References
Ahmed, S., Hasan, M. M., Heydari, M., Rauf, A., Bawazeer, S.,
Abu-Izneid, T., . . . Rengasamy, K. R. (2020). Therapeutic potentials of
crocin in medication of neurological disorders. Food and Chemical
Toxicology, 145 , 111739.
Al-Baggou, B. K., Naser, A. S., & Mohammad, F. K. (2011). Hydrogen
peroxide potentiates organophosphate toxicosis in chicks. Human
and Veterinary Medicine, 3 (2), 142-149.
Ali, E. S., Mitra, K., Akter, S., Ramproshad, S., Mondal, B., Khan, I.
N., . . . Cho, W. C. (2022). Recent advances and limitations of mTOR
inhibitors in the treatment of cancer. Cancer cell international,
22 (1), 1-16.
Ansari, M. Y., Ball, H. C., Wase, S. J., Novak, K., & Haqqi, T. M.
(2021). Lysosomal dysfunction in osteoarthritis and aged cartilage
triggers apoptosis in chondrocytes through BAX mediated release of
Cytochrome c. Osteoarthritis and cartilage, 29 (1), 100-112.
Antoniou, A., Khudayberdiev, S., Idziak, A., Bicker, S., Jacob, R., &
Schratt, G. (2018). The dynamic recruitment of TRBP to neuronal
membranes mediates dendritogenesis during development. EMBO
reports, 19 (3), e44853.
Asci, R., Vallefuoco, F., Andolfo, I., Bruno, M., De Falco, L., &
Iolascon, A. (2013). Trasferrin receptor 2 gene regulation by microRNA
221 in SH-SY5Y cells treated with MPP+ as Parkinson’s disease cellular
model. Neuroscience Research, 77 (3), 121-127.
Bandopadhyay, R., Mishra, N., Rana, R., Kaur, G., Ghoneim, M. M.,
Alshehri, S., . . . Mishra, A. (2022). Molecular mechanisms and
therapeutic strategies for levodopa-induced dyskinesia in Parkinson’s
disease: a perspective through preclinical and clinical evidence.Frontiers in Pharmacology, 13 .
Bao, W.-D., Fan, Y., Deng, Y.-Z., Long, L.-Y., Wang, J.-j., Guan, D.-X.,
. . . He, Z.-Y. (2016). Iron overload in hereditary tyrosinemia type 1
induces liver injury through the Sp1/Tfr2/hepcidin axis. Journal
of hepatology, 65 (1), 137-145.
Barzegar Behrooz, A., Talaie, Z., Jusheghani, F., Łos, M. J., Klonisch,
T., & Ghavami, S. (2022). Wnt and PI3K/Akt/mTOR survival pathways as
therapeutic targets in glioblastoma. International journal of
molecular sciences, 23 (3), 1353.
Bloem, B. R., Okun, M. S., & Klein, C. (2021). Parkinson’s disease.Lancet, 397 (10291), 2284-2303. doi:10.1016/S0140-6736(21)00218-X
Boice, A., & Bouchier-Hayes, L. (2020). Targeting apoptotic caspases in
cancer. Biochimica et Biophysica Acta (BBA)-Molecular Cell
Research, 1867 (6), 118688.
Canet-Avilés, R. M., Wilson, M. A., Miller, D. W., Ahmad, R., McLendon,
C., Bandyopadhyay, S., . . . Cookson, M. R. (2004). The Parkinson’s
disease protein DJ-1 is neuroprotective due to cysteine-sulfinic
acid-driven mitochondrial localization. Proceedings of the
National Academy of Sciences, 101 (24), 9103-9108.
Cerri, S., & Blandini, F. (2019). Role of autophagy in Parkinson’s
disease. Current Medicinal Chemistry, 26 (20), 3702-3718.
Chen, Y., Gao, C., Sun, Q., Pan, H., Huang, P., Ding, J., & Chen, S.
(2017). MicroRNA-4639 is a regulator of DJ-1 expression and a potential
early diagnostic marker for Parkinson’s disease. Frontiers in
Aging Neuroscience, 9 , 232.
Cheung, Z. H., & Ip, N. Y. (2009). The emerging role of autophagy in
Parkinson’s disease. Molecular brain, 2 , 1-6.
Chylinski, K., Le Rhun, A., & Charpentier, E. (2013). The tracrRNA and
Cas9 families of type II CRISPR-Cas immunity systems. RNA biology,
10 (5), 726-737.
D’arcy, M. S. (2019). Cell death: a review of the major forms of
apoptosis, necrosis and autophagy. Cell biology international,
43 (6), 582-592.
Deng, H., & Yuan, L. (2014). Genetic variants and animal models in SNCA
and Parkinson disease. Ageing research reviews, 15 , 161-176.
Di Martino, M. T., Arbitrio, M., Caracciolo, D., Cordua, A., Cuomo, O.,
Grillone, K., . . . Tassone, P. (2022). miR-221/222 as biomarkers and
targets for therapeutic intervention on cancer and other diseases: A
systematic review. Molecular Therapy - Nucleic Acids, 27 ,
1191-1224. doi:10.1016/j.omtn.2022.02.005
Dickson, L. M., & Rhodes, C. J. (2004). Pancreatic β-cell growth and
survival in the onset of type 2 diabetes: a role for protein kinase B in
the Akt? American Journal of Physiology-Endocrinology and
Metabolism, 287 (2), E192-E198.
