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Abstract 19 

Deterministic earthquake prediction remains elusive, but time-dependent probabilistic seismicity 20 
forecasting seems within reach thanks to the development of physics-based models relating 21 
seismicity to stress changes. Difficulties include constraining the earthquake nucleation model 22 
and fault initial stress state. Here, we analyze induced earthquakes from the Groningen gas field, 23 
where production is strongly seasonal, and seismicity began 3 decades after production started. 24 
We use the seismicity response to stress variations to constrain the earthquake nucleation process 25 
and calibrate models for time-dependent forecasting of induced earthquakes. Remarkable 26 
agreements of modelled and observed seismicity are obtained when we consider (i) the initial 27 
strength excess, (ii) the finite duration of earthquake nucleation, and (iii) the seasonal variations 28 
of gas production. We propose a novel metrics to quantify the nucleation model’s ability to 29 
capture the damped amplitude and the phase of the seismicity response to short-timescale 30 
(seasonal) stress variations which allows further tightening the model’s parameters. 31 

Plain Language Summary 32 

Earthquakes are difficult to predict with certainty, but progress in forecasting their likelihood 33 
using probabilistic models based on stress changes has been made. However, challenges remain 34 
in understanding how earthquakes start and the initial conditions of faults. Here, we analyzed 35 
induced earthquakes in the Groningen gas field, where production is seasonal and seismic 36 
activity began much after gas production. By studying how the earthquakes respond to changes 37 
in stress, we could better understand how they start and develop models to forecast their 38 
temporal occurrence. By considering factors like the initial strength of the faults, the duration of 39 
earthquake initiation, and seasonal variations in gas production we could accurately match the 40 
observed seismic activity. We introduced a new measure to evaluate how well the models 41 
captured the dampened strength and timing of seismic activity in response to short-term stress 42 
changes (such as seasonal variations), which helped refine the model's parameters. 43 

1 Introduction 44 

Numerous activities related to the decarbonization, or security of energy production 45 
involve managing subsurface reservoirs (geothermal, CO2 sequestration, hydrogen storage, 46 
conventional and unconventional oil-and-gas extraction). Induced earthquakes are a major 47 
obstacle to these activities (Candela et al., 2018; Ellsworth, 2013; Goebel & Brodsky, 2018; 48 
Grigoli et al., 2017; Kaven et al., 2015; Raleigh et al., 1976; Shirzaei et al., 2016; Walsh & 49 
Zoback, 2015; Zhai et al., 2019) raising the need for improved methods to forecast induced 50 
seismicity. The modern understanding that earthquakes result from unstable frictional fault slip 51 
(Scholz, 2019)  provides a foundation to forecast changes of earthquake rate in response to stress 52 
changes, Δ𝑆 (Bourne et al., 2018; Bourne & Oates, 2017b; Dahm & Hainzl, 2022; Dempsey & 53 
Suckale, 2017; King et al., 1994; Kühn et al., 2022; Langenbruch et al., 2018; Richter et al., 54 
2020; Zhai et al., 2019). The approach requires a model of earthquake nucleation and knowledge 55 
of the stress change needed to initiate it (strength excess). At its simplest, the standard Coulomb 56 
friction model, CF, assumes that unstable fault slip initiates instantaneously when the ratio of 57 
shear stress to effective normal stress exceeds the static friction coefficient. In this context, the 58 
often-observed lagged response of  the seismicity to stress changes can be modeled through an 59 
initial strength excess (Bourne & Oates, 2017b). While the CF approach has been found 60 
satisfying in several case studies (Bourne et al., 2018; Bourne & Oates, 2017b; Dempsey & 61 
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Suckale, 2017; Smith et al., 2022),  this model neglects that earthquake nucleation might not be 62 
instantaneous, as evidenced by laboratory experiments (Dieterich, 1994) and the weak 63 
correlation of earthquakes with solid Earth tides (Beeler & Lockner, 2003; Cochran et al., 2004). 64 
Some models have introduced an ad-hoc critical time-to-failure (Dahm & Hainzl, 2022; Zhai et 65 
al., 2019) to account for either the initial strength excess or non-instantaneous nucleation. A 66 
more physical way to account for the finite duration of the nucleation process consists in 67 
assuming that nucleation is governed by rate-and-state friction, RS, (Dieterich, 1994), a model 68 
adopted with success in a number of studies (Candela et al., 2019; Langenbruch et al., 2018; 69 
Richter et al., 2020; Zhai et al., 2019). Discriminating between the CF and RS models has 70 
however proven elusive (Dempsey & Suckale, 2023) due to the lack of observational constraints 71 
on the nucleation process, and the eventual trade-off between the initial strength excess and the 72 
nucleation time. The CF and RS models yield very different forecasts if stress changes occur at 73 
short timescales compared to the characteristic time of the nucleation process( Heimisson et al., 74 
2022), and the nucleation process might therefore be revealed from the seismicity response to 75 
large amplitude, short-timescale stress variations (Ader et al., 2014). Here we demonstrate that 76 
the nucleation process is not instantaneous and derive constraints on its characteristic timescales, 77 
fault friction parameters, and the initial strength excess by studying seismicity induced by gas 78 
extraction from the Groningen field, where strong seasonal variations of gas production 79 
(Figure.1A,B) generated significant seasonal seismicity variations. 80 

