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Introduction
To supplement the text of “Simulated Landquakes”, we

gather here a collection of eight appendices to the text; seven
figures and a table associated with these appendices; and
descriptions of three videos that provide supplementary il-
lustration.

In section S1, we list and define the notation used in
the article’s text. Section S2 justifies our neglect of plastic
yield in simulating interparticle interactions, as described
in section 1.2, while section S3 describes the interparticle
interactions that we simulate, and section S4 explains our
calibration of those interactions’ parameters. Section S5 de-
scribes our use of coarse-graining to calculate continuous
mean flow properties from the properties of discrete simu-
lated particles, while section S6 describes our derivation of
a theoretical power spectrum for the normal interparticle
force exerted during a Hertzian collision. Finally, section
S7 considers the geometry of force transmission by inter-
particle collisions, and section S8 considers the effect of the
simulated domain size on our results.

Figure S1 is associated with section S2; Figures S2, S3,
S4, and S5 with sections S4.1, S4.2, S4.4, and S4.5; and
Figure S6 with section S6. Figure S7 is associated with sec-
tion S7 and Figure S8 with section S8. Finally, the mpeg4
videos available as supplementary material illustrate sec-
tions 2.2 and 4.3 and are described at Movie S1, Movie S2,
and Movie S3.

S1. Notation
x, y, z: Downslope, cross-slope, & base-normal positions

f, t: Frequency and time co-ordinates

ρ, d: Particles’ density and typical diameter

g, θ: The magnitude of gravitational acceleration and its
angle to the base’s normal

nx, ny: The numbers of typical particles required to span
the domain, downslope and cross-slope

A,nz: The basal area analyzed and the base-normal
number of particles overlying each point of it

t0,∆t: The start time and duration of the period of
steady flow we analyze

δt: The simulation timestep

ν,E,G: The Poisson’s ratio, Young’s modulus, and shear
modulus for particles

νw, Ew, Gw: The Poisson’s ratio, Young’s modulus, and
shear modulus for the channel wall

δn, δt: Normal and tangential displacements, from equi-
librium, of an interparticle contact’s midpoint

θn, θr: Torsional and roll-induced angular displace-
ments, from equilibrium, of interparticle contact axes

κn, kt, kn, kr: Instantaneous interparticle normal, tan-
gential, torsional, and rolling stiffnesses

β, βr: The instantaneous ratios of viscosity to stiffness,
for normal, tangential, or torsional motion, and for rolling

µ, µn, µr: The coefficients of interparticle tangential, tor-
sional, and rolling friction

Fn,Ft: Normal and tangential interparticle forces

Mt,Mn,Mr: Interparticle torques from tangential
force, torsion, and rolling resistance

e: An interparticle collision’s coefficient of restitution

Vj ,xj ,uj : Particle j’s volume, position, and velocity

xcj , δ̇n,j , δ̇t,j : The location of interparticle collision j and
its normal and tangential impact velocities

C, ιC : The set of particles connected to the base by a
chain of contacts, and its indicator function

F = (Fx, Fy, Fz): Force exerted by the flow on its base

wz: A weight function centered on base-normal height z

φ(z),u(z), T (z): The wz-weighted mean flow volume
fraction, velocity, and granular temperature

nI(z), 〈δ̇2
n〉(z), 〈δ̇2

t 〉(z): The number of interparticle im-
pacts per unit volume and time, and their mean squared
normal and tangential impact velocities (all weighted by wz)

Pc(z): The wz-weighted proportion of particles that are
connected to the base by a chain of contacts

PF· : The power spectrum of basal force component F·
〈F〉, p, h: Mean basal force and pressure, and flow depth

φ̄, ū: Depth-averaged volume fraction and downslope ve-
locity within the flow

u′x: The base-normal gradient of downslope velocity ux
〈PF·〉∆f : The moving average of power spectrum PF·

over frequency range ∆f

P 0
F , fc: The low-frequency magnitude and corner fre-

quency of power spectrum PFz ’s high-frequency component

·̂: Model prediction for ·
ε: Geometric standard error in the prediction of P 0

F

gT : A proposed constant linking shear within a flow to
its granular temperature

λ: The typical base-normal extent of force chains within
the flow, in units d, inferred by fitting an exponential to Pc

J : The mean base-normal impulse transferred by a

velocity-
√
〈δ̇2〉 interparticle collision

τ(δ̇n), FI(t): The timescale of, and normal force during,
a Hertzian interparticle collision at normal velocity δ̇n

ζ(f): A non-dimensional function of non-dimensional fre-
quency f = fτ , proportional to spectral density |F̃I(f)|2

fc: The value 0.200, beyond which ζ(f) drops off rapidly

K: An unspecified prefactor in the model of Kean et al.
(2015)

ub, υ: The mean and relative standard deviation of basal
particle velocities

χ, ξ: A shape factor for the downslope velocity profile
and a non-dimensional function of υ, in the model of Farin,
Tsai, Lamb, and Allstadt (2019)

γ: A constant of acoustic wave attenuation, in the model
of Bachelet et al.

ιj , η: An indicator variable for transmission of interparti-
cle collision j’s force to the flow base, and the typical fraction
of its spectral power transmitted a base-normal distance d,
in the minimal model.

