, Figure 2 exhibits the convergence of 𝑃𝑓1 and 𝑃𝑓2 Algorithm 2. It can be noted that
these two parallel algorithms can obtain the optimal controllers of fast-subsystems and slow-subsystems without the system
dynamics. Furthermore, the convergence of the matrices 𝐾̄𝑓1 and 𝐾̄𝑓2 for the fast-subsystems as well as the matrices 𝐺̄𝑠1 and
𝐺̄𝑠2 for the slow-subsystems are shown in Figures 3-4. Thus, based on Theorem 1, the composite controller gain can be obtained
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FIGURE 3 Convergence of 𝐾̄𝑓1 and 𝐾̄𝑓2 for fast-subsystems.
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FIGURE 4 Convergence of 𝐺̄𝑠1 and 𝐺̄𝑠2 for slow-subsystems.
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by (20). Moreover, Figure 5 shows the mode evolution of the MJSPSs, which describes the changes of the two modes in a given
time interval.



Wenqian LiET AL 11

5 CONCLUSION

This paper solved the adaptive suboptimal controller design problem for MJSPSs without either fast-subsystems dynamics or
slow-subsystems dynamics. Under the TSST, the MJSPSs (1)-(3) can be decomposed into fast and slow subsystems. Thus,
the suboptimal controller of MJSPSs can be obtained by compositing the optimal controllers of fast-subsystems and slow-
subsystems. Furthermore, an online parallel RL learning method without system dynamics was proposed to design the optimal
controllers for subsystems. Moreover, the simulation results show the practicality of the designed algorithms.
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