Bibliography

Alday, P. M. (2019). How much baseline correction do we need in ERP research? Extended GLM model can replace baseline correction while lifting its limits. Psychophysiology , 56 (12), e13451. https://doi.org/10.1111/psyp.13451
Alday, P. M., & van Paridon, J. (2021). Away from arbitrary thresholds: Using robust statistics to improve artifact rejection in ERP[Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/wqrb5
Al-Ezzi, A., Kamel, N., Faye, I., & Gunaseli, E. (2020). Review of EEG, ERP, and Brain Connectivity Estimators as Predictive Biomarkers of Social Anxiety Disorder.Frontiers in Psychology , 11 (May). https://doi.org/10.3389/fpsyg.2020.00730
Bach, B., Kerber, A., Aluja, A., Bastiaens, T., Keeley, J. W., Claes, L., Fossati, A., Gutierrez, F., Oliveira, S. E. S., Pires, R., Riegel, K. D., Rolland, J.-P., Roskam, I., Sellbom, M., Somma, A., Spanemberg, L., Strus, W., Thimm, J. C., Wright, A. G. C., & Zimmermann, J. (2020). International Assessment of DSM-5 and ICD-11 Personality Disorder Traits: Toward a Common Nosology in DSM-5.1. Psychopathology , 1–10. https://doi.org/10.1159/000507589
Bach, B., & Mulder, R. (2022). Empirical foundation of the ICD-11 classification of personality disorders. In Personality disorders and pathology: Integrating clinical assessment and practice in the DSM-5 and ICD-11 era (pp. 27–52). American Psychological Association. https://doi.org/10.1037/0000310-003
Bailey, N. W., Biabani, M., Hill, A. T., Miljevic, A., Rogasch, N. C., McQueen, B., Murphy, O. W., & Fitzgerald, P. B. (2022). Introducing RELAX (the Reduction of Electroencephalographic Artifacts): A fully automated pre-processing pipeline for cleaning EEG data - Part 1: Algorithm and Application to Oscillations (p. 2022.03.08.483548). bioRxiv. https://doi.org/10.1101/2022.03.08.483548
Bailey, N. W., Hill, A. T., Biabani, M., Murphy, O. W., Rogasch, N. C., McQueen, B., Miljevic, A., & Fitzgerald, P. B. (2023). RELAX part 2: A fully automated EEG data cleaning algorithm that is applicable to Event-Related-Potentials. Clinical Neurophysiology , S1388245723000287. https://doi.org/10.1016/j.clinph.2023.01.018
Barlow, D. H., Farchione, T. J., Sauer-Zavala, S., Latin, H. M., Ellard, K. K., Bullis, J. R., Bentley, K. H., Boettcher, H. T., & Cassiello-Robbins, C. (2017). Unified protocol for transdiagnostic treatment of emotional disorders: Therapist guide . Oxford University Press.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using Lme4 . Journal of Statistical Software , 67 (1). https://doi.org/10.18637/jss.v067.i01
Bellato, A., Norman, L., Idrees, I., Ogawa, C. Y., Waitt, A., Zuccolo, P. F., Tye, C., Radua, J., Groom, M. J., & Shephard, E. (2021). A systematic review and meta-analysis of altered electrophysiological markers of performance monitoring in Obsessive-Compulsive Disorder (OCD), Gilles de la Tourette Syndrome (GTS), Attention-Deficit/Hyperactivity disorder (ADHD) and Autism. Neuroscience & Biobehavioral Reviews ,131 , 964–987. https://doi.org/10.1016/J.NEUBIOREV.2021.10.018
Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.-M., & Robbins, K. A. (2015). The PREP pipeline: Standardized preprocessing for large-scale EEG analysis.Frontiers in Neuroinformatics , 9 .
BioSemi, Amsterdam. (2021). BioSemi ActiveTwo Mark 2 .
C and H Distributors Inc., Milwaukee, WI, USA. (2021). 3M E-A-RTONE 3A and 5A Audiometric Insert Earphones .
