2.3.3. Heat collection and management devices
In addition, thermoelectric materials are used as a heat source for
different applications to create a temperature difference between the
hot and the cold ends. In this regard, Ma et
al.[92] combined AM with sodium alginate to form
double-network hydrogels and added guanidinium hydrochloride to enhance
their thermoelectric properties and improve their heat dissipation
ability. In this study, a 30 mm computer CPU was selected as the
subject, and its normal operating temperature was observed to reach 76.2
°C. Notably, after applying the hydrogel onto the surface of the CPU,
its operating temperature decreased by 15.1 °C, reaching 61.1 °C, while
maintaining a stable voltage output of approximately 43.5 mV. At the
same time, Ma and his team reported a multifunctional superelastic
graphene-based thermoelectric sponge that is also committed to thermal
management. It is not only relatively stable in performance, but also
can cool the working CPU by 8K.[101] In another
approach, Hu and co-workers[32] employed
K3[Fe(CN)6]/K4[Fe(CN)6]
as redox couples in the electrolyte of thermochemical batteries and
achieved evaporation and absorption of moisture through mutual
regulation of Li+ and Br– ions. The
researchers inserted a Ti plate in the middle of the hydrogel and placed
two Ti meshes, one connected to a mobile phone cell as the positive pole
and the other as the negative pole of the thermochemical batteries. This
configuration resulted in varying temperatures during battery operation
with different discharge efficiencies. Moreover, the studies illustrate
that thermoelectric materials have promising prospects in the heat
management of electronic devices.
3. Conclusions and Perspectives
Given the current global energy crisis, developing thermoelectric
technologies is undoubtedly a good choice. However, traditional
solid-state materials are no longer suitable for certain applications,
leading to the emergence of quasi-solid-state gels as a promising
alternative. In recent years, the research progress of thermoelectric
hydrogels has advanced rapidly, especially in the development of
quasi-solid-state thermoelectric hydrogels. According to the current
research status, these materials have the potential for a diverse range
of applications. This review provides an overview of the working
principles and commonly used redox couples of thermocells based on the
thermogalvanic effect. It then focuses on recent advances in hydrogel
network matrices, electrode materials, surface and compositional
structure of these thermocells. Lastly, the review presents the more
advanced results in this field.
Despite significant progress in present thermoelectric research, there
remains considerable scope for the development of thermoelectric
batteries.
Firstly, the optimization of electrolytes is worth discussing. When
hydrogels are used as electrolytes, the selection of different matrices
and catalysts allows for the tailoring of their mechanical properties,
with their ionic conductivity, thermal conductivity, and \(S\).
Currently, the
[Fe(CN)6]4–/[Fe(CN)6]3–redox ion couple is the most intensively studied in terms of its
thermoelectric effect. However, further exploration is needed to
identify couples that exhibit a more prominent thermogalvanic effect.
Additionally, we observed that the addition of reagents, such as NaCl
and KCl, can enhance the efficiency of the oxidation-reduction process,
thereby improving the overall\(S\). Furthermore, the hydrogels achieved
good working efficiency at both low and high temperatures by adding
alcohol reagents. These three options provide opportunities for further
optimization of the quasi-solid-state hydrogel electrolyte.
Besides, while addressing energy problems, the design of thermoelectric
devices should not be confined to the laboratory setting but should also
prioritize practicality in their structural design. The paper folding
structure, pleated structures, helical structures, integrated textile
structures, and island bridge structures with stretchable electrodes
presented in this review offer various possible applications. Depending
on the specific practical needs and material properties, different
structures can be chosen to address problems in multiple environments,
thus, making energy conversion more efficient.
Moreover, electrode materials play a critical role in the composition of
batteries and should not be overlooked. Presently, metal electrodes are
most commonly used, followed by carbon-based material electrodes, while
thin film electrodes are rarely employed in battery applications. From
the viewpoint of thermoelectric development, it is important to
investigate the impact of the physical properties of electrodes on the
overall performance. This call for a particular focus on flexible
electrode materials with good mechanical properties, toughness, and low
cost.
In conclusion, when studying thermogalvanic or thermal diffusion
effects, the following steps involve optimizing the \(S\), improving
electrical conductivity, and reducing thermal conductivity. This can be
achieved through effective cooperation among the electrolyte, structure
design, and electrodes, along with the addition of suitable solvents.
The rapid development of thermoelectric materials has demonstrated their
enormous commercial potential, which can drive environmental and
economic developments in the future.
