References
(1) Mei, J.; Hong, Y.; Lam, J. W. Y.; Qin, A.; Tang, Y.; Tang, B. Z.
Aggregation-Induced Emission: The Whole Is More Brilliant than the
Parts. Advanced Materials 2014 , 26 (31),
5429-5479. DOI: https://doi.org/10.1002/adma.201401356.
(2) Jeevanandam, J.; Barhoum, A.; Chan, Y. S.; Dufresne, A.; Danquah, M.
K. Review on nanoparticles and nanostructured materials: history,
sources, toxicity and regulations. Beilstein Journal of
Nanotechnology 2018 , 9 , 1050-1074. DOI:
10.3762/bjnano.9.98.
(3) Ward, K.; Fan, Z. H. Mixing in microfluidic devices and enhancement
methods. Journal of Micromechanics and Microengineering2015 , 25 (9), 094001. DOI:
10.1088/0960-1317/25/9/094001.
(4) Cai, G.; Xue, L.; Zhang, H.; Lin, J. A Review on Micromixers.Micromachines 2017 , 8 (9), 274.
(5) Eckelmann, J.; Lüning, U. Mixing LiquidsMission Impossible? A
Colorful Demonstration on Immiscible Systems. Journal of chemical
education 2013 , 90 (2), 224-227. DOI:
10.1021/ed2008262.
(6) Jeong, H.; Lee, Y.; Ji, M.; Lee, G.; Chung, H. The optimum
solidification and crucible rotation in silicon czochralski crystal
growth. Journal of mechanical science and technology2010 , 24 (1), 407-414. DOI: 10.1007/s12206-009-1113-x.
(7) Delgado, S. M. T.; Kinahan, D. J.; Sandoval, F. S.; Julius, L. A.
N.; Kilcawley, N. A.; Ducrée, J.; Mager, D. Fully automated
chemiluminescence detection using an electrified-Lab-on-a-Disc (eLoaD)
platform. Lab on a chip 2016 , 16 (2), 42-411.
DOI: 10.1039/c6lc00973e.
(8) Ribó, J. M.; Crusats, J.; Sagués, F.; Claret, J.; Rubires, R. Chiral
Sign Induction by Vortices during the Formation of Mesophases in Stirred
Solutions. Science (American Association for the Advancement of
Science) 2001 , 292 (5524), 2063-2066. DOI:
10.1126/science.1060835.
(9) Grzybowski, B. A.; Sobolev, Y. I.; Cybulski, O.; Mikulak-Klucznik,
B. Materials, assemblies and reaction systems under rotation.Nature reviews. Materials 2022 , 7 (5), 338-354.
DOI: 10.1038/s41578-021-00404-x.
(10) Vimalanathan, K.; Raston, C. L. Dynamic Thin Films in Controlling
the Fabrication of Nanocarbon and Its Composites. Advanced
Materials Technologies 2017 , 2 (6), 1600298. DOI:
https://doi.org/10.1002/admt.201600298.
(11) Strohmeier, O.; Keller, M.; Schwemmer, F.; Zehnle, S.; Mark, D.;
von Stetten, F.; Zengerle, R.; Paust, N. Centrifugal microfluidic
platforms: advanced unit operations and applications. Chemical
Society reviews 2015 , 44 (17), 6187-6229. DOI:
10.1039/c4cs00371c.
(12) Richards, R. G.; MacHunter, D. M.; Gates, P. J.; Palmer, M. K.
Gravity separation of ultra-fine (−0.1mm) minerals using spiral
separators. Minerals engineering 2000 , 13 (1),
65-77. DOI: 10.1016/S0892-6875(99)00150-8.
(13) Jacobsen, N. C.; Hinrichsen, O. Micromixing Efficiency of a
Spinning Disk Reactor. Industrial & engineering chemistry
research 2012 , 51 (36), 11643-11652. DOI:
10.1021/ie300411b.