 81 
The Groningen gas field in northeastern Netherlands (Figure.1A) is an ideal example to study 82 
induced seismicity due to well-known reservoir properties (Burkitov et al., 2016; de Jager & 83 
Visser, 2017; Oates et al., 2022), detailed seismicity catalog (Dost et al., 2017; Dost & 84 
Kraaijpoel, 2013; Smith et al., 2020; Willacy et al., 2018), and well-resolved surface subsidence 85 
(Smith et al., 2019; van Thienen-Visser & Breunese, 2015). Together, these data have allowed 86 
for calibration of models used to hindcast and forecast induced seismicity (Bourne et al., 2014, 87 
2018; Bourne & Oates, 2017b; Buijze et al., 2017; Candela et al., 2019; Dahm & Hainzl, 2022; 88 
Dempsey & Suckale, 2017; E. R. Heimisson et al., 2022; Kühn et al., 2022; Meyer et al., 2022; 89 
Richter et al., 2020; Van Wees et al., 2017). Gas is extracted from a thin, laterally extensive 90 
(~100-300 m thickness for ~30*50 km horizontal dimension), porous and permeable (~15-20% 91 
porosity, ~3.55E-13 m2 permeability (de Jager & Visser, 2017; Meyer et al., 2022)) reservoir 92 
hosted in the Rotliegend sandstone formation (Figure.1A,B). Production started in 1963 but 93 
earthquakes were not detected until 1991. Initially, the seismicity rate increased exponentially, 94 
despite steady annual extraction rates (Figure.1B, green curve). The 2012 Mw3.6 Huizinge 95 
earthquake, the largest event to date, caused public concern and a decision to decrease first and 96 
then shut-down production long before exhaustion of the gas reserve (Figure.1A,B, (Candela et 97 
al., 2018; Dost & Kraaijpoel, 2013)). More details about the gas field and the available data are 98 
given in Supplementary Item 1. 99 

The various stress-based models developed so far consider either instantaneous seismicity 100 
nucleation with an initial strength excess (Bourne et al., 2018; Bourne & Oates, 2017b; Dempsey 101 
& Suckale, 2017, 2023; Meyer et al., 2022; Smith et al., 2022), a delayed response due to the 102 
nucleation process (Candela et al., 2019; Dahm & Hainzl, 2022; Kühn et al., 2022; Richter et al., 103 
2020), or a combination of both (Dahm & Hainzl, 2022; R. Heimisson et al., 2021). These 104 
models fit well the observed seismicity based on yearly averaged stress changes, but predict 105 
drastically different responses to rapid variations of production such as shut-ins (E. R. Heimisson 106 
et al., 2022; Meyer et al., 2022). Moreover, a bias could be introduced as these models were 107 
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calibrated ignoring that, in reality, gas extractions show ~60-80% larger production in the winter 108 
from 1975 to 2013 (Figure.1B). Ignoring short-timescale, large-amplitude stress variations could 109 
bias the model because the seismicity response to stress changes is non-linear: the CF is non-110 
linear through the initial strength excess and Kaiser effect (seismicity rate drops to zero when the 111 
Coulomb stress is lower than previous peak values); the RS includes a delayed Kaiser effect and, 112 
adding further non-linearity, an exponential dependence on Δ𝑆 (E. R. Heimisson & Segall, 113 
2018). The introduction of a stress threshold, if an initial strength excess is allowed, is another 114 
source of non-linearity. Hereafter, we compare models with or without account for seasonal 115 
stress variations to illuminate the characteristics of the nucleation process. 116 
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2 Materials and Methods 117 