I, In̂, IP̂c
, IT̂ , Iψ̂V̂ : An integrand expressing contribu-

tions from different base-normal positions to the minimal
model’s P̂F , and its successive approximants

V̂ , ψ̂: Representative values, in the parametrization of
the minimal model, of interparticle impact velocity and the
proportion of overburden stress transmitted via impacts to
the base.

C, a, b: Parameters in the log-linear model for (ψ̂V̂ )(h, ū)

Î: The bulk inertial number

δF2: The squared magnitude ratio of high-frequency
force fluctuations to mean forces
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S2. Unimportance of plastic yield

To examine the importance of plastic yield in particles’
normal deformation, we first calculate the yield threshold
necessary, in a Thornton model of normal elasto-plastic
deformation (Thornton, 1997), to match Foerster, Louge,
Chang, and Allia (1994)’s experimental measurements of
the coefficient of restitution in collisions of glass spheres.
We then examine the implications of this threshold for the
interparticle collisions we wish to model.

For colliding spheres with masses m, radii r, centre-to-
centre separation 2r − δn, and interparticle normal force
magnitude Fn, the Thornton model at first agrees with
that of Hertz (1881), with Fn = E∗

√
rδ3
n for material-

parameter-dependent E∗. But the material is supposed to
have a yield stress σy: if δn increases beyond a thresh-
old δy = (πσy/3E

∗)2r, the Thornton model instead sets
Fn = E∗

√
rδy(3δn − δy)/2, such that Fn is continuously

differentiable with respect to δn but not smooth. And in
this case, Fn displays hysteresis after attaining its maximum
Fmax at δmax, with Fn = E∗

√
r(δn − δ0)3 until the collision

ends at δn = δ0, for δ0 = δmax − 3
√
F 2

max/E∗2r. Collisions
for which δy always exceeds δn are Hertzian and perfectly
elastic. But, for lower δy, the work done as δn increases ex-
ceeds the work done as δn decreases, so that the coefficient
of restitution is below 1.

To identify the yield threshold δ∗y replicating Foerster
et al. (1994)’s measurements, a coefficient of restitution
eF = 0.97 at impact velocity vF = 1.2 m s−1, we simulate
this model with units that normalize both vF and accel-
eration coefficient E∗

√
r/m: δ̂(r) = (m2v4

F /E
∗2r)1/5 for

distance and τ = (m2/E∗2rvF )1/5 for time. Using SciPy
(Virtanen et al., 2020) within the code of Arran, Man-
geney, De Rosny, and Toussaint (2023), we determine that
δ∗y/δ̂ = 0.784. Figure S1a illustrates the associated evolution
of δn and Fn.

a b

Figure S1. Effect of plastic yield on a binary collision.
a) Normalized evolution of penetration distance δn and
force Fn over time t, for yield threshold δ∗y such that the
coefficient of restitution is eF = 0.97. b) Coefficient of
restitution e as a function of impact velocity v0, defined
relative to vF such that e(vF ) = eF .

Such simulations apply directly to the particles we wish
to consider. We model soda lime glass similar to that of
Foerster et al. (1994), so take E∗, σy, and m/r3 to be iden-
tical. Consequently, provided that units are defined using
the velocity vF , both δy and δ̂ are proportional to r. So even
though our simulated particles have radii of approximately
1 mm, while the radii of Foerster et al. (1994)’s particles are
1.5 mm, the appropriate normalized yield threshold remains
δ∗y/δ̂ = 0.784.

Figure S1b indicates the effect of this yield threshold on
collisions with varying impact velocity. For simulated im-

pact velocities v0 greater than 0.6vF = 0.7 m s−1, the coef-
ficient of restitution decreases with v0, but plastic deforma-
tion along a contact’s normal has no effect on the dynam-
ics of lower-velocity collisions. Since we expect the highest
impact velocities to be of order

√
2gr = 0.14 m s−1 for grav-

itational acceleration g (as we observe in the main text’s
Figure 3k), we neglect particle plasticity entirely.

S3. Interparticle interactions

We describe the simulated interactions between two par-
ticles with radii r1 and r2, centres at x1 and x2, and veloci-
ties v1 and v2. These interact when they satisfy the contact
condition

δn = r1 + r2 − ||x1 − x2|| ≥ 0, (1)

with the first particle’s outward unit normal to the contact

n̂ = (x2 − x1)/||x2 − x1||, (2)

and the effective radius for the interaction

r =

(
1

r1
+

1

r2

)−1

. (3)

Material parameters are the Young’s modulus E, the Pois-
son ratio ν, and the shear modulus G = E/2(1 + ν).

S3.1. Normal force Fn

We first describe the normal force between two interacting
particles, which depends on the rate of normal deformation

δ̇n = (v1 − v2) · n̂. (4)

At each timestep of this contact, for the damping parameter
β whose calibration is described in section S4.1, the normal
force of the first particle on the second is specified to be

Fn =
2E

3(1− ν2)

√
rδn(δn + βδ̇n)n̂. (5)

This force is taken to act on a point directly between x1

and x2, and so is associated with no torque about the sec-
ond particle’s centre.