Castellanos, N. P., & Makarov, V. A. (2006). Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis.Journal of Neuroscience Methods , 158 (2), 300–312. https://doi.org/10.1016/j.jneumeth.2006.05.033
Clark, L. A., Cuthbert, B., Lewis-Fernández, R., Narrow, W. E., & Reed, G. M. (2017). Three Approaches to Understanding and Classifying Mental Disorder: ICD-11, DSM-5, and the National Institute of Mental Health’s Research Domain Criteria (RDoC). Psychological Science in the Public Interest , 18 (2), 72–145. https://doi.org/10.1177/1529100617727266
Clayson, P. E. (2020). Moderators of the internal consistency of error-related negativity scores: A meta-analysis of internal consistency estimates.Psychophysiology , 57 (8), 1–27. https://doi.org/10.1111/psyp.13583
Clayson, P. E., Baldwin, S. A., Rocha, H. A., & Larson, M. J. (2021). The data-processing multiverse of event-related potentials (ERPs): A roadmap for the optimization and standardization of ERP processing and reduction pipelines. NeuroImage , 245 , 118712. https://doi.org/10.1016/j.neuroimage.2021.118712
Conway, C. C., Forbes, M. K., & South, S. C. (2022). A Hierarchical Taxonomy of Psychopathology (HiTOP) Primer for Mental Health Researchers.Clinical Psychological Science , 10 (2), 236–258. https://doi.org/10.1177/21677026211017834
Corr, P., & Mobbs, D. (2023). Editorial: An emerging field with bright prospects.Personality Neuroscience , 6 , e1. https://doi.org/10.1017/pen.2022.6
Cowen, P., & Sherwood, A. C. (2013). The role of serotonin in cognitive function: Evidence from recent studies and implications for understanding depression. Journal of Psychopharmacology , 27 (7), 575–583. https://doi.org/10.1177/0269881113482531
Cuthbert, B. N., & Insel, T. R. (2010). Toward new approaches to psychotic disorders: The NIMH research domain criteria project.Schizophrenia Bulletin , 36 (6), 1061–1062. https://doi.org/10.1093/schbul/sbq108
d’Ardhuy, X. L., Boeijinga, P. H., Renault, B., Luthringer, R., Rinaudo, G., Soufflet, L., Toussaint, M., & Macher, J.-P. (1999). Effects of Serotonin-Selective and Classical Antidepressants on the Auditory P300 Cognitive Potential. Neuropsychobiology , 40 (4), 207–213. https://doi.org/10.1159/000026621
de Aguiar Neto, F. S., & Rosa, J. L. G. (2019). Depression biomarkers using non-invasive EEG: A review. Neuroscience & Biobehavioral Reviews , 105 , 83–93. https://doi.org/10.1016/j.neubiorev.2019.07.021
Delorme, A. (2022). EEG is better left alone [Preprint]. Neuroscience. https://doi.org/10.1101/2022.12.03.518987
Delorme, A., & Makeig, S. (2004). EEGLAB: An open sorce toolbox for analysis of single-trial EEG dynamics including independent component anlaysis.Journal of Neuroscience Methods . https://doi.org/10.1016/j.jneumeth.2003.10.009
Donaldson, K. R., Novak, K. D., Foti, D., Marder, M., Perlman, G., Kotov, R., & Mohanty, A. (2020). Associations of mismatch negativity with psychotic symptoms and functioning transdiagnostically across psychotic disorders.Journal of Abnormal Psychology , 129 , 570–580. https://doi.org/10.1037/abn0000506
DSM-IV-TR. (2000). Diagnostic and statistical manual of mental disorders . American Psychiatric Association.