Doxakis, E. (2010). Post-transcriptional regulation of α-synuclein
expression by mir-7 and mir-153. Journal of Biological Chemistry,
285 (17), 12726-12734.
Du, H., Cui, S., Li, Y., Yang, G., Wang, P., Fikrig, E., & You, F.
(2018). MiR-221 negatively regulates innate anti-viral response.PLoS One, 13 (8), e0200385. doi:10.1371/journal.pone.0200385
Dubrovska, A., Kim, S., Salamone, R. J., Walker, J. R., Maira, S.-M.,
García-Echeverría, C., . . . Reddy, V. A. (2009). The role of
PTEN/Akt/PI3K signaling in the maintenance and viability of prostate
cancer stem-like cell populations. Proceedings of the National
Academy of Sciences, 106 (1), 268-273.
Ebina, J., Ebihara, S., & Kano, O. (2022). Similarities, differences
and overlaps between frailty and Parkinson’s disease. Geriatrics
& Gerontology International, 22 (4), 259-270.
Elangovan, A., Venkatesan, D., Selvaraj, P., Pasha, M. Y., Babu, H. W.
S., Iyer, M., . . . Kumar, N. S. (2023). miRNA in Parkinson’s disease:
From pathogenesis to theranostic approaches. Journal of cellular
physiology, 238 (2), 329-354.
Emamzadeh, F. N., & Surguchov, A. (2018). Parkinson’s Disease:
Biomarkers, Treatment, and Risk Factors. Front Neurosci, 12 , 612.
doi:10.3389/fnins.2018.00612
Eyermann, C., Czaplinski, K., & Colognato, H. (2012). Dystroglycan
promotes filopodial formation and process branching in differentiating
oligodendroglia. Journal of neurochemistry, 120 (6), 928-947.
Fields, C. R., Bengoa-Vergniory, N., & Wade-Martins, R. (2019).
Targeting alpha-synuclein as a therapy for Parkinson’s disease.Frontiers in Molecular Neuroscience, 12 , 299.
Fornari, F., Gramantieri, L., Ferracin, M., Veronese, A., Sabbioni, S.,
Calin, G., . . . Bolondi, L. (2008). MiR-221 controls CDKN1C/p57 and
CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene,
27 (43), 5651-5661.
Gao, W., Yuan, L., Zhang, Y., Si, Y., Wang, X., Lv, T., & Wang, Y. S.
(2023). miR-221/222 Promote Endothelial Differentiation of
Adipose-Derived Stem Cells by Regulation of PTEN/PI3K/AKT/mTOR Pathway.Appl Biochem Biotechnol . doi:10.1007/s12010-023-04335-x
Garofalo, M., & Croce, C. M. (2011). microRNAs: Master regulators as
potential therapeutics in cancer. Annual review of pharmacology
and toxicology, 51 , 25-43.
Gentile, G., Morello, G., La Cognata, V., Guarnaccia, M., Conforti, F.
L., & Cavallaro, S. (2022). Dysregulated miRNAs as biomarkers and
therapeutical targets in neurodegenerative diseases. Journal of
Personalized Medicine, 12 (5), 770.
Ghit, A., & Deeb, H. E. (2022). Cytokines, miRNAs, and Antioxidants as
Combined Non-invasive Biomarkers for Parkinson’s Disease. Journal
of Molecular Neuroscience, 72 (5), 1133-1140.
Goiran, T., Eldeeb, M. A., Zorca, C. E., & Fon, E. A. (2022). Hallmarks
and molecular tools for the study of mitophagy in Parkinson’s disease.Cells, 11 (13), 2097.
Guiley, K. Z., Stevenson, J. W., Lou, K., Barkovich, K. J., Kumarasamy,
V., Wijeratne, T. U., . . . Witkiewicz, A. K. (2019). p27 allosterically
activates cyclin-dependent kinase 4 and antagonizes palbociclib
inhibition. Science, 366 (6471), eaaw2106.
Guo, Y., Wang, G., Wang, Z., Ding, X., Qian, L., Li, Y., . . . Yu, Z.
(2021). Reck-Notch1 Signaling Mediates miR-221/222 Regulation of Lung
Cancer Stem Cells in NSCLC. Front Cell Dev Biol, 9 , 663279.
doi:10.3389/fcell.2021.663279
Hu, K., Huang, Q., Liu, C., Li, Y., Liu, Y., Wang, H., . . . Ma, S.
(2019). c-Jun/Bim upregulation in dopaminergic neurons promotes
neurodegeneration in the MPTP mouse model of Parkinson’s disease.Neuroscience, 399 , 117-124.
Im, H.-I., & Kenny, P. J. (2012). MicroRNAs in neuronal function and
dysfunction. Trends in neurosciences, 35 (5), 325-334.
Jhanwar-Uniyal, M., Dominguez, J. F., Mohan, A. L., Tobias, M. E., &
Gandhi, C. D. (2022). Disentangling the signaling pathways of mTOR
complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma.Advances in Biological Regulation, 83 , 100854.
Jiang, Y., Liu, J., Chen, L., Jin, Y., Zhang, G., Lin, Z., . . . Qin, Y.
(2019). Serum secreted miR-137-containing exosomes affects oxidative
stress of neurons by regulating OXR1 in Parkinson’s disease. Brain
research, 1722 , 146331.
