References
Biggs, J., Ayele, A., Fischer, T.P. et al. (2021), Volcanic activity and hazard in the East African
Rift Zone. Nat Commun 12, 6881. https://doi.org/10.1038/s41467-021-27166-y
A. M. Crawford, B. J. B. Stunder, F. Ngan, M. J. Pavolonis, 2016. Initializing HYSPLIT with
satellite observations of volcanic ash: A case study of the 2008 Kasatochi eruption, J. Geophys.
Res. Atmos., 121, doi:10.1002/2016JD024779.
T. Chai, A. Crawford, B. J. B. Stunder, M. J. Pavolonis, R. Draxler, A. Stein, 2017. Improving
volcanic ash predictions with the HYSPLIT dispersion model by assimilating MODIS satellite
retrievals, Atmos. Chem. Phys, 17, https://doi.org/10.5194/acp-17-2865-2017
Crawford, A.: The Use of Gaussian Mixture Models with Atmospheric Lagrangian Particle
Dispersion Models for Density Estimation and Feature Identification. Atmosphere 2020, 11,
1369. https://doi.org/10.3390/atmos11121369
Mastin, L.G., M. Guffanti, R. Servranckx, P. Webley, S. Barsotti, K. Dean, A. Durant, J.W.
Ewert, A. Neri, W.I. Rose, D. Schneider, L. Siebert, B. Stunder, G. Swanson, A. Tupper, A.
Volentik, C.F. Waythomas, 2009: A multidisciplinary effort to assign realistic source parameters
to models of volcanic ash-cloud transport and dispersion during eruptions Journal of
Volcanology and Geothermal Research, 186:10-21.
Webley, P.W., B.J.B. Stunder, and K.G. Dean. 2009: Preliminary sensitivity study of eruption
source parameters for operational volcanic ash cloud transport and dispersion models — A case
study of the August 1992 eruption of the Crater Peak vent, Mount Spurr, Alaska. Journal of
Volcanology and Geothermal Research, 186:108-119.
Stunder, B.J.B., J.L. Heffter, R.R. Draxler (2007), Airborne Volcanic Ash Forecast Area
Reliability, Weather and Forecasting, 22:1132-1139, DOI: 10.1175/WAF1042.1
Tupper, A., J. Davey, P. Stewart, B. Stunder, R. Servranckx, and F. Prata, 2006: Aircraft
encounters with volcanic clouds over Micronesia, Oceania, 2002/03. Australian Meteorological
Magazine, 55, 289-299.
Heffter,J.L., 1996: Volcanic ash model verification using a Klyuchevskoi eruption. Geophy. Res.
Letters, 23-12, 1489-1492. Heffter, J.L. and B.J.B. Stunder, 1993: Volcanic Ash Forecast Transport And Dispersion (VAFTAD) Model. Wea Forecasting, 8, 534-541.
Heffter, J.L., B.J.B. Stunder, and G.D. Rolph, 1990: Long-range forecast trajectories of volcanic
ash from Redoubt volcano eruptions. Bull. Amer. Meteor. Soc. 71(12):1731-1738.
Stunder, B.J.B., J.L. Heffter, R.R. Draxler (2007), Airborne Volcanic Ash Forecast Area
Reliability, Weather and Forecasting, 22:1132-1139, DOI: 10.1175/WAF1042.1
Tupper, A., J. Davey, P. Stewart, B. Stunder, R. Servranckx, and F. Prata, 2006: Aircraft
encounters with volcanic clouds over Micronesia, Oceania, 2002/03. Australian Meteorological
Magazine, 55, 289-299.
Heffter,J.L., 1996: Volcanic ash model verification using a Klyuchevskoi eruption. Geophy. Res.
Letters, 23-12, 1489-1492.
Heffter, J.L. and B.J.B. Stunder, 1993: Volcanic Ash Forecast Transport And Dispersion
(VAFTAD) Model. Wea Forecasting, 8, 534-541.