(14) Jellicoe, M.; Igder, A.; Chuah, C.; Jones, D. B.; Luo, X.; Stubbs,
K. A.; Crawley, E. M.; Pye, S. J.; Joseph, N.; Vimalananthan, K.; et al.
Vortex fluidic induced mass transfer across immiscible phases.Chemical Science 2022 , 13 (12), 3375-3385,
10.1039/D1SC05829K. DOI: 10.1039/D1SC05829K.
(15) Britton, J.; Stubbs, K. A.; Weiss, G. A.; Raston, C. L. Vortex
Fluidic Chemical Transformations. Chemistry – A European Journal2017 , 23 (54), 13270-13278. DOI:
https://doi.org/10.1002/chem.201700888.
(16) Luo, X.; Su, P.; Zhang, W.; Raston, C. L. Microfluidic Devices in
Fabricating Nano or Micromaterials for Biomedical Applications.Advanced materials technologies 2019 , 4 (12),
1900488-n/a. DOI: 10.1002/admt.201900488.
(17) Al-Antaki, A. H. M.; Luo, X.; Alharbi, T. M. D.; Harvey, D. P.;
Pye, S.; Zou, J.; Lawrance, W.; Raston, C. L. Inverted vortex fluidic
exfoliation and scrolling of hexagonal-boron nitride. RSC
Advances 2019 , 9 (38), 22074-22079, 10.1039/C9RA03970H.
DOI: 10.1039/C9RA03970H.
(18) Britton, J.; Dalziel, S. B.; Raston, C. L. The synthesis of
di-carboxylate esters using continuous flow vortex fluidics. Green
Chemistry 2016 , 18 (7), 2193-2200, 10.1039/C5GC02494C.
DOI: 10.1039/C5GC02494C.
(19) Yasmin, L.; Chen, X.; Stubbs, K. A.; Raston, C. L. Optimising a
vortex fluidic device for controlling chemical reactivity and
selectivity. Scientific Reports 2013 , 3 (1),
2282. DOI: 10.1038/srep02282.
(20) He, S.; Vimalanathan, K.; Su, P.; Jellicoe, M.; Luo, X.; Xing, W.;
Cai, W.; Gibson, C. T.; Chen, Y.; Wong, J. W. C.; et al. Upsized Vortex
Fluidic Device Enhancement of Mechanical Properties and the
Microstructure of Biomass-Based Biodegradable Films. ACS
sustainable chemistry & engineering 2021 , 9 (43),
14588-14595. DOI: 10.1021/acssuschemeng.1c05534.
(21) Vimalanathan, K.; Gascooke, J. R.; Suarez-Martinez, I.; Marks, N.
A.; Kumari, H.; Garvey, C. J.; Atwood, J. L.; Lawrance, W. D.; Raston,
C. L. Fluid dynamic lateral slicing of high tensile strength carbon
nanotubes. Scientific Reports 2016 , 6 (1), 22865.
DOI: 10.1038/srep22865.
(22) Luo, X.; Al-Antaki, A. H. M.; Vimalanathan, K.; Moffatt, J.; Zheng,
K.; Zou, Y.; Zou, J.; Duan, X.; Lamb, R. N.; Wang, S.; et al. Laser
irradiated vortex fluidic mediated synthesis of luminescent carbon
nanodots under continuous flow. Reaction Chemistry & Engineering2018 , 3 (2), 164-170, 10.1039/C7RE00197E. DOI:
10.1039/C7RE00197E.
(23) Chen, X.; Dobson, J. F.; Raston, C. L. Vortex fluidic exfoliation
of graphite and boron nitride. Chemical Communications2012 , 48 (31), 3703-3705, 10.1039/C2CC17611D. DOI:
10.1039/C2CC17611D.
(24) Britton, J.; Meneghini, L. M.; Raston, C. L.; Weiss, G. A.
Accelerating Enzymatic Catalysis Using Vortex Fluidics. Angewandte
Chemie International Edition 2016 , 55 (38),
11387-11391. DOI: https://doi.org/10.1002/anie.201604014.