Juntilla, M. M., & Koretzky, G. A. (2008). Critical roles of the
PI3K/Akt signaling pathway in T cell development. Immunology
letters, 116 (2), 104-110.
Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda,
T., . . . Yoshimori, T. (2000). LC3, a mammalian homologue of yeast
Apg8p, is localized in autophagosome membranes after processing.The EMBO journal, 19 (21), 5720-5728.
Kahle, P. J., Waak, J., & Gasser, T. (2009). DJ-1 and prevention of
oxidative stress in Parkinson’s disease and other age-related disorders.Free Radical Biology and Medicine, 47 (10), 1354-1361.
Kawaguchi, T., Komatsu, S., Ichikawa, D., Morimura, R., Tsujiura, M.,
Konishi, H., . . . Hirajima, S. (2013). Clinical impact of circulating
miR-221 in plasma of patients with pancreatic cancer. British
journal of cancer, 108 (2), 361-369.
Kermanshahi, S., Ghanavati, G., Abbasi-Mesrabadi, M., Gholami, M.,
Ulloa, L., Motaghinejad, M., & Safari, S. (2020). Novel neuroprotective
potential of crocin in neurodegenerative disorders: an illustrated
mechanistic review. Neurochemical Research, 45 , 2573-2585.
Khoo, S. K., Petillo, D., Kang, U. J., Resau, J. H., Berryhill, B.,
Linder, J., . . . Tan, A. C. (2012). Plasma-based circulating MicroRNA
biomarkers for Parkinson’s disease. Journal of Parkinson’s
disease, 2 (4), 321-331.
Kilarski, L. L., Pearson, J. P., Newsway, V., Majounie, E., Knipe, M. D.
W., Misbahuddin, A., . . . Marion, M. H. (2012). Systematic review and
UK‐based study of PARK2 (parkin), PINK1, PARK7 (DJ‐1) and LRRK2 in
early‐onset Parkinson’s disease. Movement Disorders, 27 (12),
1522-1529.
Kim, B. W., Cho, H., Ylaya, K., Kitano, H., Chung, J.-Y., Hewitt, S. M.,
& Kim, J.-H. (2017). Bcl-2-like protein 11 (BIM) expression is
associated with favorable prognosis for patients with cervical cancer.Anticancer research, 37 (9), 4873-4879.
Kleven, M. D., Jue, S., & Enns, C. A. (2018). Transferrin receptors
TfR1 and TfR2 bind transferrin through differing mechanisms.Biochemistry, 57 (9), 1552-1559.
Kocaturk, N. M., & Gozuacik, D. (2018). Crosstalk between mammalian
autophagy and the ubiquitin-proteasome system. Frontiers in cell
and developmental biology , 128.
Kotur-Stevuljevic, J., Bogavac-Stanojevic, N., Jelic-Ivanovic, Z.,
Stefanovic, A., Gojkovic, T., Joksic, J., . . . Milosevic, S. (2015).
Oxidative stress and paraoxonase 1 status in acute ischemic stroke
patients. Atherosclerosis, 241 (1), 192-198.
Kumar, M. D., Karthikeyan, M., Sharma, N., Raju, V., Vatsalarani, J.,
Kalivendi, S. V., & Karunakaran, C. (2022). Molecular imprinting
synthetic receptor based sensor for determination of Parkinson’s disease
biomarker DJ-1. Microchemical Journal, 183 , 107959.
Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., &
Tuschl, T. (2002). Identification of tissue-specific microRNAs from
mouse. Current biology, 12 (9), 735-739.
Lang, Y., Li, Y., Yu, H., Lin, L., Chen, X., Wang, S., & Zhang, H.
(2020). HOTAIR drives autophagy in midbrain dopaminergic neurons in the
substantia nigra compacta in a mouse model of Parkinson’s disease by
elevating NPTX2 via miR-221-3p binding. Aging (albany NY), 12 (9),
7660.
Leggio, L., Vivarelli, S., L’Episcopo, F., Tirolo, C., Caniglia, S.,
Testa, N., . . . Iraci, N. (2017). microRNAs in Parkinson’s disease:
from pathogenesis to novel diagnostic and therapeutic approaches.International journal of molecular sciences, 18 (12), 2698.
Lehéricy, S., Sharman, M. A., Santos, C. L. D., Paquin, R., & Gallea,
C. (2012). Magnetic resonance imaging of the substantia nigra in
Parkinson’s disease. Movement Disorders, 27 (7), 822-830.
Lendeckel, L.-Q. M. R. R. W Tuschl T 2001 Identification of novel genes
coding for small expressed RNAs. Science, 294 (853858), 10.1126.
Li, B.-G., Hasselgren, P.-O., & Fang, C.-H. (2005). Insulin-like growth
factor-I inhibits dexamethasone-induced proteolysis in cultured L6
myotubes through PI3K/Akt/GSK-3β and PI3K/Akt/mTOR-dependent mechanisms.The international journal of biochemistry & cell biology,
37 (10), 2207-2216.
Li, H.-m., Yang, H., Wen, D.-y., Luo, Y.-h., Liang, C.-y., Pan, D.-h., .
. . Chen, J.-q. (2017). Overexpression of LncRNA HOTAIR is associated
with poor prognosis in thyroid carcinoma: a study based on TCGA and GEO
data. Hormone and Metabolic Research, 49 (05), 388-399.
Li, L., Xu, J., Wu, M., & Hu, J. (2018). Protective role of
microRNA-221 in Parkinson’s disease. Bratislavske lekarske listy,
119 (1), 22-27.