We present a summary of the modelling strategy (Figure.S1) that allows us to resolve (i) 118 
the pore pressure diffusion due to injection/extraction from a porous reservoir, (ii) the 119 
mechanical response of the reservoir to pressure variations, and (iii) the relation between stress 120 
changes and seismicity adopted in this study. Finally, we present the fundamentals of other 121 
analysis techniques used such as the synthetic catalog generation, the Schuster test, and the 122 
metric to quantify seasonality in synthetic catalogs. 123 

2.1 Modelling workflow 124 

Our modeling workflow (Figure. S1) consists of different modules which allow us to 125 
predict reservoir pressure, stress changes within and outside the reservoir, subsidence and 126 
seismicity based on the flow rates at the wells. The parameters for the different modules are 127 
optimized from matching the observations (well pressure, subsidence, seismicity). 128 

2.1.1 From fluid extraction to pressure changes. 129 

To relate fluid extraction to pressure changes in the reservoir, we use a simplified 130 
reservoir model (Meyer et al., 2022) which assumes vertical flow equilibrium (VFE) to compute 131 
fluid pressure diffusion in the reservoir from the extraction history. This model assumes that the 132 
timescale for vertical pressure equilibrium is much shorter than the horizontal one due to the thin 133 
and elongated geometry of the reservoir. The problem becomes a 2-dimensional one and we 134 
solve the combined conservation of momentum and Darcy’s law using the open-source finite 135 
element library FEniCS (Logg et al., 2012) and calibrate the model’s parameters by history 136 
matching the well pressure time-histories. By reducing the computation cost using the VFE 137 
assumption, we can generate pressure (Δp(x, y, t)) space-time histories in the Groningen 138 
reservoir with 1-month temporal discretization, allowing us to quantify the effect of seasonal 139 
variations of extraction in the pressure field (See Supplementary Item 2.1 for details). 140 

2.1.2 From pressure changes to reservoir deformation and stress changes. 141 

We use the poroelastic mechanical model from Smith et al. (Smith et al., 2022) to relate 142 
the fluid pressure changes to stress changes within and outside the reservoir. 143 Δp(x, y, t) calculated using the VFE reservoir model (section 2.2.1) is combined with the 144 
geodetically derived uniaxial compressibility (𝐶௠(𝑥, 𝑦) ;(Smith et al., 2019)), and the reservoir 145 
thickness (ℎ(𝑥, 𝑦)) such that the reservoir compaction writes: 146 𝐶 = 𝐶௠(x, y). Δp(x, y, t). h(x, y)    (1) 147 

We use a semi analytical Green’s function approach (Geertsma, 1973; Kuvshinov, 2008) to 148 
relate compaction and displacement/stress. For details on the functions, the spatial smoothing 149 
used and the details on the stress calculation, see (Geertsma, 1973; Kuvshinov, 2008; Smith et 150 
al., 2022); and Supplementary Item 2.2. From the changes in shear stress, Δτ, and effective 151 
normal stress (Δσ୒ᇱ = Δσ୒ − Δp), we compute the changes in Coulomb stress, ΔS(x, y, t), 152 
computed 10 m above the reservoir and cumulated since 1960 (Figure.2A), using a positive sign 153 
for compressive stress as ΔS = Δτ + f. Δσ୒ᇱ , with 𝑓 the static friction coefficient of the rock. In 154 
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this field, the fault’s dips are usually ~85º and the strikes show two dominant modes at N270◦ E 155 
and N350◦ E ((Smith et al., 2022); Figure.1A). We use the maximum Coulomb stress changes for 156 
both dominant receiver fault strike modes but results show little sensitivity to this choice (Smith 157 
et al., 2022), the chosen depth for calculation, and to 𝑓.  158 