S3.2. Tangential force Ft

The tangential force also has viscous and elastic compo-
nents, but with the elastic force dependent on the history of
loading and with the total force limited by Coulomb friction,
so that the calculation of the tangential force must be per-
formed algorithmically. Specifically, the elastic tangential
force is set to be Fte = 0 at the start of each contact and, at
each timestep during the contact, four steps are performed.
First, this force is adjusted to account for the rotation of
the particle contact plane with respect to an inertial frame,
so that, writing ∆t for the time step and ·n for the value of
a given variable at the nth timestep,

Fnte = Fn−1
te − Fn−1

te · (vn−1
2 − vn−1

1 )

||xn2 − xn1 ||
∆t n̂n. (6)

Next, the instantaneous tangential stiffness is set to be

kt =
4G

2− ν
√
rδn, (7)

and the elastic force is set to its value in the case of zero tan-
gential slip. If the particles’ angular velocities are ω1 and
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ω2, then the relative tangential velocity across the contact
is

δ̇t = v1 − v2 + δ̇nn̂ + (r1ω1 + r2ω2)× n̂, (8)

and so, accounting for the possibility of unloading, the up-
dated elastic tangential force is

Fnte =

{
Fn−1
te + knt ∆t δ̇t if ||Fnn|| ≥ ||Fn−1

n ||
knt
kn−1
t

Fn−1
te + knt ∆t δ̇t otherwise.

(9)

Then, the implied tangential force, including viscous resis-
tance, is tested against a Coulomb friction condition, with
friction coefficient µt calibrated as decribed in section S4.3.
Specifically, defining for the same damping parameter β as
above,

Ft−ns = Fnte + βktδ̇t, (10)

and, for F̂t−ns = Ft−ns/||Ft−ns||, we set the tangential force
of the first particle on the second to be

Ft =

{
Ft−ns if ||Ft−ns|| ≤ µt||Fn||
µt||Fn||F̂t−ns otherwise.

(11)

Finally, in the second case, where tangential slip occurs be-
tween the two particles, the elastic component of the tan-
gential force is updated accordingly, as

Fte = Ft − βktδ̇t. (12)

The tangential force of the first particle on the second is
taken to apply a torque about the latter’s centre of

Mt = (r2 − δn/2)Ft × n̂, (13)

corresponding to the case of symmetric normal deformation.

S3.3. Torsional resistance Mn

The torsional torque exerted by the first particle about
the second’s centre is calculated analogously to the tangen-
tial force, except as a scalar multiple of the contact normal
n̂ and with different parameter values. Consequently, at
the start of the contact, the elastic scalar torque is set to
be Mne = 0, and Mne need not be updated to account for
frame rotation. The contact stiffness is

kn =
16G

3
r3/2δ3/2

n , (14)

and the scalar relative torsional rotation rate is

θ̇n = (ω1 − ω2) · n̂, (15)

so, at the nth timestep, the elastic scalar torsional torque,
in the case of zero torsional slip, is

Mn
ne =

{
Mn−1
ne + knn θ̇n∆t if ||Fnn|| ≥ ||Fn−1

n ||
knn
kn−1
n

Mn−1
ne + knn θ̇n∆t otherwise.

(16)

We impose at the Hertzian contact radius an effective
Coulomb friction coefficient µn = 3πµt/16, so defining

Mn−ns = Mne + βknθ̇n, (17)

we set the torsional vector torque of the first particle on the
second to be

Mn =

{
Mn−nsn̂ if |Mn−ns| ≤ µn||Fn||

√
rδn

µn||Fn||
√
rδnsgn(Mn−ns)n̂ otherwise,

(18)

unassociated with any net force between the particles. For

consistency, the elastic scalar torsional torque is updated in

the second case, as

Mne = Mn · n̂− βknθ̇n. (19)

S3.4. Rolling resistance Mr

The torque imposed by rolling resistance is also calcu-

lated in a manner analagous to the tangential force. Again,

the elastic component of the rolling resistance torque is ini-

tialized at the start of the contact, by setting Mre = 0, and

updated at each timestep to account for frame rotation, by

setting

Mn
re = Mn−1

re − Mn−1
re · (vn−1

2 − vn−1
1 )

||xn2 − xn1 ||
∆t n̂n. (20)

The rate of rolling is

θ̇r = ω1 − ω2 − [(ω1 − ω2) · n̂]n̂ (21)

and the stiffness is, for constant κ discussed in section S4.2,

kr = 2κ||Fn||r, (22)

so the elastic component of the torque resisting rolling is, at

the nth time step and in the case of zero slip,

Mn
re =

{
Mn−1

re + knr θ̇r∆t if ||Fnn|| ≥ ||Fn−1
n ||

knr
kn−1
r

Mn−1
re + knr θ̇r∆t otherwise.

(23)

For the rolling damping parameter βr and rolling friction

coefficient µr discussed in section S4.2, we define

Mr−ns = Mre + βrkr θ̇r (24)

and M̂r−ns = Mr−ns/||Mr−ns||, and set the torque im-

posed by rolling resistance to be

Mr =

{
Mr−ns if ||Mr−ns|| ≤ µr||Fn||r
µr||Fn||rM̂r−ns otherwise.