Acknowledgement
This work was supported by the National Nature Science Foundation of
China (51977079), Beijing Natural Science Foundation(3232054), the Key
Laboratory of Icing and Anti/De-icing of CARDC (Grant No. IADL
20210401), the Central Guidance on Local Science and Technology
Development Fund of Hebei Province (226Z1204G), the Top Young Innovative
Talents of Colleges and Universities of Higher Learning Institutions of
Hebei (BJ2021095), Youth Elite Scientists Sponsorship Program by Chinese
Society for Electrical Engineering (CSEE-YESS-2017002), and the
Fundamental Research Funds for the Central Universities (2020MS115)
References
- Han, Y.; Zhang, J.; Hu, R.; Xu, D. High-thermopower polarized
electrolytes enabled by methylcellulose for low-grade heat harvesting.Sci. Adv . 2022 , 8 , eabl5318.
- Mu, K.; Mu, Y.; Wang, X.; Wu, X.; Pang, C.; Huang, Y.-T.; Feng, S.-P.
Direct Thermal Charging Cell Using Nickel Hexacyanoferrate (ΙΙ) Anode
for Green Recycling of Low-Grade Heat. ACS Energy Lett.2022 , 7 , 1146-1153.
- Li, T., Zhang, X.; Lacey, S.D; et al. Cellulose ionic
conductors with high differential thermal voltage for low-grade heat
harvesting. Nat. Mater. 2019, 18 , 608–613.
- Duan, J.; Yu, B.; Huang, L.; Hu, B.; Xu, M.; Feng, G.; Zhou, J.
Liquid-state thermocells: Opportunities and challenges for low-grade
heat harvesting. Joule 2021 , 5 , 768-779.
- Yu, B.; Duan, J.; Cong, H.; Xie, W.; Liu, R.; Zhuang, X.; Wang, H.;
Qi, B.; Xu, M.; Wang, Z. L.; Zhou, J. Thermosensitive
crystallization-boosted liquid thermocells for low-grade heat
harvesting. Science 2020 , 370 , 342-346.
- Li, W.; Ma, J.; Qiu, J.; Wang, S. Thermocells-enabled low-grade heat
harvesting: challenge, progress, and prospects. Materials Today
Energy 2022 , 27 , 101032.
- Zhao, W.; Wang, Z.; Hu, R.; Luo, X. Gel-based thermocells for
low-grade heat harvesting. EPL (Europhysics Letters)2021 , 135, 26001.
- Duan, J.; Feng, G.; Yu, B. et al. Aqueous thermogalvanic cells
with a high Seebeck coefficient for low-grade heat harvest. Nat.
Commun. 2018 , 9 , 5146.
- Zong, Y.; Li, H.; Li, X.; Lou, J.; Ding, Q.; Liu, Z.; Jiang, Y.; Han,
W. Bacterial cellulose-based hydrogel thermocells for low-grade heat
harvesting. Chem. Eng. J. 2022 , 433 , 134550.
- Xie, G.; Li, P.; Zhang, Z.; Xiao, K.; Kong, X.-Y.; Wen, L.; Jiang, L.
Skin-Inspired Low-Grade Heat Energy Harvesting Using Directed Ionic
Flow through Conical Nanochannels. Adv. Energy Mater.2018 , 8 , 1800459.
- Wei, X.; Zhao, Z.; Wang, L.; Jin, X.; Yuan, Z.; Wu, Z.; Wang, Z. L.
Energy conversion system based on Curie effect and triboelectric
nanogenerator for low-grade heat energy harvesting. Nano Energy2022 , 91 , 106652.
- Li, Z.; An, Y.; Dong, S.; Chen, C.; Wu, L.; Sun, Y.; Zhang, X.
Progress on zinc ion hybrid supercapacitors: Insights and challenges.Energy Storage Mater. 2020 , 31 , 252-266.
- Li, Z.; Xu, Y.; Wu, L. et al. Zinc ion thermal charging cell
for low-grade heat conversion and energy storage. Nat.
Commun. 2022 , 13 , 132.
- Hu, L.; Wu, H.; Zhu, T.; Fu, C.; He, J.; Ying, P.; Zhao, X. Tuning
Multiscale Microstructures to Enhance Thermoelectric Performance of
n-Type Bismuth-Telluride-Based Solid Solutions. Adv. Energy
Mater. 2015 , 5 , 1500411.
- Bai, C.; Li, X.; Cui, X.; Yang, X.; Zhang, X.; Yang, K.; Wang, T.;
Zhang, H. Transparent stretchable thermogalvanic PVA/gelation hydrogel
electrolyte for harnessing solar energy enabled by a binary solvent
strategy. Nano Energy 2022 , 100 , 107449.