Our model is computationally efficient and consistent with the 3-D stress changes computed 159 
using other methods (Bourne et al., 2018; Buijze et al., 2017; Candela et al., 2019; Dahm & 160 
Hainzl, 2022; Dempsey & Suckale, 2017; Kühn et al., 2022; Van Wees et al., 2017). For detailed 161 
analysis of the effect of the different parameters of the model on seismicity forecasts, see Smith 162 
et al. (2022). 163 

2.2.3 From stress changes to seismicity rate changes 164 

Finally, we relate 𝛥𝑆 to the time-dependent seismicity rate change Δ𝑅 using the Threshold 165 
Rate and State failure function (TRS) of  Heimisson et al. ( Heimisson et al., 2022) which 166 
follows Dieterich’s hypothesis (Dieterich, 1994) that earthquake nucleation is governed by rate 167 
and state friction but allows for a population of faults to be sub-critical initially (below steady-168 
state), as expected in a quiet, intraplate tectonic context such as Groningen. A critical stress 169 
threshold (analog to the strength excess of the Coulomb Failure model) ΔSୡ has to be overcome 170 
to  reach self-sustained fault slip acceleration (earthquake nucleation) and produce seismicity 171 
Heimisson et al., 2022). The TRS model writes for every point in space (𝑥, 𝑦): 172 

ΔR(t)r = exp ൬ΔS(t) − ΔSୡAσ଴ ൰1tୟ ׬  exp ൬ΔS(tᇱ) − ΔSୡAσ଴ ൰ dtᇱ  + 1୲୲ౘ
 

if t ≥ tୠ, and          (2) 173 ΔRr = 0 

if t ≤ tୠ, with 𝑟 the background seismicity rate (the seismicity rate that results from constant 174 
tectonic loading), Δ𝑆(𝑡) the change in Coulomb stress, Δ𝑆௖ the critical stress threshold, 𝐴𝜎଴ the 175 
frictional-stress parameter of Rate and State friction (Dieterich, 1994), 𝑡௔ the characteristic time 176 
associated to the nucleation process characterizing the decay of seismicity to background rates 177 
after a stress step (Dieterich, 1994). Finally, 𝑡௕ is the time at which Δ𝑆 first exceeded Δ𝑆௖. 178 

When the sources are critically stressed, ΔSୡ ~0, and the formulation (Eq.2) is equivalent to that 179 
of ( Heimisson & Segall, 2018). The characteristic time, 𝑡௔ relates to  the secular background 180 

stressing rate, due to tectonic loading, 𝜏ሶ, according to  𝑡ୟ = ஺ఙబఛሶ . It characterizes the nucleation 181 

process under such loading and would characterize the response time of the seismicity to a stress 182 
step added to the background seismicity. Note that if the system has been stressed, the relaxation 183 
time will change as described in section 3.2. The TRS formulation allows for earthquake 184 
nucleation to be time dependent and nucleation would be nearly instantaneous in the limit where 185 
its response time goes to zero, as is assumed in the standard Coulomb failure model which is also 186 
commonly used to relate stress changes to seismicity ( e.g., Dempsey & Suckale, 2017). 187 
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We sample a probability distribution of the TRS model parameters using an ensemble 188 
Markov Chain Monte Carlo (𝑀𝐶𝑀𝐶) algorithm (Foreman-Mackey et al., 2013) implemented in 189 
PyMC3 (Salvatier et al., 2016) with uniform priors and a non-local Poisson log-likelihood 190 
function (See supplementary Item 2.3). For all models generated in this study, we discretize the 191 
stress changes on a monthly basis to avoid numerical integration problems when comparing 192 
monthly and yearly discretizations. The difference between the ‘monthly’ and ‘yearly’ model 193 
inversions presented hereafter is that the input stress changes and seismicity for the ‘yearly’ 194 
models are smoothened using a 12-month average for the whole time-history. The posterior 195 
parameter space accounts therefore for epistemic uncertainty on the model’s parameters. For 196 
both model types, we report the 1000 model parameter sets with the lowest negative log-197 
likelihood to compare the information contained in the inversions. Additional details are given in 198 
Supplementary Item 2.3. Then, from the inverted model parameters we can generate the 199 
seismicity rates for the whole reservoir as function of time, 𝑅(𝑡). Finally, to generate earthquake 200 
catalogs we need to account for the aleatoric variability around the predicted rates which 201 
accounts for the fact that the earthquake generation is a non-stationary Poisson process of known 202 
rate. Details on the synthetic catalog generation are given in Supplementary Item 3. 203 