(25)

Again, the torque is not associated with any net force and

is updated in the second case, as

Mre = Mr−ns − βrkr θ̇r. (26)

S4. Parameter selection

In implementing the interparticle interactions described

in section 3, we use non-dimensionalizations of the dimen-

sional parameter values listed in Table S1. The following

subsections describe the selection of those values not derived

from material databases or other parameter values, with sec-

tion S4.1 describing the selection of the damping parameter

β; section S4.2 that of rolling resistance parameters κ, βr,

and µr; section S4.3 that of the tangential friction coefficient

µt; S4.4 that of modified parameters to model interactions

with a PMMA channel wall and a plane of symmetry; and

section S4.5 that of the simulation timestep δt.
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Table S1. Simulation parameter values. For each param-
eter, we list its name, symbol, and dimensional value, and
the source for this value. ‘A21’ and ‘SV05’ indicate Arran
et al. (2021) and Seward and Vascott (2005). ‘Der.’ indi-
cates derived values G = E/2(1 + ν), µn = 3πµt/16, and
Gw = Ew/2(1 + νw). Other sources are subsections of this
supporting information, describing parameter selection.

Parameter · Value Source

Particle radius r (1.00 ± 0.05) mm A21
Density ρ 2530 kg/m3 SV05
Young’s modulus E 74 GPa SV05
Poisson’s ratio ν 0.22 SV05
Shear modulus G 30 GPa Der.
Damping parameter β 45.1 ns S4.1
Tangential friction coefficient µt 0.237 S4.3
Torsional friction coefficient µn 0.140 Der.
Rolling stiffness modulus κ 0.742 S4.2
Rolling damping parameter βr 2.0 ms S4.2
Rolling friction coefficient µr 0.0175 S4.2
Sidewall Young’s modulus Ew 3.3 MPa S4.4
Sidewall Poisson’s ratio νw 0.4 S4.4
Sidewall shear modulus Gw 1.18 MPa Der.
Sidewall damping parameter βw 200 ns S4.4
Sidewall friction coefficient µw 0.105 S4.4
Timestep δt 2.5 × 10−7 s S4.5

S4.1. Damping parameter β

Since the damping parameter β is difficult to measure di-

rectly, we seek to calibrate its value using measurements of

the coefficient of restitution. Noting that β is a function

only of material parameters and has dimensions of time, we

take its value from Foerster et al. (1994)’s experiments on

binary collisions of (2rF = 3 mm)-diameter soda lime glass

spheres (ρF = 2500 kg/m3, EF = 71 MPa, νF = 0.22), simi-

lar to those of Arran et al. (2021)’s experiments. At normal

incidence velocities up to vF = 1.2 m s−1, the coefficient of

restitution was 0.97± 0.01.

We proceed analogously to section S2: first non-

dimensionalizing the collision’s evolution equations with
distance δ̂F = (πρF (1 − ν2

F )v2
F /4EF )2/5rF and time

τF = δ̂F /vF , then simulating collisions for varying non-

dimensional damping parameters β/τF to identify the value

β∗/τF = 0.0265 for which the coefficient of restitution is

0.97, and finally applying to our simulations the dimensional

damping parameter β∗ = 45.1 ns appropriate to Foerster et

al. (1994)’s experiments. The consequent effects of incidence

velocity on a) contact time and b) effective restitution coef-
ficient are shown in Figure S2.

a b

Figure S2. Effect of viscous damping on a binary col-
lision. Simulated collision duration t0 (a) and coefficient
of restitution e (b) as functions of impact velocity v0,
for simulated damping parameter β∗ = 45.1 ns consistent
with Foerster et al. (1994).

S4.2. Rolling resistance parameters κ, βr, µr

We use experiments on single particles to select values for
the non-dimensional rolling stiffness modulus κ, the rolling
damping parameter βr, and the rolling friction coefficient
µr. Since rolling resistance arises primarily from the par-
ticles’ deviations from sphericity, the rolling resistance of a
radius r particle on a stiff, flat plane will be approximately
the same as that between two particles with harmonic mean
radius r.

In the first experiment, each of 9 randomly selected par-
ticles is, in turn, placed on a flat metal plate. The plate is
accelerated and brought to a rapid stop, at which point the
particle’s inertia and the friction at its contact point cause
it to roll. Rolling resistance slows the particle’s rotation un-
til it reaches the no-slip regime described above, at which
point it displays exponentially decaying harmonic oscilla-
tions about a local, stable equilibrium. Filming these oscil-
lations at 250 frames per second, with an Optronis CR600x2
high-speed camera with Sigma 17-50 mm F2.8 EX DC lense,
we use cross-correlation between successive images to ex-
tract the particle’s horizontal velocity u. Under the no-slip
viscoelastic model for rolling resistance described in section
S3.4, this velocity satisfies, for some constants u0 and φ0

and for I equal to the particle’s moment of inertia,

u = u0 sin

(
φ0 + t

√
kr
I

+
β2
rk2
r

4I2

)
exp

(
−βrkr

2I
t

)
. (27)

Therefore, fitting a relation of this form to the decaying os-
cillations, minimizing the sum of squared residuals, and not-
ing that the particle is an approximate sphere under gravity,
so that kr/I = 5κg/2r, we calculate the κ and βr consistent
with the particle’s motion. Averaging these over the 9 re-
peats with different particles, we recover the values

κ = 0.742, βr = 0.0020 s. (28)

To illustrate this workflow, Figure S3 presents its applica-
tion to an orange of circumference 28 cm, using an updated
version of the code.
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Figure S3. Calibration of rolling resistance parameters.
From the first frame of a movie of a rolling orange (a), we
compare an enlargement of the row-mean-subtracted in-
tensity matrix X(0) (b) with the equivalent for the next

frame’s equivalent X(1) (c). d) Calculating the sum of
row-wise convolutions at small shifts δx and fitting a
Gaussian in the vicinity of the maximum recovers the
horizontal velocity u at sub-pixel resolution. e) Fitting a
decaying harmonic oscillation to the time-t evolution of
u recovers the parameters for rolling resistance.