(25) Luo, X.; Mohammed Al-Antaki, A. H.; Igder, A.; Stubbs, K. A.; Su,
P.; Zhang, W.; Weiss, G. A.; Raston, C. L. Vortex Fluidic-Mediated
Fabrication of Fast Gelated Silica Hydrogels with Embedded Laccase
Nanoflowers for Real-Time Biosensing under Flow. ACS applied
materials & interfaces 2020 , 12 (46), 51999-52007.
DOI: 10.1021/acsami.0c15669.
(26) Luo, X.; Al-Antaki, A. H. M.; Pye, S.; Meech, R.; Zhang, W.;
Raston, C. L. High-Shear-Imparted Tunable Fluorescence in
Polyethylenimines. ChemPhotoChem 2018 , 2 (4),
343-348. DOI: https://doi.org/10.1002/cptc.201700206.
(27) Yuan, T. Z.; Ormonde, C. F. G.; Kudlacek, S. T.; Kunche, S.; Smith,
J. N.; Brown, W. A.; Pugliese, K. M.; Olsen, T. J.; Iftikhar, M.;
Raston, C. L.; et al. Shear-Stress-Mediated Refolding of Proteins from
Aggregates and Inclusion Bodies. ChemBioChem 2015 ,16 (3), 393-396. DOI:
https://doi.org/10.1002/cbic.201402427.
(28) Luo, X.; Smith, P.; Raston, C. L.; Zhang, W. Vortex Fluidic
Device-Intensified Aqueous Two Phase Extraction of C-Phycocyanin from
Spirulina maxima. ACS Sustainable Chemistry & Engineering2016 , 4 (7), 3905-3911. DOI:
10.1021/acssuschemeng.6b00756.
(29) Alharbi, T. M. D.; Jellicoe, M.; Luo, X.; Vimalanathan, K.;
Alsulami, I. K.; Al Harbi, B. S.; Igder, A.; Alrashaidi, F. A. J.; Chen,
X.; Stubbs, K. A.; et al. Sub-micron moulding topological mass transport
regimes in angled vortex fluidic flow. Nanoscale Advances2021 , 3 (11), 3064-3075, 10.1039/D1NA00195G. DOI:
10.1039/D1NA00195G.
(30) Zhao, W.; Fang, M.; Wu, F.; Wu, H.; Wang, L.; Chen, G. Preparation
of graphene by exfoliation of graphite using wet ball milling.Journal of Materials Chemistry 2010 , 20 (28),
5817-5819, 10.1039/C0JM01354D. DOI: 10.1039/C0JM01354D.
(31) Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De,
S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K.; et al.
High-yield production of graphene by liquid-phase exfoliation of
graphite. Nature Nanotechnology 2008 , 3 (9),
563-568. DOI: 10.1038/nnano.2008.215.
(32) Khan, U.; Porwal, H.; O’Neill, A.; Nawaz, K.; May, P.; Coleman, J.
N. Solvent-Exfoliated Graphene at Extremely High Concentration.Langmuir 2011 , 27 (15), 9077-9082. DOI:
10.1021/la201797h.
(33) Alsulam, I. K.; Alharbi, T. M. D.; Moussa, M.; Raston, C. L.
High-Yield Continuous-Flow Synthesis of Spheroidal C60@Graphene
Composites as Supercapacitors. ACS Omega 2019 , 4(21), 19279-19286. DOI: 10.1021/acsomega.9b02656.
(34) Alharbi, T. M. D.; Alotaibi, A. E. H.; Raston, C. L. Architected
C70/Graphene Oxide Composites Prepared under Continuous Flow in a Vortex
Fluidic Device: Implications for Supercapacitors. ACS Applied Nano
Materials 2023 , 6 (13), 12507-12514. DOI:
10.1021/acsanm.3c02303.
(35) Li, L.; Chen, L.; Lu, Y.; Li, B.; Hu, R.; Huang, L.; Zhang, T.;
Wei, X.; Yang, Z.; Mao, C. Aggregated carbon dots-loaded macrophages
treat sepsis by eliminating multidrug-resistant bacteria and attenuating
inflammation. Aggregate 2023 , 4 (1), e200. DOI:
https://doi.org/10.1002/agt2.200.