2.2 Testing seasonality through the Schuster test & spectrum. 204 

We test possible seasonality (periodicities) in the observed and synthetic seismicity 205 
catalogs using the Schuster test (Ader & Avouac, 2013; Beeler & Lockner, 2003; Schuster, 206 
1897). For a tested period T, a phase θ୧ is associated to each event 𝑖 occurring at time t୧ such that 207 θ୧ = 2π ୲౟୘ . Then, a 2D walk of 𝑁 successive unit length steps in the phase direction are 208 

performed. The total distance 𝐷 between the start and end points of the walk relates to the 209 
Schuster p-value  which measures the probability that the walked length is the result of a random 210 

Poisson point process as p =  eିీమొ , with 𝑁 the total number of steps taken. Thus, the lower this 211 p − value, the higher the probability that the detected periodicity is real. To study the correlation 212 
with a periodic perturbation, we evaluate the p − value over a continuous range of periods 213 T ∈ ሾT଴, Tଵሿ e.g. evaluating the Schuster spectrum (Ader & Avouac, 2013). The measured p-214 
values can then be compared with the expected value, which depends on the tested period,  not to 215 
be exceeded at a certain confidence level. The spectrum allows for identification of periodicities 216 
that have little probability to be due to chance because periodicities in the earthquake catalog 217 
will show as isolated low p-values in the spectrum, and event clusters will show as a drifting low 218 
p-value close to the characteristic time of the cluster (Ader & Avouac, 2013). 219 

We define a new metric to characterize the capacity of the TRS models to capture 220 
seasonality as the vector distance error of the median of all synthetic catalog’s Schuster random 221 
walks to that of the observed catalog. To separate their contribution, we also compute the phase, 222 
and distance errors for the median of all synthetic catalogs to the observed catalog. See 223 
Supplementary Item 4 for details. 224 

3 Results and discussion 225 

3.1 TRS model parameters not accounting for seasonal stress changes: ‘yearly’ models. 226 
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When seasonal fluctuations of Δ𝑆 and seismicity are ignored (Figure.1D, light purple curve), we 227 
obtain a ‘yearly’ TRS model which fits well the temporal (Figure.2A, green curve) and spatial 228 
distributions (Figure.2C) of seismicity. The prediction of the maximum-a-posteriori (MAP) 229 
yearly TRS model at the annual time scale is satisfying. However, if a range of acceptable 230 
models is considered (1000 best models out of 50,000, accounting for epistemic uncertainty), 231 
they yield widely different predictions outside the training period due to large trade-offs among 232 
the model parameters, especially between 𝑡௔ and 𝑟 (Figure.S3). The response time of seismicity 233 
to sub-annual stress variations is not well constrained in this inversion. To illustrate this effect, 234 
the green curves in Figure.2B show the response of the 1000 best yearly TRS models assuming 235 
no stress-changes after 2012 (frozen to Δ𝑆(𝑡௦), mimicking a hypothetical ‘shut-in’ at time 𝑡ୱ). 236 
The relaxation following the ‘shut-in’ is not characterized by 𝑡ୟ, (10-10,000 years for yearly TRS 237 
models), but by a new “accelerated” response time 𝑡௔௖௖ such that equation (2) becomes: 238 Δ𝑅𝑟   = exp ൬ΔS(tୱ) − ΔSୡAσ଴ ൰