Li, S., Bi, G., Han, S., & Huang, R. (2022). MicroRNAs Play a Role in
Parkinson’s Disease by Regulating Microglia Function: From Pathogenetic
Involvement to Therapeutic Potential. Frontiers in Molecular
Neuroscience, 14 , 744942.
Linseman, D. A., Phelps, R. A., Bouchard, R. J., Le, S. S., Laessig, T.
A., McClure, M. L., & Heidenreich, K. A. (2002). Insulin-like growth
factor-I blocks Bcl-2 interacting mediator of cell death (Bim) induction
and intrinsic death signaling in cerebellar granule neurons.Journal of Neuroscience, 22 (21), 9287-9297.
Liu, H., Lan, S., Shi, X.-J., Fan, F.-C., Liu, Q.-S., Cong, L., &
Cheng, Y. (2023). Systematic review and meta-analysis on microRNAs in
Amyotrophic Lateral Sclerosis. Brain Research Bulletin .
Liu, S., Fan, M., Zheng, Q., Hao, S., Yang, L., Xia, Q., . . . Ge, J.
(2022). MicroRNAs in Alzheimer’s disease: Potential diagnostic markers
and therapeutic targets. Biomedicine & Pharmacotherapy, 148 ,
112681.
Lu, J., Xu, Y., Quan, Z., Chen, Z., Sun, Z., & Qing, H. (2017).
Dysregulated microRNAs in neural system: Implication in pathogenesis and
biomarker development in Parkinson’s disease. Neuroscience, 365 ,
70-82.
Lu, M., Poston, K., Pfefferbaum, A., Sullivan, E. V., Fei-Fei, L., Pohl,
K. M., . . . Adeli, E. (2020). Vision-based estimation of
MDS-UPDRS gait scores for assessing Parkinson’s disease motor severity.Paper presented at the Medical Image Computing and Computer Assisted
Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru,
October 4–8, 2020, Proceedings, Part III 23.
Luo, J., Manning, B. D., & Cantley, L. C. (2003). Targeting the
PI3K-Akt pathway in human cancer: rationale and promise. Cancer
cell, 4 (4), 257-262.
Lv, Q., Wang, Z., Zhong, Z., & Huang, W. (2020). Role of long noncoding
RNAs in Parkinson’s disease: putative biomarkers and therapeutic
targets. Parkinson’s disease, 2020 .
Ma, M.-z., Li, C.-x., Zhang, Y., Weng, M.-z., Zhang, M.-d., Qin, Y.-y.,
. . . Quan, Z.-w. (2014). Long non-coding RNA HOTAIR, a c-Myc activated
driver of malignancy, negatively regulates miRNA-130a in gallbladder
cancer. Molecular cancer, 13 , 1-14.
Ma, W., Li, Y., Wang, C., Xu, F., Wang, M., & Liu, Y. (2016). Serum
miR‐221 serves as a biomarker for Parkinson’s disease. Cell
biochemistry and function, 34 (7), 511-515.
Macintyre, A. N., Finlay, D., Preston, G., Sinclair, L. V., Waugh, C.
M., Tamas, P., . . . Cantrell, D. A. (2011). Protein kinase B controls
transcriptional programs that direct cytotoxic T cell fate but is
dispensable for T cell metabolism. Immunity, 34 (2), 224-236.
Markovic, J., Sharma, A. D., & Balakrishnan, A. (2020). MicroRNA-221: A
Fine Tuner and Potential Biomarker of Chronic Liver Injury. Cells,
9 (8), 1767. doi:10.3390/cells9081767
Martinez, B., & Peplow, P. V. (2017). MicroRNAs in Parkinson’s disease
and emerging therapeutic targets. Neural Regeneration Research,
12 (12), 1945.
McMillan, K. J., Murray, T. K., Bengoa-Vergniory, N., Cordero-Llana, O.,
Cooper, J., Buckley, A., . . . Wong, L. F. (2017). Loss of microRNA-7
regulation leads to α-synuclein accumulation and dopaminergic neuronal
loss in vivo. Molecular Therapy, 25 (10), 2404-2414.
Menini, T., & Gugliucci, A. (2014). Paraoxonase 1 in neurological
disorders. Redox Report, 19 (2), 49-58.
Mikami, Y., Philips, R. L., Sciumè, G., Petermann, F., Meylan, F.,
Nagashima, H., . . . O’Shea, J. J. (2021). MicroRNA-221 and -222
modulate intestinal inflammatory Th17 cell response as negative feedback
regulators downstream of interleukin-23. Immunity, 54 (3),
514-525.e516. doi:10.1016/j.immuni.2021.02.015
Minones-Moyano, E., Porta, S., Escaramís, G., Rabionet, R., Iraola, S.,
Kagerbauer, B., . . . Martí, E. (2011). MicroRNA profiling of
Parkinson’s disease brains identifies early downregulation of miR-34b/c
which modulate mitochondrial function. Human molecular genetics,
20 (15), 3067-3078.
Moradi Vastegani, S., Nasrolahi, A., Ghaderi, S., Belali, R., Rashno,
M., Farzaneh, M., & Khoshnam, S. E. (2023). Mitochondrial Dysfunction
and Parkinson’s Disease: Pathogenesis and Therapeutic Strategies.Neurochemical Research , 1-24.