- Cheng, H.; He, X.; Fan, Z.; Ouyang, J. Flexible Quasi‐Solid State
Ionogels with Remarkable Seebeck Coefficient and High Thermoelectric
Properties. Adv. Energy Mater. 2019 , 9 ,
1901085.
- Horike, S.; Wei, Q.; Kirihara, K.; Mukaida, M.; Sasaki, T.; Koshiba,
Y.; Fukushima, T.; Ishida, K. Outstanding Electrode-Dependent Seebeck
Coefficients in Ionic Hydrogels for Thermally Chargeable
Supercapacitor near Room Temperature. ACS Appl Mater Interfaces2020 , 12 , 43674-43683.
- Lei, Z.; Gao, W.; Wu, P. Double-network thermocells with extraordinary
toughness and boosted power density for continuous heat harvesting.Joule 2021 , 5 , 2211-2222.
- Li, X.; Li, J.; Wang, T.; Khan, S. A.; Yuan, Z.; Yin, Y.; Zhang, H.
Self-Powered Respiratory Monitoring Strategy Based on Adaptive
Dual-Network Thermogalvanic Hydrogels. ACS Appl Mater
Interfaces 2022 , 14 , 48743-48751.
- Bai, C.; Wang, Z.; Yang, S.; Cui, X.; Li, X.; Yin, Y.; Zhang, M.;
Wang, T.; Sang, S.; Zhang, W.; Zhang, H. Wearable Electronics Based on
the Gel Thermogalvanic Electrolyte for Self-Powered Human Health
Monitoring. ACS Appl Mater Interfaces 2021 , 13 ,
37316-37322.
- Liu, C.; Li, Q.; Wang, S.; Liu, W.; Fang, N. X.; Feng, S.-P. Ion
regulation in double-network hydrogel module with ultrahigh
thermopower for low-grade heat harvesting. Nano Energy2022 , 92 , 106738.
- Peng, P.; Zhou, J.; Liang, L.; Huang, X.; Lv, H.; Liu, Z.; Chen, G.
Regulating Thermogalvanic Effect and Mechanical Robustness via Redox
Ions for Flexible Quasi-Solid-State Thermocells. Nanomicro
Lett. 2022 , 14 , 81.
- Kang, S.; Snyder, G. Charge-transport model for conducting
polymers. Nature Mater. 2017, 16 , 252–257.
- Liu, Z.; Chen, G. Advancing Flexible Thermoelectric Devices with
Polymer Composites. Adv. Mater. Technol. 2020 ,5 , 2000049.
- He, Z.; Zhou, Z.; Yuan, W. Highly Adhesive, Stretchable, and
Antifreezing Hydrogel with Excellent Mechanical Properties for
Sensitive Motion Sensors and Temperature-/Humidity-Driven Actuators.ACS Appl Mater Interfaces 2022 , 14 ,
38205-38215.
- Yang, P.; Yang, J. L.; Liu, K.; Fan, H. J. Hydrogels Enable Future
Smart Batteries. ACS Nano 2022 , 16 ,
15528-15536.
- Wang, P.; Zhang, X.; Duan, W.; Teng, W.; Liu, Y.; Xie, Q.
Superhydrophobic Flexible Supercapacitors Formed by Integrating
Hydrogel with Functional Carbon Nanomaterials. Chin. J. Chem.2021 , 39 , 1153-1158.
- Rajasekharan Pillai, V.N.; Mutter, M. Synthetic hydrophilic
polymers. Naturwissenschaften 1981, 68 ,
558–566.
- Sabbagh, F.; Muhamad, I.I. Physical and Chemical Characterisation of
Acrylamide-Based Hydrogels, Aam, Aam/NaCMC and Aam/NaCMC/MgO. J.
Inorg. Organomet. Polym. 2017 ,27 , 1439–1449.
- He, Y.; Wang, F.; Wang, X.; Zhang, J.; Wang, D.; Huang, X. A
photocurable hybrid chitosan/acrylamide bioink for DLP based 3D
bioprinting. Mater. Des. 2021 , 202, 109588.
- Peng, K.; Yang, K.; Fan, Y.; Yasin, A.; Hao, X.; Yang, H.
Thermal/Light Dual-Activated Shape Memory Hydrogels Composed of an
Agarose/Poly(acrylamide-co-acrylic acid) Interpenetrating Network.Macromol. Chem. Phys. 2017 , 218 , 1700170.