Eppinger, B., Kray, J., Mock, B., & Mecklinger, A. (2008). Better or worse than expected? Aging, learning, and the ERN. Neuropsychologia ,46 (2), 521–539. https://doi.org/10.1016/j.neuropsychologia.2007.09.001
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics , 16 (1), 143–149. https://doi.org/10.3758/BF03203267
Etkin, A., Gyurak, A., & O’Hara, R. (2013). A neurobiological approach to the cognitive deficits of psychiatric disorders. Dialogues in Clinical Neuroscience , 15 (4), 419–429. https://doi.org/10.31887/DCNS.2013.15.4/aetkin
Faure, K., & Forbes, M. K. (2021). Clarifying the Placement of Obsessive-Compulsive Disorder in the Empirical Structure of Psychopathology. Journal of Psychopathology and Behavioral Assessment . https://doi.org/10.1007/s10862-021-09868-1
Feuerriegel, D., & Bode, S. (2022). Bring a map when exploring the ERP data processing multiverse: A commentary on Clayson et al. 2021.NeuroImage , 259 , 119443. https://doi.org/10.1016/j.neuroimage.2022.119443
Fields, E. C., & Kuperberg, G. R. (2020). Having your cake and eating it too: Flexibility and power with mass univariate statistics for ERP data.Psychophysiology , 57 (2), e13468. https://doi.org/10.1111/psyp.13468
Flora, D. B. (2020). Your Coefficient Alpha Is Probably Wrong, but Which Coefficient Omega Is Right? A Tutorial on Using R to Obtain Better Reliability Estimates. Advances in Methods and Practices in Psychological Science , 3 (4), 484–501. https://doi.org/10.1177/2515245920951747
Giordano, G. M., Perrottelli, A., Mucci, A., Di Lorenzo, G., Altamura, M., Bellomo, A., Brugnoli, R., Corrivetti, G., Girardi, P., Monteleone, P., Niolu, C., Galderisi, S., & Maj, M. (2021). Investigating the Relationships of P3b with Negative Symptoms and Neurocognition in Subjects with Chronic Schizophrenia. Brain Sciences ,11 (12), 1632. https://doi.org/10.3390/brainsci11121632
Gohle, D., Juckel, G., Mavrogiorgou, P., Pogarell, O., Mulert, C., Rujescu, D., Giegling, I., Zaudig, M., & Hegerl, U. (2008). Electrophysiological evidence for cortical abnormalities in obsessive-compulsive disorder - A replication study using auditory event-related P300 subcomponents.Journal of Psychiatric Research , 42 (4), 297–303. https://doi.org/10.1016/j.jpsychires.2007.01.003
González-Robles, A., Díaz-García, A., Miguel, C., García-Palacios, A., & Botella, C. (2018). Comorbidity and diagnosis distribution in transdiagnostic treatments for emotional disorders: A systematic review of randomized controlled trials. PLOS ONE , 13 (11), e0207396. https://doi.org/10.1371/journal.pone.0207396
Gorka, S. M., Burkhouse, K. L., Afshar, K., & Phan, K. L. (2017). Error-related brain activity and internalizing disorder symptom dimensions in depression and anxiety. Depression and Anxiety ,34 (11), 985–995. https://doi.org/10.1002/da.22648
Granros, M. P. (2021). Neural Reactivity to Affective Stimuli and Internalizing Symptom Dimensions in a Transdiagnostic Sample [Thesis, University of Illinois at Chicago]. https://doi.org/10.25417/uic.17025860.v1
Hajcak, G., Klawohn, J., & Meyer, A. (2019). The Utility of Event-Related Potentials in Clinical Psychology. Annual Review of Clinical Psychology , 15 (1), 71–95. https://doi.org/10.1146/annurev-clinpsy-050718-095457
Hall, J. R., Bernat, E. M., & Patrick, C. J. (2007). Externalizing Psychopathology and the Error-Related Negativity. Psychological Science , 18 (4), 326–333. https://doi.org/10.1111/j.1467-9280.2007.01899.x
Harris, P. A., Taylor, R., Minor, B. L., Elliott, V., Fernandez, M., O’Neal, L., McLeod, L., Delacqua, G., Delacqua, F., Kirby, J., & Duda, S. N. (2019). The REDCap consortium: Building an international community of software platform partners. Journal of Biomedical Informatics ,95 , 103208. https://doi.org/10.1016/j.jbi.2019.103208
He, W., Chai, H., Zheng, L., Yu, W., Chen, W., Li, J., Chen, W., & Wang, W. (2010). Mismatch negativity in treatment-resistant depression and borderline personality disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry , 34 (2), 366–371. https://doi.org/10.1016/j.pnpbp.2009.12.021
Howe, A. S., Pinto, A., & De Luca, V. (2014). Meta-analysis of P300 waveform in panic disorder. Experimental Brain Research , 232 (10), 3221–3232. https://doi.org/10.1007/s00221-014-3999-5
Hutsebaut, J., Feenstra, D. J., & Kamphuis, J. H. (2016). Development and Preliminary Psychometric Evaluation of a Brief Self-Report Questionnaire for the Assessment of the DSM-5 Level of Personality Functioning Scale: The LPFS Brief Form (LPFS-BF). Personality Disorders: Theory, Research, and Treatment , 7 (2), 192–197. https://doi.org/10.1037/per0000159
Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A. M., Rosseel, Y., Miller, P., Quick, C., Garnier-Villarreal, M., Selig, J., Boulton, A., Preacher, K., Coffman, D., Rhemtulla, M., Robitzsch, A., Enders, C., Arslan, R., Clinton, B., Panko, P., Merkle, E., Chesnut, S., … Johnson, A. R. (2022). semTools: Useful Tools for Structural Equation Modeling .