1 + 1𝑡ୟ ׬ exp ൬ΔS(tᇱ) − ΔSୡAσ଴ ൰ dtᇱ + (t − tୱ)୲౩୲ౘ  ൮exp ൬ΔS(tୱ) − ΔSୡAσ଴ ൰𝑡ୟ ൲ 

 239 Δ𝑅𝑟 = tୟ
(𝑡 − 𝑡௦) + tୟ + ׬  exp ൬ΔS(tᇱ) − ΔSୡAσ଴ ൰ dtᇱ୲౩୲ౘexp ൬ΔS(tୱ) − ΔSୡAσ଴ ൰   

(3) 240 
We can identify this to the form: 241 Δ𝑅(𝑡)𝑟 = tୟ(𝑡 − 𝑡௦) + 𝑡௔௖௖ 

 whose characteristic decay time is: 242 𝑡ୟ௔௖௖ = (௧౗ା ׬ ୣ୶୮൬౴౏൫౪ᇲ൯ష౴౏ౙఽಚబ ൰ୢ୲ᇲ )౪౩౪ౘୣ୶୮ቀ౴౏(೟౩)ష౴౏ౙఽಚబ ቁ    (4) 243 

 𝑡ୟ௔௖௖ becomes much shorter than  𝑡ୟ because the nucleation process is accelerated exponentially 244 
due to stress increase induced by the reservoir compaction. Assuming an approximately linear 245 

increase of ΔS(t) at the multiannual time scale, it converges quickly toward  𝑡௔௔௖௖(tୱ)~ ୅஢బ.୼୲୼ୗ(୲౩) 246 

where Δ𝑡 is the duration of production from onset of seismicity to “shut in”. It is therefore 247 

inversely proportional to the average stressing rate, ୼ୗ(୲౩)୼୲ , and proportional to Aσ଴. In effect, our 248 

best yearly TRS models show 𝑡௔௔௖௖ ranging from 0.1 to 200 years after a hypothetical shut-in, 249 
showing that Aσ଴ is poorly constrained (Figure.S4, green curves, Figure.S3A). 250 

3.2 Seasonal stress changes effect on model parameter inversion: ‘monthly’ models. 251 

We next take seasonal stress variations into account (Figure.3, Figure.1B,D). At the sub-252 
yearly timescale, pressure is not homogenized over the whole reservoir. Given the permeability 253 
(𝑘~3.55e-13 m2) and porosity (𝜙~15%) of the reservoir, its average hydraulic diffusivity is 254 𝛼௛௬~0.5 m2/s and its characteristic diffusion length over one year is 𝑟௛௬ = ඥ2𝜋𝛼௛௬𝑡 ~10 km 255 
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which is smaller than the minimum length scale from any well cluster to the reservoir’s edge 256 
(Figure.1B), effectively resulting in smeared seasonal reservoir pressure. This damping effect 257 
and the heterogeneity in reservoir compressibility (Burkitov et al., 2016; Smith et al., 2019) 258 
control the spatial distribution of seasonal Δ𝑆 amplitude (Figure.3D) which can reach ~20 kPa 259 
(Figure.3A, B). The effect of seasonal stress variations could be significant if the seismicity 260 
response to stress changes is fast enough. Figure.3E compares the observed seasonal variation of 261 
seismicity rate, obtained by stacking monthly rates for all years between 1991 and 2014 (orange 262 
curve), with the seasonal variation expected for the CF model with instantaneous nucleation 263 
(Figure.3E, yellow curve).  In that case, since the stress evolution is monotonic, the seismicity 264 
rate is proportional to the Coulomb stress rate, Δ𝑆ሶ (Ader & Avouac, 2013; Dempsey & Suckale, 265 
2023). The observed seasonal variation is much smaller than predicted by the instantaneous 266 
nucleation model and is out of phase by about 3 months. A time dependent nucleation process 267 
can in principle explain both the phase shift and the damped response (Ader & Avouac, 2013) as 268 
explored next. 269 