Moran, L. B., Hickey, L., Michael, G. J., Derkacs, M., Christian, L. M.,
Kalaitzakis, M. E., . . . Graeber, M. B. (2008). Neuronal pentraxin II
is highly upregulated in Parkinson’s disease and a novel component of
Lewy bodies. Acta neuropathologica, 115 , 471-478.
Mouradian, M. M. (2012). MicroRNAs in Parkinson’s disease.Neurobiology of disease, 46 (2), 279-284.
Movahhed, P., Saberiyan, M., Safi, A., Arshadi, Z., Kazerouni, F., &
Teimori, H. (2022). The impact of DAPK1 and mTORC1 signaling association
on autophagy in cancer. Molecular Biology Reports, 49 (6),
4959-4964.
Nam, K. N., Park, Y.-M., Jung, H.-J., Lee, J. Y., Min, B. D., Park,
S.-U., . . . Kang, I. (2010). Anti-inflammatory effects of crocin and
crocetin in rat brain microglial cells. European journal of
pharmacology, 648 (1-3), 110-116.
Naren, P., Cholkar, A., Kamble, S., Khan, S. S., Srivastava, S., Madan,
J., . . . Khatri, D. K. (2023). Pathological and therapeutic advances in
Parkinson’s disease: mitochondria in the interplay. Journal of
Alzheimer’s Disease, 94 (s1), S399-S428.
Nassirpour, R., Mehta, P. P., Baxi, S. M., & Yin, M.-J. (2013). miR-221
promotes tumorigenesis in human triple negative breast cancer cells.PloS one, 8 (4), e62170.
Nies, Y. H., Mohamad Najib, N. H., Lim, W. L., Kamaruzzaman, M. A.,
Yahaya, M. F., & Teoh, S. L. (2021). MicroRNA dysregulation in
Parkinson’s disease: a narrative review. Frontiers in
neuroscience, 15 , 660379.
Nuytemans, K., Theuns, J., Cruts, M., & Van Broeckhoven, C. (2010).
Genetic etiology of Parkinson disease associated with mutations in the
SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update.Human mutation, 31 (7), 763-780.
Oh, S. E., Park, H.-J., He, L., Skibiel, C., Junn, E., & Mouradian, M.
M. (2018). The Parkinson’s disease gene product DJ-1 modulates miR-221
to promote neuronal survival against oxidative stress. Redox
biology, 19 , 62-73.
Pan, C., Wen, Q., Ma, L., Qin, X., & Feng, S. (2022). Green-emitting
silicon nanoparticles as a fluorescent probe for highly-sensitive crocin
detection and pH sensing. New Journal of Chemistry, 46 (26),
12729-12738.
Pang, S. Y.-Y., Ho, P. W.-L., Liu, H.-F., Leung, C.-T., Li, L., Chang,
E. E. S., . . . Ho, S.-L. (2019). The interplay of aging, genetics and
environmental factors in the pathogenesis of Parkinson’s disease.Translational Neurodegeneration, 8 (1).
doi:10.1186/s40035-019-0165-9
Park, S., Chapuis, N., Tamburini, J., Bardet, V., Cornillet-Lefebvre,
P., Willems, L., . . . Bouscary, D. (2010). Role of the PI3K/AKT and
mTOR signaling pathways in acute myeloid leukemia. haematologica,
95 (5), 819.
Pearson, J. N., & Patel, M. (2016). The role of oxidative stress in
organophosphate and nerve agent toxicity. Annals of the New York
Academy of Sciences, 1378 (1), 17-24.
Pérez-Ramírez, C., Cañadas-Garre, M., Molina, M. Á., Faus-Dáder, M. J.,
& Calleja-Hernández, M. Á. (2015). PTEN and PI3K/AKT in non-small-cell
lung cancer. Pharmacogenomics, 16 (16), 1843-1862.
Pinjala, P., Tryphena, K. P., Prasad, R., Khatri, D. K., Sun, W., Singh,
S. B., . . . Vora, L. (2023). CRISPR/Cas9 assisted stem cell therapy in
Parkinson’s disease. Biomaterials Research, 27 (1), 46.
Piperno, A., Roetto, A., Mariani, R., Pelucchi, S., Corengia, C.,
Daraio, F., . . . Camaschella, C. (2004). Homozygosity for transferrin
receptor-2 Y250X mutation induces early iron overload.haematologica, 89 (3), 359-360.
Piras, I. S., Gabriele, S., Altieri, L., Lombardi, F., Sacco, R.,
Lintas, C., . . . Rigoletto, C. (2021). Reevaluation of serum
arylesterase activity in neurodevelopmental disorders.Antioxidants, 10 (2), 164.
Postuma, R. B., & Lang, A. E. (2023). The Clinical Diagnosis of
Parkinson’s Disease-We Are Getting Better. Mov Disord, 38 (4),
515-517. doi:10.1002/mds.29319
Qian, C., Ye, Y., Mao, H., Yao, L., Sun, X., Wang, B., . . . Zhang, Y.
(2019). Downregulated lncRNA-SNHG1 enhances autophagy and prevents cell
death through the miR-221/222/p27/mTOR pathway in Parkinson’s disease.Experimental Cell Research, 384 (1), 111614.
Quinlan, S., Kenny, A., Medina, M., Engel, T., & Jimenez-Mateos, E. M.
(2017). MicroRNAs in neurodegenerative diseases. International
review of cell and molecular biology, 334 , 309-343.