(36) Kang, C.; Tao, S.; Yang, F.; Yang, B. Aggregation and luminescence
in carbonized polymer dots. Aggregate 2022 , 3(2), e169. DOI: https://doi.org/10.1002/agt2.169.
(37) Alharbi, T. M. D.; Vimalanathan, K.; Lawrance, W. D.; Raston, C. L.
Controlled slicing of single walled carbon nanotubes under continuous
flow. Carbon (New York) 2018 , 140 , 428-432. DOI:
10.1016/j.carbon.2018.08.066.
(38) Pierard, N.; Fonseca, A.; Konya, Z.; Willems, I.; Van Tendeloo, G.;
B.Nagy, J. Production of short carbon nanotubes with open tips by ball
milling. Chemical physics letters 2001 , 335 (1),
1-8. DOI: 10.1016/S0009-2614(01)00004-5.
(39) Scott, L. T.; Jackson, E. A.; Zhang, Q.; Steinberg, B. D.; Bancu,
M.; Li, B. A Short, Rigid, Structurally Pure Carbon Nanotube by Stepwise
Chemical Synthesis. Journal of the American Chemical Society2012 , 134 (1), 107-110. DOI: 10.1021/ja209461g.
(40) Alharbi, T. M. D.; Li, Q.; Raston, C. L. Thin Film Mechano-Energy
Induced Slicing of Carbon Nanotubes under Flow. ACS sustainable
chemistry & engineering 2021 , 9 (48), 16044-16051.
DOI: 10.1021/acssuschemeng.1c03109.
(41) Alharbi, T. M. D.; Shingaya, Y.; Vimalanathan, K.; Nakayama, T.;
Raston, C. L. High Yielding Fabrication of Magnetically Responsive
Coiled Single-Walled Carbon Nanotube under Flow. ACS Applied Nano
Materials 2019 , 2 (8), 5282-5289. DOI:
10.1021/acsanm.9b01135.
(42) Jellicoe, M.; Gibson, C. T.; Quinton, J. S.; Raston, C. L. Coiling
of Single-Walled Carbon Nanotubes via Selective Topological Fluid Flow:
Implications for Sensors. ACS applied nano materials2022 , 5 (8), 11586-11594. DOI: 10.1021/acsanm.2c02579.
(43) Alharbi, Thaar M. D.; Al-Antaki, A. H. M.; Moussa, M.; Hutchison,
W. D.; Raston, C. L. Three-step-in-one synthesis of supercapacitor MWCNT
superparamagnetic magnetite composite material under flow.Nanoscale Advances 2019 , 1 (9), 3761-3770,
10.1039/C9NA00346K. DOI: 10.1039/C9NA00346K.
(44) Tong, C. L.; Boulos, R. A.; Yu, C.; Iyer, K. S.; Raston, C. L.
Continuous flow tuning of ordered mesoporous silica under ambient
conditions. RSC Advances 2013 , 3 (41),
18767-18770, 10.1039/C3RA42831A. DOI: 10.1039/C3RA42831A.
(45) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck,
J. S. Ordered mesoporous molecular sieves synthesized by a
liquid-crystal template mechanism. Nature 1992 ,359 (6397), 710-712. DOI: 10.1038/359710a0.
(46) Tong, C. L.; Eroglu, E.; Duan, X.; Lamb, R. N.; Jarrett, K.;
Buckley, C. E.; Raston, C. L. Nitrate uptake using mesoporous silica
embedded with zero-valent palladium nanoparticles. RSC Advances2015 , 5 (26), 20557-20561, 10.1039/C4RA16531D. DOI:
10.1039/C4RA16531D.
(47) Tong, C. L.; Stroeher, U. H.; Brown, M. H.; Raston, C. L.
Continuous flow vortex fluidic synthesis of silica xerogel as a delivery
vehicle for curcumin. RSC Advances 2015 , 5 (11),
7953-7958, 10.1039/C4RA15109G. DOI: 10.1039/C4RA15109G.