Kessler, R. C., Barker, P. R., Colpe, L. J., Epstein, J. F., Gfroerer, J. C., Hiripi, E., Howes, M. J., Normand, S. L. T., Manderscheid, R. W., Walters, E. E., & Zaslavsky, A. M. (2003). Screening for serious mental illness in the general population. Archives of General Psychiatry , 60 (2), 184–189. https://doi.org/10.1001/archpsyc.60.2.184
Kiebel, S. J., & Friston, K. J. (2004). Statistical parametric mapping for event-related potentials (II): A hierarchical temporal model.NeuroImage , 22 (2), 503–520. https://doi.org/10.1016/j.neuroimage.2004.02.013
Klawohn, J., Santopetro, N. J., Meyer, A., & Hajcak, G. (2020). Reduced P300 in depression: Evidence from a flanker task and impact on ERN, CRN, and Pe.Psychophysiology , 57 (4), e13520. https://doi.org/10.1111/PSYP.13520
Klug, M., & Kloosterman, N. A. (2021). Zapline-plus: A Zapline extension for automatic and adaptive removal of frequency-specific noise artifacts in M/EEG . 20.
Kotov, R., Cicero, D. C., Conway, C. C., DeYoung, C. G., Dombrovski, A., Eaton, N. R., First, M. B., Forbes, M. K., Hyman, S. E., Jonas, K. G., Krueger, R. F., Latzman, R. D., Li, J. J., Nelson, B. D., Regier, D. A., Rodriguez-Seijas, C., Ruggero, C. J., Simms, L. J., Skodol, A. E., … Wright, A. G. C. (2022). The Hierarchical Taxonomy of Psychopathology (HiTOP) in psychiatric practice and research.Psychological Medicine , 52 (9), 1666–1678. https://doi.org/10.1017/S0033291722001301
Kotov, R., Jonas, K. G., Carpenter, W. T., Dretsch, M. N., Eaton, N. R., Forbes, M. K., Forbush, K. T., Hobbs, K., Reininghaus, U., Slade, T., South, S. C., Sunderland, M., Waszczuk, M. A., Widiger, T. A., Wright, A. G. C., Zald, D. H., Krueger, R. F., & Watson, D. (2020). Validity and utility of Hierarchical Taxonomy of Psychopathology (HiTOP): I. Psychosis superspectrum. World Psychiatry , 19 (2), 151–172. https://doi.org/10.1002/wps.20730
Kotov, R., Waszczuk, M. A., Krueger, R. F., Forbes, M. K., Watson, D., Clark, L. A., Achenbach, T. M., Althoff, R. R., Ivanova, M. Y., Michael Bagby, R., Brown, T. A., Carpenter, W. T., Caspi, A., Moffitt, T. E., Eaton, N. R., Forbush, K. T., Goldberg, D., Hasin, D., Hyman, S. E., … Zimmerman, M. (2017). The hierarchical taxonomy of psychopathology (HiTOP): A dimensional alternative to traditional nosologies.Journal of Abnormal Psychology , 126 (4), 454–477. https://doi.org/10.1037/abn0000258
Kruiper, C., Fagerlund, B., Nielsen, M. Ø., Düring, S., Jensen, M. H., Ebdrup, B. H., Glenthøj, B. Y., & Oranje, B. (2019). Associations between P3a and P3b amplitudes and cognition in antipsychotic-naïve first-episode schizophrenia patients. Psychological Medicine , 49 (5), 868–875. https://doi.org/10.1017/S0033291718001575
Larson, M. J., Clayson, P. E., & Clawson, A. (2014). Making sense of all the conflict: A theoretical review and critique of conflict-related ERPs.International Journal of Psychophysiology , 93 (3), 283–297. https://doi.org/10.1016/J.IJPSYCHO.2014.06.007
Latzman, R. D., & DeYoung, C. G. (2020). Using empirically-derived dimensional phenotypes to accelerate clinical neuroscience: The Hierarchical Taxonomy of Psychopathology (HiTOP) framework.Neuropsychopharmacology , 45 (7), 1083–1085. https://doi.org/10.1038/s41386-020-0639-6
Lavoie, S., Polari, A. R., Goldstone, S., Nelson, B., & McGorry, P. D. (2019). Staging model in psychiatry: Review of the evolution of electroencephalography abnormalities in major psychiatric disorders.Early Intervention in Psychiatry , December 2018 , 1–10. https://doi.org/10.1111/eip.12792
Levin-Aspenson, H. F., Watson, D., Clark, L. A., & Zimmerman, M. (2021). What Is the General Factor of Psychopathology? Consistency of the p Factor Across Samples. Assessment , 28 (4), 1035–1049. https://doi.org/10.1177/1073191120954921
Liu, Y., Shen, X., Zhu, Y., Xu, Y., Cai, W., Shen, M., Yu, R., & Wang, W. (2007). Mismatch negativity in paranoid, schizotypal, and antisocial personality disorders. Neurophysiologie Clinique/Clinical Neurophysiology , 37 (2), 89–96. https://doi.org/10.1016/j.neucli.2007.03.001
Luck, S. J. (2014). An introduction to the event-related potential technique .