Rahman, M. U., Bilal, M., Shah, J. A., Kaushik, A., Teissedre, P. L., &
Kujawska, M. (2022). CRISPR-Cas9-Based Technology and Its Relevance to
Gene Editing in Parkinson’s Disease. Pharmaceutics, 14 (6).
doi:10.3390/pharmaceutics14061252
Rajman, M., & Schratt, G. (2017). MicroRNAs in neural development: from
master regulators to fine-tuners. Development, 144 (13),
2310-2322.
Rakowski, M., Porębski, S., & Grzelak, A. (2022). Nutraceuticals as
Modulators of Autophagy: Relevance in Parkinson’s Disease.International journal of molecular sciences, 23 (7), 3625.
Razavipour, S. F., Harikumar, K. B., & Slingerland, J. M. (2020). p27
as a Transcriptional Regulator: New Roles in Development and Cancerp27
as Transcriptional Regulator. Cancer research, 80 (17), 3451-3458.
Rizzi, G., & Tan, K. R. (2017). Dopamine and acetylcholine, a circuit
point of view in Parkinson’s disease. Frontiers in neural
circuits, 11 , 110.
Robb, A., & Wessling-Resnick, M. (2004). Regulation of transferrin
receptor 2 protein levels by transferrin. Blood, 104 (13),
4294-4299.
Russo, E., Citraro, R., Constanti, A., & De Sarro, G. (2012). The mTOR
signaling pathway in the brain: focus on epilepsy and epileptogenesis.Molecular Neurobiology, 46 , 662-681.
Salama, R. M., Abdel-Latif, G. A., Abbas, S. S., Hekmat, M., &
Schaalan, M. F. (2020). Neuroprotective effect of crocin against
rotenone-induced Parkinson’s disease in rats: Interplay between
PI3K/Akt/mTOR signaling pathway and enhanced expression of miRNA-7 and
miRNA-221. Neuropharmacology, 164 , 107900.
Sastri, K. T., Gupta, N. V., Kannan, A., Balamuralidhara, V., &
Ramkishan, A. (2022). Potential nanocarrier-mediated miRNA-based therapy
approaches for multiple sclerosis. Drug Discovery Today , 103357.
Sato, M., Seki, T., Konno, A., Hirai, H., Kurauchi, Y., Hisatsune, A.,
& Katsuki, H. (2016). Fluorescent‐based evaluation of
chaperone‐mediated autophagy and microautophagy activities in cultured
cells. Genes to Cells, 21 (8), 861-873.
Scheper, M., Iyer, A., Anink, J. J., Mesarosova, L., Mills, J. D., &
Aronica, E. (2023). Dysregulation of miR‐543 in Parkinson’s disease:
Impact on the neuroprotective gene SIRT1. Neuropathology and
Applied Neurobiology, 49 (1), e12864.
Schratt, G. (2009). microRNAs at the synapse. Nature Reviews
Neuroscience, 10 (12), 842-849.
Seeley, J. J., Baker, R. G., Mohamed, G., Bruns, T., Hayden, M. S.,
Deshmukh, S. D., . . . Ghosh, S. (2018). Induction of innate immune
memory via microRNA targeting of chromatin remodelling factors.Nature, 559 (7712), 114-119. doi:10.1038/s41586-018-0253-5
Shao, K., Shan, S., Ru, W., & Ma, C. (2020). Association between serum
NPTX2 and cognitive function in patients with vascular dementia.Brain and Behavior, 10 (10), e01779.
Shu, Y., Qian, J., & Wang, C. (2020). Aberrant expression of
microRNA-132-3p and microRNA-146a-5p in Parkinson’s disease patients.Open Life Sciences, 15 (1), 647-653.
Siderowf, A., Concha-Marambio, L., Lafontant, D. E., Farris, C. M., Ma,
Y., Urenia, P. A., . . . Parkinson’s Progression Markers, I. (2023).
Assessment of heterogeneity among participants in the Parkinson’s
Progression Markers Initiative cohort using alpha-synuclein seed
amplification: a cross-sectional study. Lancet Neurol, 22 (5),
407-417. doi:10.1016/S1474-4422(23)00109-6
Singh, A., & Sen, D. (2017). MicroRNAs in Parkinson’s disease.Experimental brain research, 235 , 2359-2374.
Song, Y., Ori-McKenney, K. M., Zheng, Y., Han, C., Jan, L. Y., & Jan,
Y. N. (2012). Regeneration of Drosophila sensory neuron axons and
dendrites is regulated by the Akt pathway involving Pten and microRNA
bantam. Genes & development, 26 (14), 1612-1625.
Soto, M., Fernández, M., Bravo, P., Lahoz, S., Garrido, A.,
Sánchez-Rodríguez, A., . . . Roig-García, A. (2023). Differential serum
microRNAs in premotor LRRK2 G2019S carriers from Parkinson’s disease.npj Parkinson’s Disease, 9 (1), 15.
Spokoini-Stern, R., Stamov, D., Jessel, H., Aharoni, L., Haschke, H.,
Giron, J., . . . Bachelet, I. (2020). Visualizing the structure and
motion of the long noncoding RNA HOTAIR. Rna, 26 (5), 629-636.
Suhara, T., Baba, Y., Shimada, B. K., Higa, J. K., & Matsui, T. (2017).
The mTOR signaling pathway in myocardial dysfunction in type 2 diabetes
mellitus. Current diabetes reports, 17 , 1-10.
