Electrochemical measurements
All electrochemical CO2 reduction experiments were
performed at room temperature and normal pressure on a three-electrode
system in an H-type cell (separated by a Nafion 117 membrane) with a CHI
760e potentiostat. The catalyst coated carbon fiber paper (1 × 1
cm2), Ag/AgCl electrode and platinum slice were used
as working, reference and counter electrode, respectively. The
electrolyte was 0.5 M KHCO3 aqueous solution. The
potential was converted to the reversible hydrogen electrode (RHE) scale
according to the Nernst equation: E (vs. RHE) = E (vs. Ag/AgCl) + 0.059
× pH + 0.198 V. The gaseous products (i.e., H2 and CO)
were quantified by a gas chromatography (GC-2014, SHIMADZU) equipped
with a flame ionization detector (FID) for CO and a thermal conductivity
detector (TCD) for H2 quantification. The flow rate of
CO2 was controlled at 20 cc/min at the inlet of
electrochemical cell. The liquid-phase products were quantified on a
nuclear magnetic resonance spectroscopy (NMR, Bruker Avance III 600 MHz)
with dimethyl sulfoxide (DMSO) as the internal standard.
Other experimental details and characterization data are available in
Supporting Information.
Supporting Information
The supporting information for this article is available on the WWW
under https://doi.org/10.1002/cjoc.2023xxxxx.
Acknowledgement
This work was financially supported by National Natural Science
Foundation of China (No. 21974103),
the start-up funds of Wuhan University and the Experimental Supporting
System at Shanghai Synchrotron Radiation Facility.
References
[1] Gu, J.;Hsu, C. S.;Bai, L.;Chen, H. M.; Hu, X. Atomically
dispersed Fe (3+) sites catalyze efficient CO2electroreduction to CO. Science 2019 , 364 ,
1091-1094.
[2] Jiao, J.;Lin, R.;Liu, S.;Cheong, W. C.;Zhang, C.;Chen, Z.;Pan,
Y.;Tang, J.;Wu, K.;Hung, S. F.;Chen, H. M.;Zheng, L.;Lu, Q.;Yang, X.;Xu,
B.;Xiao, H.;Li, J.;Wang, D.;Peng, Q.;Chen, C.; Li, Y. Copper atom-pair
catalyst anchored on alloy nanowires for selective and efficient
electrochemical reduction of CO2. Nat. Chem.2019 , 11 , 222-228.
[3] Wang, Q.;Liu, K.;Hu, K.;Cai, C.;Li, H.;Li, H.;Herran, M.;Lu, Y.
R.;Chan, T. S.;Ma, C.;Fu, J.;Zhang, S.;Liang, Y.;Cortes, E.; Liu, M.
Attenuating metal-substrate conjugation in atomically dispersed nickel
catalysts for electroreduction of CO2 to CO. Nat.
Commun. 2022 , 13 , 6082.
[4] Ou, H.;Ning, S.;Zhu, P.;Chen, S.;Han, A.;Kang, Q.;Hu, Z.;Ye,
J.;Wang, D.; Li, Y. Carbon Nitride Photocatalysts with Integrated
Oxidation and Reduction Atomic Active Centers for Improved
CO2 Conversion. Angew. Chem. Int. Ed.2022 , 61, e2022065.
[5] Wei, Z.;Ding, J.;Duan, X.;Chen, G.-L.;Wu, F.-Y.;Zhang, L.;Yang,
X.;Zhang, Q.;He, Q.;Chen, Z.;Huang, J.;Hung, S.-F.;Yang, X.; Zhai, Y.
Enhancing Selective Electrochemical CO2 Reduction by In
Situ Constructing Tensile-Strained Cu Catalysts. ACS Catal.2023 , 13, 4711–4718.