In the second experiment, we repeatedly place a particle
at the top of a L = 20-cm long glass plate, inclined at an
angle Θ, and disturb the particle’s position until it starts
to roll. We then record whether it continues rolling until
it reaches the bottom of the plate. By varying the plate’s
inclination between trials, we find:

1. the maximum angle ΘM = 0.9◦ at which the bottom
is reached on none of five successive attempts, and

2. the minimum angle Θm = 1.1◦ at which the bottom is
reached on all of five successive attempts.

Using the model for rolling resistance described above
and writing m for the particle’s mass, its angular accelera-
tion while freely rolling will be

θ̈ =
mgr

I
cos Θ(tan Θ− µr), (29)

so that the particle will reach the bottom of the plate if and
only if

µr ≤ tan Θ +
Iω2

0

mgL cos Θ
, (30)

for ω0 the particle’s initial angular velocity, of order 10 s−1.
With the latter term of order 10−5, and so negligible, we
estimate µr as the average of its upper and lower bounds
tan ΘM and tan Θm, recovering

µr = 0.0175. (31)

S4.3. Sliding friction coefficient µt

Having selected all other interaction parameters, we se-
lect the value of the microscopic sliding friction µt for which

the angle of repose in simulations matches an experimentally
measured value for glass beads.

Experimentally, we half fill a tray with glass beads, vi-
brating the tray to ensure the bead pack’s surface is level.
We then incline the tray until the beads avalanche, wait until
the avalanching beads come to rest, and increase its incli-
nation again until another avalanche occurs. By measuring
these two changes in the bead pack’s surface’s inclination,
from 0◦ up to the beads’ avalanche angle θa, and from their
angle of repose θr up to their avalanche angle θa, we cal-
culate an estimate of the angle of repose θr. Repeating the
experiment 12 times and averaging the estimates, we recover
θr = 21.9± 0.6◦.

To match simulations to experiments, we conduct a bi-
nary search to find the lowest sliding friction coefficient for
which simulated beads come to a rest with a surface angle of
θr = 21.9◦. Specifically, we start with µ−t = 0 and µ+

t = 1
as bounds for the ’true’ value of the sliding friction coeffi-
cient and select a trial value µ0

t = (µ−t + µ+
t )/2, with which

we run a simulation according to the protocol described in
section 2.1, with nx = ny = nz = 10 and with θ = 21.9◦.
We use a timestep equivalent to 2.5× 10−7 s, so that there
are 200 timesteps during a simulated binary collision at ve-
locity

√
gd = 0.14 m s−1 (see Figure S2a). If the simulation

attains a steady, non-static state, then this friction coeffi-
cient is insufficiently large for the simulated beads to match
experiments and we update µ−t to µ0

t . If the simulated beads
come to a rest, we update µ+

t to µ0
t . Either way, we continue

the procedure until the bounds constrain the ’true’ value to
three significant figures and we use this 3 s.f. value for µt.
We recover

µt = 0.237. (32)

S4.4. Channel boundary parameters ·w
To consider the effect of lateral boundaries, we run simu-

lations in which there is a fixed wall at y = 0, corresponding
to an acrylic (PMMA) channel wall, and another at y = 50d,
corresponding to a symmetry condition at the midline of a
channel. We illustrate this in Figure S4. Interactions be-
tween particles and the walls are modelled in the same way
as those between particles, as described in section S3, ex-
cept with appropriately changed definitions and values of
material parameters.

'Outer' region 'Inner' region

Figure S4. Schematic of simulated channel flow. Com-
pared to the doubly periodic domain, we simulate a
PMMA wall (solid line at left) and a plane of symmetry
(dashed line at right), including during preparation of the
fixed basal particles (black), and we restrict the coarse-
graining described in section S5 to the half of the flow
away from the wall (right of the dotted line at center).
Detail views demonstrate, from left to right: particles’
effective interaction with the PMMA wall (gray); selec-
tion of particles and contacts to include in coarse-graining
(marked red, rather than black); and particles’ interac-
tion with the plane of symmetry, at which any particle is
effectively confronted with a mirrored copy (dotted part
circle).