Sun, Q., Zhang, Y., Wang, S., Yang, F., Cai, H., Xing, Y., . . . Wang,
Y. (2022). LncRNA HOTAIR promotes α-synuclein aggregation and apoptosis
of SH-SY5Y cells by regulating miR-221-3p in Parkinson’s disease.Experimental Cell Research, 417 (1), 113132.
Sun, T., Wang, X., He, H., Sweeney, C., Liu, S., Brown, M., . . .
Kantoff, P. (2014). MiR-221 promotes the development of androgen
independence in prostate cancer cells via downregulation of HECTD2 and
RAB1A. Oncogene, 33 (21), 2790-2800.
Sun, Y., Wang, H., Qu, T., Luo, J., An, P., Ren, F., . . . Li, Y.
(2023). mTORC2: a multifaceted regulator of autophagy. Cell
Communication and Signaling, 21 (1), 1-11.
Surguchov, A. (2022). Biomarkers in Parkinson’s disease.Neurodegenerative diseases biomarkers: Towards translating
research to clinical practice , 155-180.
Tatura, R., Kraus, T., Giese, A., Arzberger, T., Buchholz, M.,
Höglinger, G., & Müller, U. (2016). Parkinson’s disease: SNCA-, PARK2-,
and LRRK2-targeting microRNAs elevated in cingulate gyrus.Parkinsonism & Related Disorders, 33 , 115-121.
Thobois, S., Mertens, P., Guenot, M., Hermier, M., Mollion, H., Bouvard,
M., . . . Sindou, M. (2002). Subthalamic nucleus stimulation in
Parkinson’s disease: clinical evaluation of 18 patients. Journal
of neurology, 249 , 529-534.
Tibar, H., El Bayad, K., Bouhouche, A., Ait Ben Haddou, E. H., Benomar,
A., Yahyaoui, M., . . . Regragui, W. (2018). Non-motor symptoms of
Parkinson’s disease and their impact on quality of life in a cohort of
Moroccan patients. Frontiers in neurology, 9 , 170.
Tryphena, K. P., Anuradha, U., Kumar, R., Rajan, S., Srivastava, S.,
Singh, S. B., & Khatri, D. K. (2022). Understanding the involvement of
microRNAs in mitochondrial dysfunction and their role as potential
biomarkers and therapeutic targets in Parkinson’s disease. Journal
of Alzheimer’s Disease (Preprint), 1-16.
Tryphena, K. P., Singh, G., Jain, N., Famta, P., Srivastava, S., Singh,
S. B., & Khatri, D. K. (2023). Integration of miRNA’s theranostic
potential with nanotechnology: Promises and challenges for Parkinson’s
disease therapeutics. Mechanisms of Ageing and Development, 211 ,
111800.
Uppala, S. N., Tryphena, K. P., Naren, P., Srivastava, S., Singh, S. B.,
& Khatri, D. K. (2023). Involvement of miRNA on epigenetics landscape
of Parkinson’s disease: From pathogenesis to therapeutics.Mechanisms of Ageing and Development, 213 , 111826.
Valencia, J., Ferreira, M., Merino-Torres, J. F., Marcilla, A., &
Soriano, J. M. (2022). The Potential Roles of Extracellular Vesicles as
Biomarkers for Parkinson’s Disease: A Systematic Review.International journal of molecular sciences, 23 (19), 11508.
Vargas, J. N. S., Hamasaki, M., Kawabata, T., Youle, R. J., &
Yoshimori, T. (2023). The mechanisms and roles of selective autophagy in
mammals. Nature reviews Molecular cell biology, 24 (3), 167-185.
Veisi, A., Akbari, G., Mard, S. A., Badfar, G., Zarezade, V., &
Mirshekar, M. A. (2020). Role of crocin in several cancer cell lines: An
updated review. Iranian journal of basic medical sciences, 23 (1),
3.
Visone, R., Russo, L., Pallante, P., De Martino, I., Ferraro, A., Leone,
V., . . . Croce, C. M. (2007). MicroRNAs (miR)-221 and miR-222, both
overexpressed in human thyroid papillary carcinomas, regulate p27Kip1
protein levels and cell cycle. Endocrine-related cancer, 14 (3),
791-798.
Voruz, P., Constantin, I. M., & Péron, J. A. (2022). Biomarkers and
non-motor symptoms as a function of motor symptom asymmetry in early
Parkinson’s disease. Neuropsychologia, 177 , 108419.
Walter, S. D. (2005). The partial area under the summary ROC curve.Statistics in medicine, 24 (13), 2025-2040.
Wang, H., Wang, X., Zhang, Y., & Zhao, J. (2021). LncRNA SNHG1 promotes
neuronal injury in Parkinson’s disease cell model by miR-181a-5p/CXCL12
axis. Journal of Molecular Histology, 52 (2), 153-163.
Wang, K., Yuan, Y., Cho, J.-H., McClarty, S., Baxter, D., & Galas, D.
J. (2012). Comparing the MicroRNA spectrum between serum and plasma.
Wang, R., Shang, Y., Chen, B., Xu, F., Zhang, J., Zhang, Z., . . . Wu,
L. (2022). Protein disulfide isomerase blocks the interaction of
LC3II-PHB2 and promotes mTOR signaling to regulate autophagy and
radio/chemo-sensitivity. Cell death & disease, 13 (10), 851.
