Electrochemical measurements
All electrochemical CO2 reduction experiments were performed at room temperature and normal pressure on a three-electrode system in an H-type cell (separated by a Nafion 117 membrane) with a CHI 760e potentiostat. The catalyst coated carbon fiber paper (1 × 1 cm2), Ag/AgCl electrode and platinum slice were used as working, reference and counter electrode, respectively. The electrolyte was 0.5 M KHCO3 aqueous solution. The potential was converted to the reversible hydrogen electrode (RHE) scale according to the Nernst equation: E (vs. RHE) = E (vs. Ag/AgCl) + 0.059 × pH + 0.198 V. The gaseous products (i.e., H2 and CO) were quantified by a gas chromatography (GC-2014, SHIMADZU) equipped with a flame ionization detector (FID) for CO and a thermal conductivity detector (TCD) for H2 quantification. The flow rate of CO2 was controlled at 20 cc/min at the inlet of electrochemical cell. The liquid-phase products were quantified on a nuclear magnetic resonance spectroscopy (NMR, Bruker Avance III 600 MHz) with dimethyl sulfoxide (DMSO) as the internal standard.
Other experimental details and characterization data are available in Supporting Information.
Supporting Information
The supporting information for this article is available on the WWW under https://doi.org/10.1002/cjoc.2023xxxxx.
Acknowledgement
This work was financially supported by National Natural Science Foundation of China (No. 21974103), the start-up funds of Wuhan University and the Experimental Supporting System at Shanghai Synchrotron Radiation Facility.
References
[1] Gu, J.;Hsu, C. S.;Bai, L.;Chen, H. M.; Hu, X. Atomically dispersed Fe (3+) sites catalyze efficient CO2electroreduction to CO. Science 2019 , 364 , 1091-1094.
[2] Jiao, J.;Lin, R.;Liu, S.;Cheong, W. C.;Zhang, C.;Chen, Z.;Pan, Y.;Tang, J.;Wu, K.;Hung, S. F.;Chen, H. M.;Zheng, L.;Lu, Q.;Yang, X.;Xu, B.;Xiao, H.;Li, J.;Wang, D.;Peng, Q.;Chen, C.; Li, Y. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem.2019 , 11 , 222-228.
[3] Wang, Q.;Liu, K.;Hu, K.;Cai, C.;Li, H.;Li, H.;Herran, M.;Lu, Y. R.;Chan, T. S.;Ma, C.;Fu, J.;Zhang, S.;Liang, Y.;Cortes, E.; Liu, M. Attenuating metal-substrate conjugation in atomically dispersed nickel catalysts for electroreduction of CO2 to CO. Nat. Commun. 2022 , 13 , 6082.
[4] Ou, H.;Ning, S.;Zhu, P.;Chen, S.;Han, A.;Kang, Q.;Hu, Z.;Ye, J.;Wang, D.; Li, Y. Carbon Nitride Photocatalysts with Integrated Oxidation and Reduction Atomic Active Centers for Improved CO2 Conversion. Angew. Chem. Int. Ed.2022 , 61, e2022065.
[5] Wei, Z.;Ding, J.;Duan, X.;Chen, G.-L.;Wu, F.-Y.;Zhang, L.;Yang, X.;Zhang, Q.;He, Q.;Chen, Z.;Huang, J.;Hung, S.-F.;Yang, X.; Zhai, Y. Enhancing Selective Electrochemical CO2 Reduction by In Situ Constructing Tensile-Strained Cu Catalysts. ACS Catal.2023 , 13, 4711–4718.
[6] Huang, J. R.;Qiu, X. F.;Zhao, Z. H.;Zhu, H. L.;Liu, Y. C.;Shi, W.;Liao, P. Q.; Chen, X. M. Single-Product Faradaic Efficiency for Electrocatalytic of CO2 to CO at Current Density Larger than 1.2 A cm-2 in Neutral Aqueous Solution by a Single-Atom Nanozyme. Angew. Chem. Int. Ed. 2022 ,61 , e202210985.
[7] Qiao, B.;Wang, A.;Yang, X.;Allard, L. F.;Jiang, Z.;Cui, Y.;Liu, J.;Li,
J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-641.
[8] Wang, A.;Li, J.; Zhang, T. Heterogeneous single-atom catalysis.
Nat. Rev. Chem. 2018, 2, 65-81.
[9]Zhu, J.;Xiao, M.;Ren, D.;Gao, R.;Liu,X.;Zhang,Z.;Luo,D.;Xing,W.;Su, D.;Yu, A.; Chen, Z. Quasi-Covalently Coupled Ni-Cu Atomic Pair for Synergistic Electroreduction of CO2. J. Am. Chem. Soc.2022 , 144 , 9661-9671.
[10] Han, S. G.;Ma, D. D.; Zhu, Q. L. Atomically Structural Regulations of Carbon-Based Single-Atom Catalysts for Electrochemical CO2 Reduction. Small Methods 2021 ,5 , e2100102.