[6] Huang, J. R.;Qiu, X. F.;Zhao, Z. H.;Zhu, H. L.;Liu, Y. C.;Shi,
W.;Liao, P. Q.; Chen, X. M. Single-Product Faradaic Efficiency for
Electrocatalytic of CO2 to CO at Current Density Larger
than 1.2 A cm-2 in Neutral Aqueous Solution by a
Single-Atom Nanozyme. Angew. Chem. Int. Ed. 2022 ,61 , e202210985.
[7] Qiao, B.;Wang, A.;Yang, X.;Allard, L. F.;Jiang, Z.;Cui, Y.;Liu,
J.;Li,
J.; Zhang, T. Single-atom catalysis of CO oxidation using
Pt1/FeOx. Nat. Chem. 2011, 3,
634-641.
[8] Wang, A.;Li, J.; Zhang, T. Heterogeneous single-atom catalysis.
Nat. Rev. Chem. 2018, 2, 65-81.
[9]Zhu, J.;Xiao, M.;Ren, D.;Gao,
R.;Liu,X.;Zhang,Z.;Luo,D.;Xing,W.;Su, D.;Yu, A.; Chen, Z.
Quasi-Covalently Coupled Ni-Cu Atomic Pair for Synergistic
Electroreduction of CO2. J. Am. Chem. Soc.2022 , 144 , 9661-9671.
[10] Han, S. G.;Ma, D. D.; Zhu, Q. L. Atomically Structural
Regulations of Carbon-Based Single-Atom Catalysts for Electrochemical
CO2 Reduction. Small Methods 2021 ,5 , e2100102.
[11] Ma, X.;Du, J.;Sun, H.;Ye, F.;Wang, X.;Xu, P.;Hu, C.;Zhang, L.;
Liu, D. Boron, nitrogen co-doped carbon with abundant mesopores for
efficient CO2 electroreduction. Appl. Catal. B
Environ. 2021 , 298 .
[12] Chen, S.;Li, X.;Kao, C. W.;Luo, T.;Chen, K.;Fu, J.;Ma, C.;Li,
H.;Li, M.;Chan, T. S.; Liu, M. Unveiling the Proton-Feeding Effect in
Sulfur-Doped Fe-N-C Single-Atom Catalyst for Enhanced
CO2 Electroreduction. Angew. Chem. Int. Ed.2022 , 61 , e202206233.
[13] Zhuang, Z.;Xia, L.;Huang, J.;Zhu, P.;Li, Y.;Ye, C.;Xia, M.;Yu,
R.;Lang, Z.;Zhu, J.;Zheng, L.;Wang, Y.;Zhai, T.;Zhao, Y.;Wei, S.;Li,
J.;Wang, D.; Li, Y. Continuous Modulation of Electrocatalytic Oxygen
Reduction Activities of Single-Atom Catalysts through p-n Junction
Rectification. Angew. Chem. Int. Ed. 2023 , 62 ,
e202212335.
[14] Chen, Z.;Su, X.;Ding, J.;Yang, N.;Zuo, W.;He, Q.;Wei, Z.;Zhang,
Q.;Huang, J.; Zhai, Y. Boosting oxygen reduction reaction with Fe and Se
dual-atom sites supported by nitrogen-doped porous carbon. Appl.
Catal. B Environ. 2022 , 308 .
[15] Yang, H. B.;Hung, S.-F.;Liu, S.;Yuan, K.;Miao, S.;Zhang,
L.;Huang, X.;Wang, H.-Y.;Cai, W.;Chen, R.;Gao, J.;Yang, X.;Chen,
W.;Huang, Y.;Chen, H. M.;Li, C. M.;Zhang, T.; Liu, B. Atomically
dispersed Ni(i) as the active site for electrochemical
CO2 reduction. Nat. Energy 2018 ,3 , 140-147.
[16] Li, K.;Zhang, S.;Zhang, X.;Liu, S.;Jiang, H.;Jiang, T.;Shen,
C.;Yu, Y.; Chen, W. Atomic Tuning of Single-Atom Fe-N-C Catalysts with
Phosphorus for Robust Electrochemical CO2 Reduction.Nano Lett 2022 , 22 , 1557-1565.