(48) Alsulami, I. K.; Alharbi, T. M. D.; Harvey, D. P.; Gibson, C. T.;
Raston, C. L. Controlling the growth of fullerene C60 cones under
continuous flow. Chemical communications (Cambridge, England)2018 , 54 (57), 7896-7899. DOI: 10.1039/c8cc03730b.
(49) Mo, J.; Eggers, P. K.; Chen, X.; Ahamed, M. R. H.; Becker, T.; Yong
Lim, L.; Raston, C. L. Shear induced carboplatin binding within the
cavity of a phospholipid mimic for increased anticancer efficacy.Scientific Reports 2015 , 5 (1), 10414. DOI:
10.1038/srep10414.
(50) Hu, Q.; Hu, H.; Zhang, X.; Fan, K.; Hong, Y.; Raston, C. L.; Tang,
Y. In situ monitored vortex fluidic-mediated protein refolding/unfolding
using an aggregation-induced emission bioprobe. Molecules (Basel,
Switzerland) 2021 , 26 (14), 4273. DOI:
10.3390/molecules26144273.
(51) Kang, M.; Zhang, Z.; Song, N.; Li, M.; Sun, P.; Chen, X.; Wang, D.;
Tang, B. Z. Aggregation-enhanced theranostics: AIE sparkles in
biomedical field. Aggregate 2020 , 1 (1), 80-106.
DOI: https://doi.org/10.1002/agt2.7.
(52) Guo, F.; Gai, W.-P.; Hong, Y.; Tang, B. Z.; Qin, J.; Tang, Y.
Aggregation-induced emission fluorogens as biomarkers to assess the
viability of microalgae in aquatic ecosystems. Chemical
Communications 2015 , 51 (97), 17257-17260,
10.1039/C5CC07012K. DOI: 10.1039/C5CC07012K.
(53) Sitepu, E. K.; Corbin, K.; Luo, X.; Pye, S. J.; Tang, Y.; Leterme,
S. C.; Heimann, K.; Raston, C. L.; Zhang, W. Vortex fluidic mediated
direct transesterification of wet microalgae biomass to biodiesel.Bioresource technology 2018 , 266 , 488-497. DOI:
10.1016/j.biortech.2018.06.103.
(54) Sitepu, E. K.; Jones, D. B.; Tang, Y.; Leterme, S. C.; Heimann, K.;
Zhang, W.; Raston, C. L. Continuous flow biodiesel production from wet
microalgae using a hybrid thin film microfluidic platform.Chemical communications (Cambridge, England) 2018 ,54 (85), 12085-12088. DOI: 10.1039/c8cc07610c.
(55) Jiang, Y.; He, T.; Chen, Y.; Ruan, Y.; Zhou, Y.; Tang, B. Z.; Qin,
J.; Tang, Y. Quantitative evaluation and in vivo visualization of
mercury ion bioaccumulation in rotifers by novel aggregation-induced
emission fluorogen nanoparticles. Environmental Science: Nano2017 , 4 (11), 2186-2192, 10.1039/C7EN00599G. DOI:
10.1039/C7EN00599G.
(56) Britton, J.; Raston, C. L.; Weiss, G. A. Rapid protein
immobilization for thin film continuous flow biocatalysis.Chemical Communications 2016 , 52 (66),
10159-10162, 10.1039/C6CC04210D. DOI: 10.1039/C6CC04210D.
(57) Tavakoli, J.; Pye, S.; Reza, A. H. M. M.; Xie, N.; Qin, J.; Raston,
C. L.; Tang, B. Z.; Tang, Y. Tuning aggregation-induced emission
nanoparticle properties under thin film formation. Materials
Chemistry Frontiers 2020 , 4 (2), 537-545,
10.1039/C9QM00585D. DOI: 10.1039/C9QM00585D.
(58) Tavakoli, J.; Joseph, N.; Raston, C. L.; Tang, Y. A hyper-branched
polymer tunes the size and enhances the fluorescent properties of
aggregation-induced emission nanoparticles. Nanoscale Advances2020 , 2 (2), 633-641, 10.1039/D0NA00044B. DOI:
10.1039/D0NA00044B.