[11] Ma, X.;Du, J.;Sun, H.;Ye, F.;Wang, X.;Xu, P.;Hu, C.;Zhang, L.; Liu, D. Boron, nitrogen co-doped carbon with abundant mesopores for efficient CO2 electroreduction. Appl. Catal. B Environ. 2021 , 298 .
[12] Chen, S.;Li, X.;Kao, C. W.;Luo, T.;Chen, K.;Fu, J.;Ma, C.;Li, H.;Li, M.;Chan, T. S.; Liu, M. Unveiling the Proton-Feeding Effect in Sulfur-Doped Fe-N-C Single-Atom Catalyst for Enhanced CO2 Electroreduction. Angew. Chem. Int. Ed.2022 , 61 , e202206233.
[13] Zhuang, Z.;Xia, L.;Huang, J.;Zhu, P.;Li, Y.;Ye, C.;Xia, M.;Yu, R.;Lang, Z.;Zhu, J.;Zheng, L.;Wang, Y.;Zhai, T.;Zhao, Y.;Wei, S.;Li, J.;Wang, D.; Li, Y. Continuous Modulation of Electrocatalytic Oxygen Reduction Activities of Single-Atom Catalysts through p-n Junction Rectification. Angew. Chem. Int. Ed. 2023 , 62 , e202212335.
[14] Chen, Z.;Su, X.;Ding, J.;Yang, N.;Zuo, W.;He, Q.;Wei, Z.;Zhang, Q.;Huang, J.; Zhai, Y. Boosting oxygen reduction reaction with Fe and Se dual-atom sites supported by nitrogen-doped porous carbon. Appl. Catal. B Environ. 2022 , 308 .
[15] Yang, H. B.;Hung, S.-F.;Liu, S.;Yuan, K.;Miao, S.;Zhang, L.;Huang, X.;Wang, H.-Y.;Cai, W.;Chen, R.;Gao, J.;Yang, X.;Chen, W.;Huang, Y.;Chen, H. M.;Li, C. M.;Zhang, T.; Liu, B. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy 2018 ,3 , 140-147.
[16] Li, K.;Zhang, S.;Zhang, X.;Liu, S.;Jiang, H.;Jiang, T.;Shen, C.;Yu, Y.; Chen, W. Atomic Tuning of Single-Atom Fe-N-C Catalysts with Phosphorus for Robust Electrochemical CO2 Reduction.Nano Lett 2022 , 22 , 1557-1565.
[17] Ding, T.;Liu, X.;Tao, Z.;Liu, T.;Chen, T.;Zhang, W.;Shen, X.;Liu, D.;Wang, S.;Pang, B.;Wu, D.;Cao, L.;Wang, L.;Liu, T.;Li, Y.;Sheng, H.;Zhu, M.; Yao, T. Atomically Precise Dinuclear Site Active toward Electrocatalytic CO2 Reduction. J. Am. Chem. Soc. 2021 , 143 , 11317-11324.
[18] Kong, X.;Ke, J.;Wang, Z.;Liu, Y.;Wang, Y.;Zhou, W.;Yang, Z.;Yan, W.;Geng, Z.; Zeng, J. Co-based molecular catalysts for efficient CO2 reduction via regulating spin states. Appl. Catal. B Environ. 2021 , 290 .
[19] Ding, J.;Teng, Z.;Su, X.;Kato, K.;Liu, Y.;Xiao, T.;Liu, W.;Liu, L.;Zhang, Q.;Ren, X.;Zhang, J.;Chen, Z.;Teruhisa, O.;Yamakata, A.;Yang, H.;Huang, Y.;Liu, B.; Zhai, Y. Asymmetrically coordinated cobalt single atom on carbon nitride for highly selective photocatalytic oxidation of CH4 to CH3OH. Chem.2023 , 9, 1017.
[20] Chen, Z.;Niu, H.;Ding, J.;Liu, H.;Chen, P. H.;Lu, Y. H.;Lu, Y. R.;Zuo, W.;Han, L.;Guo, Y.;Hung, S. F.; Zhai, Y. Unraveling the Origin of Sulfur-Doped Fe-N-C Single-Atom Catalyst for Enhanced Oxygen Reduction Activity: Effect of Iron Spin-State Tuning. Angew. Chem. Int. Ed. 2021 , 60 , 25404-25410.
[21] Liu, Y.;Ding, J.;Li, F.;Su, X.;Zhang, Q.;Guan, G.;Hu, F.;Zhang, J.;Wang, Q.;Jiang, Y.;Liu, B.; Yang, H. B. Modulating Hydrogen Adsorption via Charge Transfer at Semiconductor-Metal Heterointerface for Highly Efficient Hydrogen Evolution Catalysis. Adv. Mater.2023, 35, 2207114.