Luck, S. J., & Gaspelin, N. (2017). How to get statistically significant effects in any ERP experiment (and why you shouldn’t). Psychophysiology ,54 (1), 146–157. https://doi.org/10.1111/psyp.12639
Luck, S. J., & Kappenman, E. S. (2011). The Oxford handbook of event-related potential components . Oxford university press.
Luke, S. G. (2017). Evaluating significance in linear mixed-effects models in R. Behavior Research Methods , 49 (4), 1494–1502. https://doi.org/10.3758/s13428-016-0809-y
Lutz, M. C., Kok, R., Verveer, I., Malbec, M., Koot, S., Van Lier, P. A. C., & Franken, I. H. A. (2021). Diminished error-related negativity and error positivity in children and adults with externalizing problems and disorders: A meta-analysis on error processing. Journal of Psychiatry and Neuroscience , 46 (6), E615–E627. https://doi.org/10.1503/jpn.200031
Macedo, I., Pasion, R., Barbosa, F., & Ferreira-Santos, F. (2021). A dimensional approach to the neuronal correlates of anxiety, depression, and perfectionism: A transdiagnostic dissociation of error-related brain activity. Behavioural Brain Research , 408 , 113271. https://doi.org/10.1016/j.bbr.2021.113271
Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods , 164 (1), 177–190. https://doi.org/10.1016/j.jneumeth.2007.03.024
Maron, E., & Nutt, D. (2022). Biological markers of generalized anxiety disorder. Dialogues in Clinical Neuroscience , 19 (2), 147–158. https://doi.org/10.31887/DCNS.2017.19.2/dnutt
Mathworks. (2022).MATLAB version 9.3.0.713579 (R2022a) . The Mathworks, Inc.
Mavrogiorgou, P., Juckel, G., Frodl, T., Gallinat, J., Hauke, W., Zaudig, M., Dammann, G., Möller, H. J., & Hegerl, U. (2002). P300 subcomponents in obsessive-compulsive disorder. Journal of Psychiatric Research ,36 (6), 399–406. https://doi.org/10.1016/S0022-3956(02)00055-9
Mensen, A., & Khatami, R. (2013). Advanced EEG analysis using threshold-free cluster-enhancement and non-parametric statistics. NeuroImage ,67 , 111–118. https://doi.org/10.1016/j.neuroimage.2012.10.027
Michelini, G., Palumbo, I. M., DeYoung, C. G., Latzman, R. D., & Kotov, R. (2021). Linking RDoC and HiTOP: A new interface for advancing psychiatric nosology and neuroscience. Clinical Psychology Review , 86 . https://doi.org/10.1016/j.cpr.2021.102025
Morey, R. D., Hoekstra, R., Rouder, J. N., Lee, M. D., & Wagenmakers, E.-J. (2016). The fallacy of placing confidence in confidence intervals.Psychonomic Bulletin & Review , 23 , 103–123. https://doi.org/10.3758/s13423-015-0947-8
Neurobehavioral Systems, B., Inc. (2021). Presentation , Version 23.0 .