We construct a ‘monthly’ TRS model which accounts for seasonal stress variations. The 270 
stress changes are computed using monthly gas extractions (Figure.3, Figure.1D, blue curve). 271 
The ‘monthly’ and ‘yearly’ TRS models predict temporal (Figure.2A) and spatial (Figure.2C,D) 272 
distributions of seismicity that fit equally well the observations (Figure.2E) but yield 273 
significantly different posterior model parameter distributions (Figure.S3). When seasonality in 274 Δ𝑆 is accounted for, both the product  𝑟. 𝑡௔ and 𝐴𝜎଴ are tightly constrained (Figure. S3, blue 275 
points). The available seismic catalog is insufficient to derive good constraints on the 276 
background seismicity rate so the trade-off between 𝑡௔ and 𝑟 cannot be resolved, but the 277 
performance of the forecast is good as it depends chiefly on  𝑟. 𝑡௔ and 𝐴𝜎଴ which are relatively 278 
well constrained. Better constraints in the ‘monthly’ TRS model parameters lead to consistently 279 
shorter and more tightly constrained relaxation times in response to changes in Δ𝑆 (Figure.2B, 280 
Figure.S4). 281 

3.3 Constraining the nucleation characteristics from  earthquake seasonality. 282 

We now assess the ability of the TRS models to explain both the phase and amplitude of the 283 
seismicity response to seasonal stress variations. We adopt the Schuster test & spectrum ((Ader 284 
& Avouac, 2013), Supplementary Item 3) which allows searching for any possible periodicity by 285 
building a spectrum of the Schuster p-values (Ader & Avouac, 2013; Chanard et al., 2019). The 286 
Schuster spectrum calculated on the 1991-2022 Groningen earthquake catalog (Dost et al., 2017; 287 
KNMI, 2023) for 𝑀 ≥1.1, shows a significant, isolated periodicity at 1-year period (Figure.4, 288 
orange colors, Figure.S6). The Schuster p-value at 1 year (~2.4e-3) uniquely falls above 90% 289 
confidence level (meaning the chance of one tested period yielding such a low p-value being due 290 
to chance is less than 10%). The corresponding Schuster walk at 1-year (Figure.4, orange 291 
wiggles, (Beeler & Lockner, 2003; Noël et al., 2019)) shows consistent year to year drift 292 
indicative of excess seismicity in the winter, peaking between March and April, delayed with 293 
respect to peak extraction rates in January but synchronized with the maximum amplitude of 294 
calculated pressure, and Δ𝑆 in most of the reservoir (Figure.3D, and orange tick in Figure.4C,D). 295 
Note that if smaller earthquakes were considered in the analysis, the seasonality amplitude would 296 
become larger (Figure.S6). The Schuster test and spectrum are not affected by the use of 297 
different magnitudes of completion, but we keep only events with magnitude ≥ 1.1 for 298 
consistency with the presented earthquake forecasts. To test if the observed seasonality is 299 
predicted by TRS models, we generate 100 synthetic catalogs from the MAP TRS models 300 
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accounting for aleatoric variability in the seismicity generation (Figure.S5) and calculate a 301 
Schuster spectrum (Figure.4A,B) and a Schuster walk at 1 year period (Figure.4C, D) for each 302 
catalog. The catalogs generated with the monthly TRS model (accounting for seasonal stress 303 
variations in the model inference and forecast) show clear periodicity at 1-year period with p-304 
values centered around the observed catalog ones, quantitatively recovering the amplitude of 305 
seasonality (Figure.4A, blue dots). Remarkably, the synthetic catalogs generated from the MAP 306 
‘monthly’ TRS model (Figure.4C, blue wiggles) show a marked drift, with similar phase and 307 
amplitude as the observed catalog. We also generate synthetic catalogs using the MAP 308 
parameters of the ‘yearly’ TRS model but using the seasonal variation of Δ𝑆 in input (Figure.4B, 309 
D, green colors). These example catalogs show no significant periodicity above ~50% 310 
confidence. This ‘yearly’ model predicts a more damped response to temporal variations of 311 
seasonal stress changes. We statistically quantify the capacity of the models to constrain annual 312 
seasonal variations though the errors of the Schuster walks at 1 year period on synthetic catalogs 313 
(aleatoric uncertainty) with seasonal stress input to the observed walk (Figure.4F, Figure.S7). 314 
Remarkably, the 1000 best models (epistemic uncertainty) using yearly TRS models show ~one 315 
order of magnitude larger errors in phase and amplitude of seasonality compared to the monthly 316 
TRS ones (Figure.4F). Using this seasonal analysis and the metrics to quantify seasonality, we 317 
can further tighten the constraints on the range of admissible parameters (Figure.4E, Figure.S3B 318 
light blue dots). Finally, we evaluate the seasonality predicted by the instantaneous nucleation 319 
CF model in Figure.4E (yellow curves). This model strongly over-predicts seasonality and 320 
responds in phase to the maximum Coulomb stress rate, Δ𝑆ሶ  , (Ader & Avouac, 2013; Dempsey 321 
& Suckale, 2023), effectively showing that the nucleation process cannot be instantaneous. 322 