Specifically, in place of condition (1), we take a parti-
cle with radius r2 and y-co-ordinate y2 to be in contact
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and hence interacting with the wall at y = 0 if overlap
δn = r2−y2 ≥ 0. For such a wall-particle interaction, we use
a ’first particle’ velocity v1 = 0 and a ’first particle’ angu-
lar velocity ω1 = 0, while redefining the outwards normal of
equation (2) as n̂ = ey; the effective radius of equation (3) as
r = r2; and the inverse separation ||x2−x1||−1 as 0 in equa-
tions (6) and (20). Taking the Young’s modulus of PMMA
to be Ew = 3.3 MPa, its Poisson ratio to be νw = 0.4, and
its shear modulus to be Gw = Ew/2(1 + νw), we replace the
values E/(1−ν2) in equation (5), G/(1−ν) in equation (7),
and G in equation (14) with their corresponding harmonic
means

2
(
·−1 + ·−1

w

)−1
. (33)

The sliding friction coefficient µw between a glass particle
and the PMMA wall is taken to correspond to the 6◦ min-
imum angle at which a plate coated with glued glass beads
slides on a PMMA plate, such that µw = 0.105, and this
value replaces µt in equations (11) and (18). Finally, the
damping parameter βw for a collision between a glass par-
ticle and the PMMA wall is taken to be that necessary for
a glass bead dropped onto a PMMA plate from a height of
h = 0.1 m to have a rebound height of 0.08 m, such that
βw = 2× 10−7 s, and this value replaces β in equations (5),
(10), (12), (17), and (19).

Correspondingly, we take a particle with radius r2 and
y-co-ordinate y2 to be in contact with the wall at y = 50d
if overlap δn = r2 − (50d − y2) > 0. For interactions be-
tween this wall and the particle, we use an outwards normal
n̂ = −ey, but again take an effective radius r = r2, an in-
verse separation ||x2 − x1||−1 = 0, a ‘first particle’ velocity
v1 = 0, and a ‘first particle’ angular velocity ω1 = 0. We
want the interaction of a particle with the wall to be equiva-
lent to that of the particle with an identical particle, exactly
reflected in the plane y = 50d, but note that r has twice the
value it would have in that case and δn half the value it
would have. We therefore we use in equation (5) a value of
E/(1−ν2) that is twice that used for interparticle collisions,
ensuring that Fn takes the exact value it would have in an
interparticle interaction with a reflected particle. Similarly,
we note that a particle would experience no tangential mo-
tion or torsional rotation relative to its exact reflection, and
so set the tangential force and torsional torque to zero by
replacing µt with zero in equations (11) and (18). Finally,
since ω1 = 0 rather than −ω2 and r = r2 rather than r2/2,
θ̇r is defined to be half the value it would in the case of
an interaction with a reflected particle while kr has a value
twice as large, and so equations (23), (24) and (26) need not
be changed to ensure a correct value of rolling resistance.

S4.5. Timestep δt

We wish to verify that a timestep δt = 2.5× 10−7 s is suf-
ficiently small that, even for a collision with atypically high
normal incident velocity and hence with atypically short du-
ration, the root mean squared discretization error in the nor-
mal force is less than 1% of the root mean squared normal
force. Relative errors may be larger for tangential forces
and in torsional and rolling moments, which evolve in a
more complex fashion during a collision, but are likely to
be less significant both for a flow’s properties and for the
basal forces it exerts. For collisions with longer duration,
discretization errors will be smaller.

To identify the extremal values of normal incident ve-
locities, we conduct a trial steady-state simulation, ac-
cording to the protocol of section 2.2 and with timestep
δt = 2.5× 10−7 s, parameter values as above, and simulated
slope angle θ = 24.5◦, overburden nz = 16, and duration
∆t = 0.5 s. Over 1.8 million collisions, the 99.9th percentile
of simulated normal incidence velocity was 0.362 m s−1.

We then use SciPy’s (Virtanen et al., 2020) solve ivp

function to estimate the true evolution of normal force dur-

ing a collision with such an impact velocity, with abso-

lute and relative error tolerances for normalized quantities

of 10−6, and compare this evolution with that estimated

using MercuryDPM’s velocity Verlet algorithm (Weinhart

et al., 2020) and various timesteps δt. The implementa-

tion of Arran et al. (2023) finds a simulation timestep of

3.4× 10−7 s to be that for which the root mean squared

discrepancy in normal force is equal to 1% of the root

mean squared normal force (see Figure S5), so that δt =

2.5× 10−7 s is sufficiently small for our purposes.

10 8 10 7 10 6

t (s)

10 5

10 4

10 3

10 2

10 1

|F
n

F n
|2

/|
F n

|2

Figure S5. Time-discretization error in simulating in-
terparticle force during a collision at 0.362 m s−1. For
various timesteps δt, we calculate at each time kδt the
‘true‘ normal force Fn and that derived using a velocity

Verlet algorithm, F̂n. We thereby identify the timestep
3.4× 10−7 s for which the normalized root mean squared
discrepancy is 0.01.

S5. Coarse-graining

The coarse-graining process calculates local weighted av-

erages of the properties of discrete particles, while respecting

mass and momentum conservation. In our implementation,

we average over horizontal directions x and y and over all

times tk while resolving the base-normal direction z, using

truncated Gaussian weight functions of width equal to the

median particle diameter d:

wz(xj) =

{
exp(−2(zj−z)2/d2)

XY d∆t erf(K
√

2)

√
2
π

if |zj − z| < Kd

0 otherwise,
(34)

where X and Y are the downslope and cross-slope extents

of the cross-graining domain, ∆t is the time duration sim-

ulated, and K is a cutoff. We take X and Y to be nxd

and nyd for the simulations with periodic boundaries in the

cross-slope direction, and nxd and nyd/2 when simulating

flow in a channel. We take K = 3 to calculate the kinematic

profiles φ(z), u(z) and T (z), while taking K to be infinite in
calculating the profiles PC(z), nI(z), 〈δ̇2

n〉(z) and 〈||δ̇t||2〉(z).
The kinematic profiles are defined from the timestep δt

and particle positions xj(tk), volumes Vj , and velocities



X - 8 ARRAN ET AL.: SIMULATED SLIDEQUAKES

uj(tk), excluding all fixed, basal particles, as

φ(z) =
∑
j

∑
k

wz(xj(tj))Vjδt, (35)

u(z) =
∑
j

∑
k

wz(xj(tk))Vjuj(tk)δt/φ(z), (36)