Heffter, J.L., B.J.B. Stunder, and G.D. Rolph, 1990: Long-range forecast trajectories of volcanic
ash from Redoubt volcano eruptions. Bull. Amer. Meteor. Soc. 71(12):1731-1738.
Rolph, G., Stein, A., & Stunder, B. (2017). Real-time environmental applications and display
system: READY. Environmental Modelling & Software, 95, 210-228.
https://doi.org/10.1016/j.envsoft.2017.06.025
AWS, 1979. The Use of the Skew of T, log P Diagram in Analysis and Forecasting.
AWS/TR-79/006, Air Weather Service, Scott AFB, IL, 150 pp. [Available from: Air
Weather Service (MAC), Scott AFB, IL 62225.].
Draxler, R.R., 1979. Estimating vertical diffusion from routine meteorological tower
measurements. Atmos. Environ. 13, 1559e1564.
http://dx.doi.org/10.1016/0004-6981(79)90065-9
Draxler, R.R., 1982. Measuring and modelling the transport and dispersion of
kRYPTON-85 1500km from a point source. Atmos. Environ. 16, 2763e2776.
http://dx.doi.org/10.1016/0004-6981(82)90027-0
Draxler, R.R., 1996. Trajectory optimization for balloon flight planning. Wea. Forecast.
11, 111e114
http://dx.doi.org/10.1175/1520-0434(1996)011<0111:TOFBFP>2.0.CO;2
Draxler, R.R., 1999. HYSPLIT4 User’s Guide. NOAA Tech. Memo. ERL ARL-230, 35 pp.
[2016 version available online at: http://www.arl.noaa.gov/documents/reports/
hysplit_user_guide.pdf. last access: January 2016].
Draxler, R.R., Hess, G.D., 1998. An overview of the HYSPLIT_4 modelling system for
trajectories, dispersion, and deposition. Aust. Meteor. Mag. 47, 295e308.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M.,
Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W.,
Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R.,
Jenne, R., Joseph, D., 1996. The NCEP/NCAR 40-year Reanalysis project. Bull. Am.
Met. Soc. 77, 437e471
http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
Ngan, F., Stein, A., 2017. A long-term WRF meteorological archive for dispersion
simulations: application to controlled tracer experiments. J. Appl. Meteor. Climatol.
http://dx.doi.org/10.1175/JAMC-D-16-0345.1 in press.
Ngan, F., Stein, A.F., Draxler, R.R., 2015. Inline coupling of WRF-HYSPLIT: model
development and evaluation using tracer experiments. J. Appl. Meteor. Climatol.
54, 1162e1176. http://dx.doi.org/10.1175/JAMC-D-14-0247.1
Solazzo, E., Galmarini, S., 2014. The Fukushima-137Cs deposition case study: properties
of the multi-model ensemble. J. Environ. Radioact. 139, 226e233.
http://dx.doi.org/10.1016/j.jenvrad.2014.02.017
Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F., 2015.
NOAA’s HYSPLIT atmospheric transport and dispersion modelling system. Bull.
Am. Meteorol. Soc. 96, 2059e2077. http://dx.doi.org/10.1175/BAMS-D-14-00110.1
WMO, 2014. Documentation on RSMC Support for Environmental Emergency
Response. Technical Document WMO-TD/No.778. World Meteorological Organization,
Geneva, Switzerland. Available online at:
http://www.wmo.int/pages/prog/www/DPFSERA/td778.html
Millán, L., Santee, M. L., Lambert, A., Livesey, N. J., Werner, F., Schwartz, M. J., et al. (2022).
The Hunga Tonga-Hunga Ha’apai Hydration of the Stratosphere. Geophysical Research
Letters, 49, e2022GL099381. https://doi.org/10.1029/2022GL099381
Harding, B. J., Wu, Y.-J. J., Alken, P., Yamazaki, Y., Triplett, C. C., Immel, T. J., et al. (2022).