Nielsen, A. N., Barch, D. M., Petersen, S. E., Schlaggar, B. L., & Greene, D. J. (2020). Machine Learning With Neuroimaging: Evaluating Its Applications in Psychiatry. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging , 5 (8), 791–798. https://doi.org/10.1016/j.bpsc.2019.11.007
Olvet, D. M., & Hajcak, G. (2009a). Reliability of error-related brain activity. Brain Research , 1284 , 89–99. https://doi.org/10.1016/j.brainres.2009.05.079
Olvet, D. M., & Hajcak, G. (2009b). The stability of error-related brain activity with increasing trials. Psychophysiology , 46 (5), 957–961. https://doi.org/10.1111/j.1469-8986.2009.00848.x
Olvet, D. M., Klein, D. N., & Hajcak, G. (2010). Depression symptom severity and error-related brain activity. Psychiatry Research ,179 (1), 30–37. https://doi.org/10.1016/j.psychres.2010.06.008
Onitsuka, T., Oribe, N., Nakamura, I., & Kanba, S. (2013). Review of neurophysiological findings in patients with schizophrenia. Psychiatry and Clinical Neurosciences , 67 (7), 461–470. https://doi.org/10.1111/pcn.12090
Oranje, B., Jensen, K., Wienberg, M., & Glenthøj, B. Y. (2008-06-31). Divergent effects of increased serotonergic activity on psychophysiological parameters of human attention. The International Journal of Neuropsychopharmacology / Official Scientific Journal of the Collegium Internationale Neuropsychopharmacologicum (CINP) , 11 (4), 453–463. https://doi.org/10.1017/S1461145707008176
Overbeek, T. J. M., Nieuwenhuis, S., & Ridderinkhof, K. R. (2005). Dissociable Components of Error Processing. Journal of Psychophysiology ,19 (4), 319–329. https://doi.org/10.1027/0269-8803.19.4.319
Parker, D. A., Trotti, R. L., McDowell, J. E., Keedy, S. K., Hill, S. K., Gershon, E. S., Ivleva, E. I., Pearlson, G. D., Keshavan, M. S., Tamminga, C. A., & Clementz, B. A. (2021). Auditory Oddball Responses Across the Schizophrenia-Bipolar Spectrum and Their Relationship to Cognitive and Clinical Features. American Journal of Psychiatry ,178 (10), 952–964. https://doi.org/10.1176/appi.ajp.2021.20071043
Pasion, R., & Barbosa, F. (2019). ERN as a transdiagnostic marker of the internalizing-externalizing spectrum: A dissociable meta-analytic effect. Neuroscience and Biobehavioral Reviews , 103 (May), 133–149. https://doi.org/10.1016/j.neubiorev.2019.06.013
Paterniti, S., Dufouil, C., Bisserbe, J.-C., & Alpérovitch, A. (1999). Anxiety, depression, psychotropic drug use and cognitive impairment.Psychological Medicine , 29 (2), 421–428. https://doi.org/10.1017/S0033291798008010
Patrick, C. J., Bernat, E. M., Malone, S. M., Iacono, W. G., Krueger, R. F., & McGue, M. (2006). P300 amplitude as an indicator of externalizing in adolescent males. Psychophysiology , 43 (1), 84–92. https://doi.org/10.1111/j.1469-8986.2006.00376.x
Perkins, E. R., Latzman, R. D., & Patrick, C. J. (2019). Interfacing neural constructs with the Hierarchical Taxonomy of Psychopathology : “Why” and “how.” Personality and Mental Health , 6 , pmh.1460. https://doi.org/10.1002/pmh.1460
Pernet, C. R. (2015). Cluster-based computational methods for mass univariate analyses of event-related brain potentials/fields: A simulation study | Elsevier Enhanced Reader . https://doi.org/10.1016/j.jneumeth.2014.08.003
Pernet, C. R., Appelhoff, S., Gorgolewski, K. J., Flandin, G., Phillips, C., Delorme, A., & Oostenveld, R. (2019). EEG-BIDS, an extension to the brain imaging data structure for electroencephalography.Scientific Data , 6 (1), 6–10. https://doi.org/10.1038/s41597-019-0104-8
Pernet, C. R., Chauveau, N., Gaspar, C., & Rousselet, G. A. (2011). LIMO EEG: A Toolbox for Hierarchical LInear MOdeling of ElectroEncephaloGraphic Data. Computational Intelligence and Neuroscience , 2011 , 1–11. https://doi.org/10.1155/2011/831409
Pernet, C. R., Martinez-Cancino, R., Truong, D., Makeig, S., & Delorme, A. (2021). From BIDS-Formatted EEG Data to Sensor-Space Group Results: A Fully Reproducible Workflow With EEGLAB and LIMO EEG. Frontiers in Neuroscience , 14 (January), 1–7. https://doi.org/10.3389/fnins.2020.610388
Pernet, C., Mas, I. S., Rousselet, G., Martinez, R., Wilcox, R., & Delorme, A. (2022). Electroencephalography robust statistical linear modelling using a single weight per trial. Aperture Neuro , 2022 (7), 51. https://doi.org/10.52294/2e69f7cc-f061-40ad-ad77-017110464dfd
Petrolini, V., & Vicente, A. (2022). The challenges raised by comorbidity in psychiatric research: The case of autism. Philosophical Psychology , 35 (8), 1234–1263. https://doi.org/10.1080/09515089.2022.2052829
Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S. (2019). ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. NeuroImage , 198 , 181–197. https://doi.org/10.1016/j.neuroimage.2019.05.026
Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b.Clinical Neurophysiology , 118 (10), 2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019
Polich, J. (2020). 50+ years of P300: Where are we now? Psychophysiology ,57 (7). https://doi.org/10.1111/psyp.13616
R Core Team. (2023). R: A language and environment for statistical computing [Manual]. R Foundation for Statistical Computing.