Wang, S., Zhang, X., Guo, Y., Rong, H., & Liu, T. (2017). The long
noncoding RNA HOTAIR promotes Parkinson’s disease by upregulating LRRK2
expression. Oncotarget, 8 (15), 24449.
Wang, Y.-T., Tsai, P.-C., Liao, Y.-C., Hsu, C.-Y., & Juo, S.-H. H.
(2013). Circulating microRNAs have a sex-specific association with
metabolic syndrome. Journal of Biomedical Science, 20 (1), 72.
doi:10.1186/1423-0127-20-72
Wolever, T. M. (2004). Effect of blood sampling schedule and method of
calculating the area under the curve on validity and precision of
glycaemic index values. British Journal of Nutrition, 91 (2),
295-300.
Xia, X., Wang, Y., Huang, Y., Zhang, H., Lu, H., & Zheng, J. C. (2019).
Exosomal miRNAs in central nervous system diseases: biomarkers,
pathological mediators, protective factors and therapeutic agents.Progress in Neurobiology, 183 , 101694.
Xia, X., Wang, Y., & Zheng, J. C. (2020). The
microRNA-17~ 92 family as a key regulator of
neurogenesis and potential regenerative therapeutics of neurological
disorders. Stem cell reviews and reports , 1-11.
Xie, B., Wang, C., Zheng, Z., Song, B., Ma, C., Thiel, G., & Li, M.
(2011). Egr-1 transactivates Bim gene expression to promote neuronal
apoptosis. Journal of Neuroscience, 31 (13), 5032-5044.
Yadav, P., Yadav, R., Jain, S., & Vaidya, A. (2021). Caspase‐3: a
primary target for natural and synthetic compounds for cancer therapy.Chemical Biology & Drug Design, 98 (1), 144-165.
Yadav, S. K., Pandey, A., Sarkar, S., Yadav, S. S., Parmar, D., &
Yadav, S. (2022). Identification of altered blood MicroRNAs and plasma
proteins in a rat model of Parkinson’s disease. Molecular
Neurobiology , 1-18.
Yamamoto, K., Yoshida, K., Miyagoe, Y., Ishikawa, A., Hanaoka, K.,
Nomoto, S., . . . Takeda, S. i. (2002). Quantitative evaluation of
expression of iron-metabolism genes in ceruloplasmin-deficient mice.Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease,
1588 (3), 195-202.
Yao, Y., Zhao, Z., Zhang, F., Miao, N., Wang, N., Xu, X., & Yang, C.
(2023). microRNA‐221 rescues the loss of dopaminergic neurons in a mouse
model of Parkinson’s disease. Brain and Behavior, 13 (3), e2921.
Zamanian, M., Shamsizadeh, A., Esmaeili Nadimi, A., Hajizadeh, M.,
Allahtavakoli, F., Rahmani, M., . . . Allahtavakoli, M. (2017).
Short-term effects of troxerutin (vitamin P4) on muscle fatigue and gene
expression of Bcl-2 and Bax in the hepatic tissue of rats.Canadian journal of physiology and pharmacology, 95 (6), 708-713.
Zamanian, M. Y., Parra, R. M. R., Soltani, A., Kujawska, M., Mustafa, Y.
F., Raheem, G., . . . Heidari, M. (2023). Targeting Nrf2 signaling
pathway and oxidative stress by resveratrol for Parkinson’s disease: an
overview and update on new developments. Molecular Biology
Reports , 1-10.
Zamanian, M. Y., Terefe, E. M., Taheri, N., Kujawska, M., Tork, Y. J.,
Abdelbasset, W. K., . . . Alesaeidi, S. (2023). Neuroprotective and
Anti-Inflammatory Effects of Pioglitazone on Parkinson’s Disease: A
Comprehensive Narrative Review of Clinical and Experimental Findings.CNS & Neurological Disorders-Drug Targets (Formerly Current Drug
Targets-CNS & Neurological Disorders) .
Zhao, D., Zhuang, N., Ding, Y., Kang, Y., & Shi, L. (2016). MiR-221
activates the NF-kappaB pathway by targeting A20. Biochem Biophys
Res Commun, 472 (1), 11-18. doi:10.1016/j.bbrc.2015.11.009
Zhao, L., & Wang, Z. (2019a). MicroRNAs: Game Changers in the
Regulation of α-Synuclein in Parkinson’s Disease. Parkinson’s
Disease, 2019 , 1-10. doi:10.1155/2019/1743183
Zhao, L., & Wang, Z. (2019b). MicroRNAs: Game changers in the
regulation of α-synuclein in Parkinson’s disease. Parkinson’s
disease, 2019 .
Zhu, L., Yu, T., Yang, L., Liu, T., Song, Z., Liu, S., . . . Tang, C.
(2022). Polysaccharide from Cordyceps cicadae inhibit mitochondrial
apoptosis to ameliorate drug-induced kidney injury via
Bax/Bcl-2/Caspase-3 pathway. Journal of Functional Foods, 97 ,
105244.
Zimmermann, M., & Brockmann, K. (2022). Blood and cerebrospinal fluid
biomarkers of inflammation in Parkinson’s disease. Journal of
Parkinson’s disease (Preprint), 1-18.
Zou, Z., Tao, T., Li, H., & Zhu, X. (2020). mTOR signaling pathway and
mTOR inhibitors in cancer: Progress and challenges. Cell &
bioscience, 10 (1), 1-11.