Impacts of the January 2022 Tonga volcanic eruption on the ionospheric dynamo: ICON-
MIGHTI and Swarm observations of extreme neutral winds and currents. Geophysical
Research Letters, 49, e2022GL098577. https://doi.org/10.1029/2022GL098577
Schnepf, N. R., Minami, T., Toh, H., & Nair, M. C. (2022). Magnetic signatures of the 15
January 2022 Hunga Tonga–Hunga Ha’apai volcanic eruption. Geophysical Research Letters,
49, e2022GL098454. https://doi.org/10.1029/2022GL098454
Astafyeva, E., Maletckii, B., Mikesell, T. D., Munaibari, E., Ravanelli, M., Coisson, P., et al.
(2022). The 15 January 2022 Hunga Tonga eruption history as inferred from ionospheric
observations. Geophysical Research Letters, 49, e2022GL098827.
https://doi.org/10.1029/2022GL098827
Legras, B., Duchamp, C., Sellitto, P., Podglajen, A., Carboni, E., Siddans, R., Grooß, J.,
Khaykin, S., & Ploeger, F. (2022). The evolution and dynamics of the Hunga Tonga plume in the
stratosphere. https://doi.org/10.5194/egusphere-2022-517
D’Arcangelo, S.; Bonforte, A.; De Santis, A.; Maugeri, S.R.; Perrone, L.; Soldani, M.; Arena,
G.; Brogi, F.; Calcara, M.; Campuzano, S.A.; et al. A Multi-Parametric and Multi-Layer Study to
Investigate the Largest 2022 Hunga Tonga–Hunga Ha’apai Eruptions. Remote Sens. 2022,
14, 3649. https://doi.org/10.3390/rs14153649
Mishra, M.K.; Hoffmann, L.; Thapliyal, P.K. Investigations on the Global Spread of the Hunga
Tonga-Hunga Ha’apai Volcanic Eruption Using Space-Based Observations and Lagrangian
Transport Simulations. Atmosphere 2022, 13, 2055. https://doi.org/10.3390/atmos13122055
Garvin, J. B., Slayback, D. A., Ferrini, V., Frawley, J., Giguere, C., Asrar, G. R., & Andersen, K.
(2018). Monitoring and modelling the rapid evolution of Earth’s newest volcanic island: Hunga
Tonga Hunga Ha’apai (Tonga) using high spatial resolution satellite observations. Geophysical
Research Letters, 45, 3445–3452. https://doi.org/10.1002/2017GL076621
Wohletz, K., & Heiken, G. (1992). Volcanology and geothermal energy.
Hurst, T., & Davis, C. (2017). Forecasting volcanic ash deposition using HYSPLIT. Journal of
Applied Volcanology, 6(1). https://doi.org/10.1186/s13617-017-0056-7
Xu, J.; Li, D.; Bai, Z.; Tao, M.; Bian, J. Large Amounts of Water Vapor Were Injected into the
Stratosphere by the Hunga Tonga–Hunga Ha’apai Volcano Eruption. Atmosphere 2022, 13, 912.
https://doi.org/10.3390/atmos13060912
Brenna, M., Cronin, S., Smith, I., Pontesilli, A., Tost, M., Barker, S., & Tongaonevai, S. (2022).
Post-caldera volcanism reveals shallow priming of an intra-ocean arc andesitic caldera: Hunga
volcano, Tonga, SW Pacific. https://doi.org/10.31223/x5qp8v
Plank, S., Marchese, F., Genzano, N., Nolde, M., & Martinis, S. (2020). The short life of the
volcanic island new Late’iki (Tonga) analyzed by multi-sensor remote sensing data. Scientific
Reports, 10(1). https://doi.org/10.1038/s41598-020-79261-7
Chouet, B., P. Dawson, T. Ohminato, M. Martini, G. Saccorotti, F. Giudicepietro, G. De Luca,
G. Milana, and R. Scarpa, Source mechanisms of explosions at Stromboli Volcano, Italy,
determined from moment-tensor inversions of very-long-period data, J. Geophys. Res., 108(B1),
2019, doi:10.1029/2002JB001919, 2003.