Solid Earth tides -deformations of Earth's surface caused by gravitational forces- are 323 
another source of short-timescale stress variations that may also affect seismicity (Cochran et al., 324 
2004). In Groningen, the amplitude of stress variations due to tidal loads is  <0.5 kPa (Figure.S8, 325 
Supplementary Text) so ~40 times smaller than the estimated amplitude due to seasonal 326 
extraction variations, consistently with the observation that the Schuster spectrum doesn’t reveal 327 
any detectable periodicity at the dominant semi-diurnal and diurnal tidal periods (Figure.S6). 328 

4 Conclusions and implications 329 

Our results highlight the merit of accounting for the finite duration of earthquake nucleation and 330 
a possible initial strength excess to forecast induced seismicity. These two elements are needed 331 
to obtain a model that can predict the response of seismicity to stress changes on both short and 332 
long timescales, and we have proposed a method to quantify the goodness of fit to the short-333 
timescales in addition to the conventional evaluation on long timescales. If the initial strength 334 
excess is ignored (Candela et al., 2019), the seismicity response time can be overestimated by 335 
orders of magnitude leading to seismicity forecasts with a sustained seismicity tail because the 336 
delay between the start of operations and the onset of seismicity is adsorbed by a long 337 
characteristic nucleation time (Candela et al., 2019). This bias effectively shuts-down the effect 338 
of short-timescale stress variations, and over-predicts seismicity rates following decreases in 339 
fluid extraction rates (Figure.2B, ( Heimisson et al., 2022)). Alternative formulations than rate-340 
and-state friction to account for a finite nucleation time (Dahm & Hainzl, 2022; Zhai et al., 2019) 341 
should lead to a similar behavior.  342 

The mitigation of seismic hazard associated to subsurface fluid injection or extraction 343 
operations may be improved by accelerating model calibrations in three ways. First, the 344 
deployment of a sensitive seismic network well before starting subsurface operations, combined 345 
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with enhanced earthquake detection techniques (Kong et al., 2018) would help constrain the 346 
background seismicity rates (𝑟, which presents a strong tradeoff with 𝑡௔, Figure.S3) and reveal 347 
any induced seismicity early on, allowing for early calibration of the forecasting model. Second, 348 
varying fluid injection or production rates in a harmonic manner with various periods, would 349 
also help tighten the forecasting model (even if no correlated seismicity response is observed). 350 
Third, by performing shut-in operations over long enough time durations to track and constrain 351 
the relaxation of seismicity. Unbiased forecasting models of induced seismicity obtained by 352 
coupling pressure modelling with geomechanical deformation and seismicity should help 353 
mitigate the risk associated to the exploitation of subsurface reservoirs (geothermal, CO2 354 
sequestration, hydrogen storage, hydrocarbon extraction). 355 

Finally, stress variations at short and long times scales also affect natural systems 356 
(tectonic loading, post-seismic relaxation, hydrological/glacial load variations, and fault-to-fault 357 
interactions) and their seismicity response can provide insight into earthquake physics as shown 358 
here for induced seismicity. Commonly, in such studies, only one source of stress variations is 359 
considered, and our study shows that using a model calibrated at one time scale to forecast 360 
seismicity at another time scale can be flawed. 361 
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