[17] Ding, T.;Liu, X.;Tao, Z.;Liu, T.;Chen, T.;Zhang, W.;Shen,
X.;Liu, D.;Wang, S.;Pang, B.;Wu, D.;Cao, L.;Wang, L.;Liu, T.;Li,
Y.;Sheng, H.;Zhu, M.; Yao, T. Atomically Precise Dinuclear Site Active
toward Electrocatalytic CO2 Reduction. J. Am.
Chem. Soc. 2021 , 143 , 11317-11324.
[18] Kong, X.;Ke, J.;Wang, Z.;Liu, Y.;Wang, Y.;Zhou, W.;Yang,
Z.;Yan, W.;Geng, Z.; Zeng, J. Co-based molecular catalysts for efficient
CO2 reduction via regulating spin states. Appl.
Catal. B Environ. 2021 , 290 .
[19] Ding, J.;Teng, Z.;Su, X.;Kato, K.;Liu, Y.;Xiao, T.;Liu, W.;Liu,
L.;Zhang, Q.;Ren, X.;Zhang, J.;Chen, Z.;Teruhisa, O.;Yamakata, A.;Yang,
H.;Huang, Y.;Liu, B.; Zhai, Y. Asymmetrically coordinated cobalt single
atom on carbon nitride for highly selective photocatalytic oxidation of
CH4 to CH3OH. Chem.2023 , 9, 1017.
[20] Chen, Z.;Niu, H.;Ding, J.;Liu, H.;Chen, P. H.;Lu, Y. H.;Lu, Y.
R.;Zuo, W.;Han, L.;Guo, Y.;Hung, S. F.; Zhai, Y. Unraveling the Origin
of Sulfur-Doped Fe-N-C Single-Atom Catalyst for Enhanced Oxygen
Reduction Activity: Effect of Iron Spin-State Tuning. Angew. Chem.
Int. Ed. 2021 , 60 , 25404-25410.
[21] Liu, Y.;Ding, J.;Li, F.;Su, X.;Zhang, Q.;Guan, G.;Hu, F.;Zhang,
J.;Wang, Q.;Jiang, Y.;Liu, B.; Yang, H. B.
Modulating Hydrogen Adsorption via
Charge Transfer at Semiconductor-Metal Heterointerface for Highly
Efficient Hydrogen Evolution Catalysis. Adv. Mater.2023, 35, 2207114.
[22] Huang, Y.;Jiang, L.-W.;Liu, H.; Wang, J.-J. Electronic
structure regulation and polysulfide bonding of Co-doped (Ni,
Fe)1+xS enable highly efficient and stable
electrocatalytic overall water splitting. Chem. Eng. J.2022 , 441 .
[23] Ghorai, U. K.;Paul, S.;Ghorai, B.;Adalder, A.;Kapse, S.;Thapa,
R.;Nagendra, A.; Gain, A. Scalable Production of Cobalt Phthalocyanine
Nanotubes: Efficient and Robust Hollow Electrocatalyst for Ammonia
Synthesis at Room Temperature. ACS Nano 2021 , 15 ,
5230-5239.
[24] Liu, J.;Li, P.;Bi, J.;Wang, Y.;Zhu, Q.;Sun, X.;Zhang, J.;Liu,
Z.; Han, B. Sm and S Co‐doping to Construct Homo‐hetero Cu Catalysts for
Synergistic Enhancing CO2 Electroreduction†. Chin.
J. Chem. 2023 , 41 , 1443-1449.
[25] Gunathunge, C. M.;Li, J.;Li, X.;Hong, J. J.; Waegele, M. M.
Revealing the Predominant Surface Facets of Rough Cu Electrodes under
Electrochemical Conditions. ACS Catal. 2020 , 10 ,
6908-6923.