Randau, M., Reinholt, N., Pernet, C., Oranje, B., Rasmussen, B., & Arnfred, S. (2023). Robust single-trial event-related potentials differentiate between Distress and Fear disorder . https://doi.org/10.22541/au.168998357.78763078/v1
Reinholt, N., Hvenegaard, M., Christensen, A. B., Eskildsen, A., Hjorthøj, C., Poulsen, S., Arendt, M. B., Rosenberg, N. K., Gryesten, J. R., Aharoni, R. N., Alrø, A. J., Christensen, C. W., & Arnfred, S. M. (2021). Transdiagnostic versus Diagnosis-Specific Group Cognitive Behavioral Therapy for Anxiety Disorders and Depression: A Randomized Controlled Trial. Psychotherapy and Psychosomatics , 91 (1), 36–49. https://doi.org/10.1159/000516380
Riesel, A., Härpfer, K., Thoma, L., Kathmann, N., & Klawohn, J. (2022). Associations of neural error-processing with symptoms and traits in a dimensional sample recruited across the obsessivecompulsive spectrum.Psychophysiology , 60 (2), e14164. https://doi.org/10.1111/psyp.14164
Rosellini, A. J., & Brown, T. A. (2019). The Multidimensional Emotional Disorder Inventory (MEDI): Assessing transdiagnostic dimensions to validate a profile approach to emotional disorder classification.Psychological Assessment , 31 (1), 59–72. https://doi.org/10.1037/pas0000649
Sassenhagen, J., & Draschkow, D. (2019). Cluster-based permutation tests of MEG/EEG data do not establish significance of effect latency or location.Psychophysiology , 56 (6), e13335. https://doi.org/10.1111/psyp.13335
Seow, T. X. F., Benoit, E., Dempsey, C., Jennings, M., Maxwell, A., McDonough, M., & Gillan, C. M. (2020). A dimensional investigation of error-related negativity (ERN) and self-reported psychiatric symptoms.International Journal of Psychophysiology , 158 (October), 340–348. https://doi.org/10.1016/j.ijpsycho.2020.09.019
Sheehan. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): The Development and Validation of a Structured Diagnostic Psychiatric Interview for DSM-IV and ICD-10. In J Clin Psychiatry (suppl 20; Vol. 59, pp. 0–0). Physicians Postgraduate Press, Inc.