T (z) =
1

3

∑
j

∑
k

wz(xj(tk))Vj ||uj(tk)− u(z)||2δt/φ(z),

(37)

while the probability profile PC(z) is defined to be

Pc(z) =

∑
j

∑
k wz(xj(tk))ιC(tk)(j)∑
j

∑
k wz(xj(tk))

, (38)

where basal particles are included in the sum and ιC(tk)(j)
is 1 if particle j is in the time-tk base-connected set C(tk)
and 0 otherwise. The collisional profiles are defined from
each collision’s contact point xcj and relative normal and
tangential velocities δ̇n,j and δ̇t,j , by

nI(z) =
∑
j

wz(x
c
j), (39)

〈δ̇2
n〉(z) =

∑
j

wz(x
c
j)δ̇

2
n,j/nI(z), (40)

〈||δ̇t||2〉(z) =
∑
j

wz(x
c
j)||δ̇t,j ||2/nI(z). (41)

For the simulations of channel flow, all the sums above are
restricted to particles with yj(tk) > nyd/2 or to collisions
with ycj (tk) > nyd/2. All profiles are calculated at 16nz
values of z, separated by intervals of d/4 and starting from
z = −7d/8, just above the fixed boundary at z = −d.

S6. The power spectrum of Hertzian
collision force

Here, we consider the spectral density |F̃I(f)|2 of the
time-dependent normal force FI(t) exerted during the
Hertzian impact of one spherical particle on another, ex-
tending the work of section S3 of the Supporting Informa-
tion of Arran et al. (2021). As in our sections 2.3 and S3,
we write ρ, d and δ̇n for the particle density, diameter and
impact velocity, and E and ν for the Young’s modulus and
the Poisson ratio, to define timescale

τ(δ̇n) =

[
π2ρ2(1− ν2)2

4E2δ̇n

]1/5

d. (42)

From Arran et al. (2021), during the impact, FI(t) ∝
∆(T )3/2 for non-dimensional impact duration T = t/τ and
penetration distance ∆(T ), satisfying the system of equa-
tions

∆(0) = 0,

∆′(0) = 1, (43)

∆′′ (T ) = −∆ (T )3/2 .

We solve this system of equations numerically, recovering
the trajectory in Figure S6a and calculating the total non-
dimensional impact duration: the value T0 = 3.22 of T at
which ∆(T ) returns to zero. F̃I(0) is then the integral of

FI(t) over t ∈ [0, T0τ ], which is equal to the impulse im-
parted by the perfectly elastic impact, πρd3δ̇n/3.

0 2
T

0.0

0.5

1.0

msin( T/T0)

10 3 10 1 101
10 10

10 7

10 4

10 1
0.65( / c) 5

Figure S6. Evolution of a non-dimensionalized Hertzian
impact. We compare numerical solutions (black, solid
lines) and analytical approximations (red, dashed lines)
of penetration distance ∆ over time T and normalized
power spectrum ζ over frequency f.

We also follow Arran et al. (2021) in numerically estimat-

ing the normalized power spectrum

ζ(f) = |F̃I(f/τ)|2/|F̃I(0)|2

=

∣∣∣∣∫ T0

0

∆(T )3/2e−2πifT dT

∣∣∣∣2 / ∣∣∣∣∫ T0

0

∆(T )3/2

∣∣∣∣2 . (44)

Figure S6b represents ζ, with ζ(0) = 1, ζ → 0 as f → ∞,

fc = min{f|ζ(2f) < ζ(f)/10} = 0.200, and ζ(fc) = 0.529.

In addition to this numerical solution, we calculate an ap-

proximate analytical asymptote. By comparing equations

(43) to the equations of harmonic motion, we note that

∆(T ) ≈ ∆1(T ) = ∆m sin(πT/T0), for ∆m the maximum

of ∆(T ). Representing sin with exponential functions and

representing the consequent binomial by its absolutely con-

vergent expansion,

sin3/2(T ∗) =

[
−1

2i
e−iT

∗ (
1− e2iT∗)]3/2

(45)

=
ieπi/4

2
√

2
e−

3
2
iT∗
[
1− 3

2
e2iT∗

+

∞∑
n=2

1

n!

(
3

2

)(
1

2

)
...

(
5

2
− n

)(
−e2iT∗)n]

=
i− 1

4

[
e−

3
2
iT∗
− 3

2
e

1
2
iT∗

+
∞∑
n=2

ane
(2n− 3

2 )iT∗
]
,

for

an =
3

2nn!

(−1)n(2n− 4)!