[22] Huang, Y.;Jiang, L.-W.;Liu, H.; Wang, J.-J. Electronic structure regulation and polysulfide bonding of Co-doped (Ni, Fe)1+xS enable highly efficient and stable electrocatalytic overall water splitting. Chem. Eng. J.2022 , 441 .
[23] Ghorai, U. K.;Paul, S.;Ghorai, B.;Adalder, A.;Kapse, S.;Thapa, R.;Nagendra, A.; Gain, A. Scalable Production of Cobalt Phthalocyanine Nanotubes: Efficient and Robust Hollow Electrocatalyst for Ammonia Synthesis at Room Temperature. ACS Nano 2021 , 15 , 5230-5239.
[24] Liu, J.;Li, P.;Bi, J.;Wang, Y.;Zhu, Q.;Sun, X.;Zhang, J.;Liu, Z.; Han, B. Sm and S Co‐doping to Construct Homo‐hetero Cu Catalysts for Synergistic Enhancing CO2 Electroreduction†. Chin. J. Chem. 2023 , 41 , 1443-1449.
[25] Gunathunge, C. M.;Li, J.;Li, X.;Hong, J. J.; Waegele, M. M. Revealing the Predominant Surface Facets of Rough Cu Electrodes under Electrochemical Conditions. ACS Catal. 2020 , 10 , 6908-6923.
[26] Cui, R.;Yuan, Q.;Zhang, C.;Yang, X.;Ji, Z.;Shi, Z.;Han, X.;Wang, Y.;Jiao, J.; Lu, T. Revealing the Behavior of Interfacial Water in Te-Doped Bi via Operando Infrared Spectroscopy for Improving Electrochemical CO2 Reduction. ACS Catal.2022 , 12 , 11294-11300.
[27] Dunwell, M.;Yang, X.;Setzler, B. P.;Anibal, J.;Yan, Y.; Xu, B. Examination of Near-Electrode Concentration Gradients and Kinetic Impacts on the Electrochemical Reduction of CO2 using Surface-Enhanced Infrared Spectroscopy. ACS Catal. 2018 ,8 , 3999-4008.
[28] Sun, K.;Yu, K.;Fang, J.;Zhuang, Z.;Tan, X.;Wu, Y.;Zeng, L.;Zhuang, Z.;Pan, Y.; Chen, C. Nature-inspired design of molybdenum-selenium dual-single-atom electrocatalysts for CO2 reduction. Adv. Mater. 2022 , 34, 2206478
[29] Li, H.;Jiang, T.-W.;Qin, X.;Chen, J.;Ma, X.-Y.;Jiang, K.;Zhang, X.-G.; Cai, W.-B. Selective Reduction of CO2 to CO on an Sb-Modified Cu Electrode: Spontaneous Fabrication and Physical Insight.ACS Catal. 2021 , 11 , 6846-6856.
[30] Li, Y.;Wei, B.;Zhu, M.;Chen, J.;Jiang, Q.;Yang, B.;Hou, Y.;Lei, L.;Li, Z.;Zhang, R.; Lu, Y. Synergistic Effect of Atomically Dispersed Ni-Zn Pair Sites for Enhanced CO2 Electroreduction.Adv. Mater. 2021 , 33 , e2102212.
[31] Ma, W.;Xie, S.;Zhang, X. G.;Sun, F.;Kang, J.;Jiang, Z.;Zhang, Q.;Wu, D. Y.; Wang, Y. Promoting electrocatalytic CO2reduction to formate via sulfur-boosting water activation on indium surfaces. Nat. Commun. 2019 , 10 , 892.
[32] Wang, X.;Sang, X.;Dong, C. L.;Yao, S.;Shuai, L.;Lu, J.;Yang, B.;Li, Z.;Lei, L.;Qiu, M.;Dai, L.; Hou, Y. Proton Capture Strategy for Enhancing Electrochemical CO2 Reduction on Atomically Dispersed Metal-Nitrogen Active Sites*. Angew. Chem. Int. Ed.2021 , 60 , 11959-11965.
[33] Zhang, J.;Yin, R.;Shao, Q.;Zhu, T.; Huang, X. Oxygen Vacancies in Amorphous InOx Nanoribbons Enhance CO2 Adsorption and Activation for CO2 Electroreduction. Angew. Chem. Int. Ed. 2019 , 58 , 5609-5613.
[34] Li, S.;Lu, X.;Zhao, S.;Ceccato, M.;Hu, X.-M.;Roldan, A.;Liu, M.; Daasbjerg, K. p-Block Indium Single-Atom Catalyst with Low-Coordinated In–N Motif for Enhanced Electrochemical CO2 Reduction. ACS Catal. 2022 ,12 , 7386-7395.
[35] Han, G.;Zhang, X.;Liu, W.;Zhang, Q.;Wang, Z.;Cheng, J.;Yao, T.;Gu, L.;Du, C.;Gao, Y.; Yin, G. Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites. Nat. Commun. 2021 , 12 , 6335.