Simó, M., Gurtubay-Antolin, A., Vaquero, L., Bruna, J., & Rodríguez-Fornells, A. (2018). Performance monitoring in lung cancer patients pre- and post-chemotherapy using fine-grained electrophysiological measures.NeuroImage: Clinical , 18 , 86–96. https://doi.org/10.1016/j.nicl.2017.12.032
Singh, I., & Rose, N. (2009). Biomarkers in psychiatry. Nature ,460 (7252), 202–207. https://doi.org/10.1038/460202a
Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage , 44 (1), 83–98. https://doi.org/10.1016/j.neuroimage.2008.03.061
Swainston, J., Louis, C., Moser, J., & Derakshan, N. (2021). Neurocognitive efficiency in breast cancer survivorship: A performance monitoring ERP study. International Journal of Psychophysiology , 168 , 9–20. https://doi.org/10.1016/j.ijpsycho.2021.06.013
Tanner, D., Norton, J. J. S., Morgan-Short, K., & Luck, S. J. (2016). On high-pass filter artifacts (they’re real) and baseline correction (it’s a good idea) in ERP/ERMF analysis. Journal of Neuroscience Methods , 266 , 166–170. https://doi.org/10.1016/j.jneumeth.2016.01.002
Tanovic, E., Hajcak, G., & Sanislow, C. A. (2017). Rumination is associated with diminished performance monitoring. Emotion , 17 (6), 953–964. https://doi.org/10.1037/emo0000290
Tseng, Y.-J., Nouchi, R., & Cheng, C.-H. (2021). Mismatch negativity in patients with major depressive disorder: A meta-analysis. Clinical Neurophysiology , 132 (10), 2654–2665. https://doi.org/10.1016/j.clinph.2021.06.019
Wager, T. D., Keller, M. C., Lacey, S. C., & Jonides, J. (2005). Increased sensitivity in neuroimaging analyses using robust regression.NeuroImage , 26 (1), 99–113. https://doi.org/10.1016/j.neuroimage.2005.01.011
Waszczuk, M. A., Eaton, N. R., Krueger, R. F., Shackman, A. J., Waldman, I. D., Zald, D. H., Lahey, B. B., Patrick, C. J., Conway, C. C., Ormel, J., Hyman, S. E., Fried, E. I., Forbes, M. K., Docherty, A. R., Althoff, R. R., Bach, B., Chmielewski, M., DeYoung, C. G., Forbush, K. T., … Kotov, R. (2020). Redefining phenotypes to advance psychiatric genetics: Implications from hierarchical taxonomy of psychopathology.Journal of Abnormal Psychology , 129 (2), 143–161. https://doi.org/10.1037/abn0000486
Watson, D., Levin-Aspenson, H. F., Waszczuk, M. A., Conway, C. C., Dalgleish, T., Dretsch, M. N., Eaton, N. R., Forbes, M. K., Forbush, K. T., Hobbs, K. A., Michelini, G., Nelson, B. D., Sellbom, M., Slade, T., South, S. C., Sunderland, M., Waldman, I., Witthöft, M., Wright, A. G. C., … Zinbarg, R. E. (2022). Validity and utility of Hierarchical Taxonomy of Psychopathology (HiTOP): III. Emotional dysfunction superspectrum. World Psychiatry : Official Journal of the World Psychiatric Association (WPA) , 21 (1), 26–54. https://doi.org/10.1002/WPS.20943
Wendt, L. P., Jankowsky, K., Zimmermann, J., Schroeders, U., Nolte, T., Fonagy, P., Montague, P. R., & Olaru, G. (2021). Established self-report questionnaires of psychopathology can be efficiently summarized with HiTOP. PsyArXiv , January .
Wessel, J. R. (2012). Error awareness and the error-related negativity: Evaluating the first decade of evidence. Frontiers in Human Neuroscience , 6 .
WHO. (2004). ICD-10, International statistical classification of diseases and related health problems . World Health Organization.
Widiger, T. A., & Oltmanns, J. R. (2017). Neuroticism is a fundamental domain of personality with enormous public health implications. World Psychiatry , 16 (2), 144–145. https://doi.org/10.1002/wps.20411
Wienberg, M., Glenthoj, B., Jensen, K., & Oranje, B. (2010). A single high dose of escitalopram increases mismatch negativity without affecting processing negativity or P300 amplitude in healthy volunteers. Journal of Psychopharmacology , 24 (8), 1183–1192. https://doi.org/10.1177/0269881109102606
Wilcox, R. R., & Rousselet, G. A. (2018). A Guide to Robust Statistical Methods in Neuroscience. Current Protocols in Neuroscience , 82 (1), 8.42.1–8.42.30. https://doi.org/10.1002/cpns.41
Winkler, I., Debener, S., Muller, K. R., & Tangermann, M. (2015). On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS ,2015-Novem , 4101–4105. https://doi.org/10.1109/EMBC.2015.7319296
Winkler, I., Denham, S., & Escera, C. (2013). Auditory Event-related Potentials. In D. Jaeger & R. Jung (Eds.), Encyclopedia of Computational Neuroscience (pp. 1–29). Springer. https://doi.org/10.1007/978-1-4614-7320-6_99-1
Zald, D. H., & Lahey, B. B. (2017). Implications of the Hierarchical Structure of Psychopathology for Psychiatric Neuroimaging.Biological Psychiatry: Cognitive Neuroscience and Neuroimaging ,2 (4), 310–317. https://doi.org/10.1016/j.bpsc.2017.02.003