Wassermann J (2012) Volcano seismology. In: Peter B (ed) IASPEI new manual of
seismological observatory practice 2 (NMSOP-2), second. Potsdam : Deutsches
GeoForschungsZentrum GFZ, Potsdam, pp 1–77. doi:10.2312/GFZ.NMSOP-2_ch13
Saccorotti, G., & Lokmer, I. (2021). A review of seismic methods for monitoring and understanding active volcanoes. Forecasting and Planning for Volcanic Hazards, Risks, and Disasters, 25-73.https://doi.org/10.1016/b978-0-12-818082-2.00002-0
Chouet, B. A., & Matoza, R. S. (2013). A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption. Journal of Volcanology and Geothermal Research, 252, 108-175.https://doi.org/10.1016/j.jvolgeores.2012.11.013
Lomax, A., & Michelini, A. (2009). Tsunami early warning using earthquake rupture duration. Geophysical Research Letters, 36(9).https://doi.org/10.1029/2009gl037223
Andy Jurkevics; Polarization analysis of three-component array data. Bulletin of the Seismological Society of America 1988;; 78 (5): 1725–1743. doi:https://doi.org/10.1785/BSSA0780051725
Jousset, P., Budi-Santoso, A., Jolly, A. D., Boichu, M., Surono, Dwiyono, S., Sumarti, S., Hidayati, S., & Thierry, P. (2013). Signs of magma ascent in LP and VLP seismic events and link to degassing: An example from the 2010 explosive eruption at Merapi volcano, Indonesia. Journal of Volcanology and Geothermal Research, 261, 171-192.https://doi.org/10.1016/j.jvolgeores.2013.03.014
Soubestre, J., Shapiro, N. M., Seydoux, L., de Rosny, J., Droznin, D. V., Droznina, S. Y., Gordeev, E. I. (2018). Network-based detection and classification of seismovolcanic tremors: Example from the Klyuchevskoy volcanic group in Kamchatka. Journal of Geophysical Research: Solid Earth, 123.https://doi.org/10.1002/2017JB014726
Rost, S., & Thomas, C. (2002). Array seismology: Methods and applications. Reviews of Geophysics, 40(3), 2-1-2-27.https://doi.org/10.1029/2000rg000100
Wassermann, J., Braun, T., Ripepe, M., Bernauer, F., Guattari, F., & Igel, H. (2022). The use of 6DOF measurement in volcano seismology – A first application to Stromboli volcano. Journal of Volcanology and Geothermal Research, 424, 107499.https://doi.org/10.1016/j.jvolgeores.2022.107499
Thomson, D. J. (1987). Criteria for the selection of stochastic models of particle trajectories in turbulent flows. Journal of Fluid Mechanics, 180(-1), 529.https://doi.org/10.1017/s0022112087001940
Shao, Y., Hacker, J. M., & Schwerdtfeger, P. (1991). The structure of turbulence in a coastal atmospheric boundary layer. Quarterly Journal of the Royal Meteorological Society, 117(502), 1299-1324.https://doi.org/10.1002/qj.49711750209
Reynolds AM. Incorporating terminal velocities into Lagrangian stochastic models of particle dispersal in the atmospheric boundary layer. Sci Rep. 2018 Nov 15;8(1):16843. doi: 10.1038/s41598-018-34924-4. PMID: 30442966; PMCID: PMC6237984.