2n−2(n− 2)!
(−1)n

≈ 3(2n− 4)2n− 7
2 e−(2n−4)

22n− 3
2 nn+ 1

2 (n− 2)n−
3
2 e−(2n−2)

√
π

for n > 2

=
3e2

4
√
π

(
1− 2

n

)n−2

n−
5
2

∼ 3

4
√
π
n−

5
2 as n→∞. (46)
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Now, the Fourier transform of the nth exponential is

Fn(f) =

∫ T0

0

e(2n− 3
2 )πiT/T0e−2πifT dT,

=

T0 for f = n−3/4
T0

exp[(2n− 3
2
−2fT0)πi]−1

2fT0−2n+ 3
2

i
π
T0 otherwise,

(47)

vanishing at fk =
(
k − 3

4

)
/T0 for k ∈ N0/{n}. Therefore,

∫ T0

0

∆1(T )3/2e−2πifkT dT =


i−1

4
∆

3/2
m T0 for k = 0

3(1−i)
8

∆
3/2
m T0 for k = 1

i−1
4
ak∆

3/2
m T0 for k ≥ 2

∼ 3(i− 1)

16
√
π
k−

5
2 ∆3/2

m T0 as k →∞,

(48)

while ∫ T0

0

∆1(T )3/2 dT =
1

π
∆3/2
m T0

∫ π

0

sin3/2(u) du

=
2
√

2

3π
K(1/2)∆3/2

m T0 (49)

for complete elliptic integral of the first kind K (Wolfram

Alpha, 2023).

Consequently, as fk →∞,

ζ(fk) ≈ 81π

1024K(1/2)2
(fkT0)−5

≈ 0.653(fk/fc)
−5. (50)

Differentiating equation (47) with respect to f shows that

this is approximately the maximum of ζ in the interval

(k− 1)/T0 < f ≤ k/T0, with the approximation exact in the

limit k → ∞, while ∆(T )’s symmetry about T0/2 implies

that ζ(k/T0) = 0. Therefore, the central moving average

over 1/T0 intervals is

〈ζ〉(f) ≈ 0.33(fk/fc)
−5. (51)

S7. Impact geometry

We consider the geometry of an impact force’s transmis-

sion through a connected network of particles, towards the

flow’s base, focusing on a diameter-d particle’s contacts with

its upper and lower neighbors. The network is likely to be

structured and highly anisotropic but, for the sake of sim-

plicity, we consider contacts in isolation and suppose a high

degree of network isotropy.

a b

Figure S7. Geometry of force transmission. We illus-
trate the geometry of an impact force’s transmission in
a chain of three particles, with cross-sections a and b il-
lustrating the base-normal distance over which the force
is transmitted and the force’s geometric attenuation, re-
spectively.

If ψz is the angle between the upper contact’s normal and
the base-normal z-axis, as in Figure S7a, and the probabil-
ity distribution of this contact’s position depends on ψz only
via the line element sinψzdψz, then the mean base-normal
distance between the centres of the particles in contact is∫ π/2

0

d cosψz sinψz dψz = d/2. (52)

Similarly, if ψ is the angle between the two contacts’ nor-
mals, as in Figure S7b, then a normal force Fn applied at
the upper contact will induce a normal force of magnitude
||Fn|| cosψ at the lower contact. If the lower contact is
equally likely to lie anywhere in the opposing hemisphere,
then the mean fraction of spectral power transmitted will
be

∫ π/2

0

cos2 ψ sinψ dψ = 1/3. (53)

S8. Domain size effects

For computational tractability, we simulate flows in peri-
odic domains much smaller than the experimental domain
of Arran et al. (2021), which in turn contained many fewer
particles than geophysical flows of concern. We must there-
fore examine whether the behavior of our simulated flows
depends significantly on the domain size.

Figure S8 shows that our simulated domains are suffi-
ciently large for there to be no systematic dependence on
domain size. Holding slope angle θ and overburden nz con-
stant, some variation is apparent between flows in differently
sized domains, both in depth profiles of downslope velocity
ux and in those of the proportion Pc of particles connected
to the base. But whilst this variation is non-negligible, es-
pecially for ux(z)-profiles of high-θ, low-nz, highly energetic
flows, no trend with domain size A can be discerned. The
variation can therefore be attributed to random influences,
such as details of base preparation or of initial conditions.
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Figure S8. Variation with domain size. Profiles with
base-normal coordinate z of (a, c) downslope velocity ux
and (b, d) the probability Pc that a particle is connected
to the base, for various domain sizes A and for (a, b)
θ = 22.0◦ and nz = 16 and (c,d) θ = 24.5◦ and nz = 4.

Movie S1.
Illustration of simulated steady flow, for domain extents

nx = ny = 10, slope angle θ = 23.5◦ and overburden
nz = 11. Particles are represented by spheres of corre-
sponding diameter, with fixed basal particles black and other
particles colored according to their simulated velocity, in
m s−1. Consecutive frames are separated by 0.001 simu-
lated seconds, so that the video spans 0.32 s of simulated
flow, starting 4 s before the time t0 at which the flow is flow
is confirmed to be steady.
Movie S2.

Illustration of force chains within a simulated flow, for
domain extents nx = ny = 10, slope angle θ = 22.0◦ and
overburden nz = 8. In the jth frame, corresponding to time
t0 + jδt, each pair of particles in contact is indicated by a
line segment joining their centres, with opacity and color
corresponding to the interparticle normal force Fn.
Movie S3.

As for Movie S2, but with slope angle θ = 24.5◦ and
overburden nz = 8, and with Fn frequently exceeding the
saturation value 400ρgd3.
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