[26] Cui, R.;Yuan, Q.;Zhang, C.;Yang, X.;Ji, Z.;Shi, Z.;Han,
X.;Wang, Y.;Jiao, J.; Lu, T. Revealing the Behavior of Interfacial Water
in Te-Doped Bi via Operando Infrared Spectroscopy for Improving
Electrochemical CO2 Reduction. ACS Catal.2022 , 12 , 11294-11300.
[27] Dunwell, M.;Yang, X.;Setzler, B. P.;Anibal, J.;Yan, Y.; Xu, B.
Examination of Near-Electrode Concentration Gradients and Kinetic
Impacts on the Electrochemical Reduction of CO2 using
Surface-Enhanced Infrared Spectroscopy. ACS Catal. 2018 ,8 , 3999-4008.
[28] Sun, K.;Yu, K.;Fang, J.;Zhuang, Z.;Tan, X.;Wu, Y.;Zeng,
L.;Zhuang, Z.;Pan, Y.; Chen, C. Nature-inspired design of
molybdenum-selenium dual-single-atom electrocatalysts for
CO2 reduction. Adv. Mater. 2022 , 34,
2206478
[29] Li, H.;Jiang, T.-W.;Qin, X.;Chen, J.;Ma, X.-Y.;Jiang, K.;Zhang,
X.-G.; Cai, W.-B. Selective Reduction of CO2 to CO on an
Sb-Modified Cu Electrode: Spontaneous Fabrication and Physical Insight.ACS Catal. 2021 , 11 , 6846-6856.
[30] Li, Y.;Wei, B.;Zhu, M.;Chen, J.;Jiang, Q.;Yang, B.;Hou, Y.;Lei,
L.;Li, Z.;Zhang, R.; Lu, Y. Synergistic Effect of Atomically Dispersed
Ni-Zn Pair Sites for Enhanced CO2 Electroreduction.Adv. Mater. 2021 , 33 , e2102212.
[31] Ma, W.;Xie, S.;Zhang, X. G.;Sun, F.;Kang, J.;Jiang, Z.;Zhang,
Q.;Wu, D. Y.; Wang, Y. Promoting electrocatalytic CO2reduction to formate via sulfur-boosting water activation on indium
surfaces. Nat. Commun. 2019 , 10 , 892.
[32] Wang, X.;Sang, X.;Dong, C. L.;Yao, S.;Shuai, L.;Lu, J.;Yang,
B.;Li, Z.;Lei, L.;Qiu, M.;Dai, L.; Hou, Y. Proton Capture Strategy for
Enhancing Electrochemical CO2 Reduction on Atomically
Dispersed Metal-Nitrogen Active Sites*. Angew. Chem. Int. Ed.2021 , 60 , 11959-11965.
[33] Zhang, J.;Yin, R.;Shao, Q.;Zhu, T.; Huang, X. Oxygen Vacancies
in Amorphous InOx Nanoribbons Enhance CO2 Adsorption and
Activation for CO2 Electroreduction. Angew. Chem.
Int. Ed. 2019 , 58 , 5609-5613.
[34] Li, S.;Lu, X.;Zhao, S.;Ceccato, M.;Hu, X.-M.;Roldan, A.;Liu,
M.; Daasbjerg, K. p-Block Indium Single-Atom Catalyst with
Low-Coordinated In–N Motif for Enhanced Electrochemical
CO2 Reduction. ACS Catal. 2022 ,12 , 7386-7395.
[35] Han, G.;Zhang, X.;Liu, W.;Zhang, Q.;Wang, Z.;Cheng, J.;Yao,
T.;Gu, L.;Du, C.;Gao, Y.; Yin, G. Substrate strain tunes operando
geometric distortion and oxygen reduction activity of
CuN2C2 single-atom sites. Nat.
Commun. 2021 , 12 , 6335.