Wilson, J.D., Sawford, B.L. Review of Lagrangian stochastic models for trajectories in the turbulent atmosphere. Boundary-Layer Meteorol 78, 191–210 (1996).https://doi.org/10.1007/BF00122492
Pope, S. B., & Chen, Y. L. (1990). The velocity‐dissipation probability density function model for turbulent flows. Physics of Fluids A: Fluid Dynamics, 2(8), 1437-1449.https://doi.org/10.1063/1.857592
Haszpra, T., & Tél, T. (2011). Volcanic ash in the free atmosphere: A dynamical systems approach. Journal of Physics: Conference Series, 333, 012008.https://doi.org/10.1088/1742-6596/333/1/012008
Farazmand, M., & Haller, G. (2015). The Maxey–Riley equation: Existence, uniqueness and regularity of solutions. Nonlinear Analysis: Real World Applications, 22, 98-106.https://doi.org/10.1016/j.nonrwa.2014.08.002
Karten und listen seismischer Aktivität — ZAMG. (n.d.). Zentralanstalt für Meteorologie und Geodynamik-ZAMG.https://www.zamg.ac.at/cms/de/geophysik/erdbeben/aktuelle-erdbeben/karten-und-listen/bebendetails/austria/quakes/evid53033979
Anthony, R. E., Ringler, A. T., Tanimoto, T., Matoza, R. S., De Angelis, S., & Wilson, D. C. (2022). Earth’s upper crust Seismically excited by infrasound from the 2022 Hunga Tonga–hunga Ha’apai eruption, Tonga. Seismological Research Letters, 94(2A), 603-616.https://doi.org/10.1785/0220220252
Volcanic explosion penetrates both upper atmosphere and upper crust around the globe | U.S. geological survey. (2023, February 23). USGS.gov | Science for a changing world. https://www.usgs.gov/news/science-snippet/volcanic-explosion-penetrates-both-upper-atmosphere-and-upper-crust-around
Air resources laboratory - Hysplit - Hybrid single particle lagrangian integrated trajectory model. (2022, September2). Air Resource Laboratory - READY.https://www.ready.noaa.gov/HYSPLIT.php
Underwater fire: Studying the submarine volcanoes of Tonga. (2021, June 14). Schmidt Ocean Institute.https://schmidtocean.org/cruise/underwater-fire-studying-submarine-volcanoes-tonga/
IRIS: Data services: Nodes: DMC: Software downloads: PyWEED. IRIS: Data Services.https://ds.iris.edu/ds/nodes/dmc/software/downloads/pyweed/
Síť CESNET2. CESNET | CESNET, zájmové sdružení právnických osob.https://www.cesnet.cz/sluzby/pripojeni/sit-cesnet2/
Vojtech, Josef, Smotlacha, Vladimir, Havlis, Ondrej, Slapak, Martin, Altmannova, Lada, Kundrat, Jan, Bhowmick Sarbojeet, Vohnout, Rudolf, Velc, Radek, Pospisil, Petr, Cizek, Martin, Hrabina, Jan, Rerucha, Simon, Pravdova, Lenka, Lazar, Josef, Cip, Ondrej, Kuna, Alexander, Roztocil, Jaroslav, ”National Infrastructure for Dissemination of Precise Time and Coherent Ultra-stable Op-tical Frequency - CITAF,” Proceedings of the 53rd Annual Precise Time and Time Interval Systems and Applications Meeting, Long Beach, California, January 2022, pp. 235-242.https://doi.org/10.33012/2022.18289
Sarbojeet Bhowmick, Josef Vojtech, and Radek Velc ”Scope and application of Bi-directional EDFA for long distance optical transmissions”, Proc. SPIE 11355, Micro-Structured and Specialty Optical Fibres VI, 113550P (1 April 2020);https://doi.org/10.1117/12.2553474
Josef Vojtech, Ondrej Havlis, Martin Slapak, Sarbojeet Bhowmick, Jan Radil, Petr Munster, Tomas Horvath, RadekVelc, Jan Kundrat, Lada Altmannova, Vladimir Smotlacha, Rudolf Vohnout, Jan Hrabina, Martin Cizek, LenkaPravdova, Simon Rerucha, Ondrej Cip, Radan Slavik, Libor Marecek, Pavel Skoda, and Michal Hazlinsky ”Alternativespectral windows for photonic services distribution”, Proc. SPIE 11128, Infrared Remote Sensing and InstrumentationXXVII, 1112806 (9 September 2019);https://doi.org/10.1117/12.2529713