- Pu, S.; Liao, Y.; Chen, K.; Fu, J.; Zhang, S.; Ge, L.; Conta, G.;
Bouzarif, S.; Cheng, T.; Hu, X.; Liu, K.; Chen, J. Thermogalvanic
Hydrogel for Synchronous Evaporative Cooling and Low-Grade Heat Energy
Harvesting. Nano Lett. 2020 , 20 , 3791-3797.
- Adelnia, H.; Ensandoost, R.; Shebbrin Moonshi, S.; Gavgani, J. N.;
Vasafi, E. I.; Ta, H. T. Freeze/thawed polyvinyl alcohol hydrogels:
Present, past and future. Eur. Polym. J. 2022 ,164 , 110974.
- Christie M. H.; Nikolaos A. P. Structure and Morphology of
Freeze/Thawed PVA Hydrogels. Macromolecules2000, 33 (7), 2472-2479.
- He, Y.; Zhang, Q.; Cheng, H.; Liu, Y.; Shu, Y.; Geng, Y.; Zheng, Y.;
Qin, B.; Zhou, Y.; Chen, S.; Li, J.; Li, M.; Odunmbaku, G. O.; Li, C.;
Shumilova, T.; Ouyang, J.; Sun, K. Role of Ions in Hydrogels with an
Ionic Seebeck Coefficient of 52.9 mV K(-1). J. Phys. Chem.
Lett. 2022 , 13 , 4621-4627.
- Lei, Z.; Gao, W.; Zhu, W.; Wu, P. Anti‐Fatigue and Highly Conductive
Thermocells for Continuous Electricity Generation. Adv. Funct.
Mater. 2022 , 32 , 2201021.
- Yang, S.; Tao, X.; Chen, W.; Mao, J.; Luo, H.; Lin, S.; Zhang, L.;
Hao, J. Ionic Hydrogel for Efficient and Scalable Moisture-Electric
Generation. Adv. Mater. 2022 , 34 , e2200693.
- Yin, L.; Cao, M.; Kim, K. N.; Lin, M.; Moon, J.-M.; Sempionatto, J.
R.; Yu, J.; Liu, R.; Wicker, C.; Trifonov, A.; Zhang, F.; Hu, H.;
Moreto, J. R.; Go, J.; Xu, S.; Wang, J. A stretchable epidermal sweat
sensing platform with an integrated printed battery and electrochromic
display. Nat. Electron. 2022 , 5 , 694-705.
- Chang, C.; Lue, A.; Zhang, L. Effects of Crosslinking Methods on
Structure and Properties of Cellulose/PVA Hydrogels. Macromol.
Chem. Phys. 2008 , 209 , 1266-1273.
- Kumar, A.; Han, S. S. PVA-based hydrogels for tissue engineering: A
review. Int. J. Polym. Mater. Polym. Biomater. 2016 ,66 , 159-182.
- Petty-Weeks, S.; Polak A.J. Differential scanning calorimetry and
complex admittance analysis of
PVA/H3PO4 proton conducting polymer
blends. Sens. Actuators 1987 , 11(4), 337-386.
- Ngai, K.S.; Ramesh, S.; Ramesh, K. et al. A review of polymer
electrolytes: fundamental, approaches and
applications. Ionics 2016 , 22 , 1259–1279.
- Zhang, J.; Yao, X.; Misra, R. K.; Cai, Q.; Zhao, Y. Progress in
electrolytes for beyond-lithium-ion batteries. J. Mater. Sci.
Technol. 2020 , 44 , 237-257.
- Sharma, B.; Malik, P.; Jain, P. Biopolymer reinforced nanocomposites:
A comprehensive review. Mater. Today Commun. 2018 ,16 , 353-363.
- Zou, D.; Nunes, S. P.; Vankelecom, I. F. J.; Figoli, A.; Lee, Y. M.
Recent advances in polymer membranes employing non-toxic solvents and
materials. Green Chem. 2021 , 23 , 9815-9843.
- Fu, F.; Yang, D.; Zhang, W.; Wang, H.; Qiu, X. Green self-assembly
synthesis of porous lignin-derived carbon quasi-nanosheets for
high-performance supercapacitors. Chem. Eng. J. 2020 ,392 , 123721.
- Chen, B.; Chen, Q.; Xiao, S.; Feng, J.; Zhang, X.; Wang, T. Giant
negative thermopower of ionic hydrogel by synergistic coordination and
hydration interactions. Sci. Adv. 2021 , 7 ,
eabi7233.
- Gao, W.; Lei, Z.; Zhang, C.; Liu, X.; Chen, Y. Stretchable and
Freeze‐Tolerant Organohydrogel Thermocells with Enhanced
Thermoelectric Performance Continually Working at Subzero
Temperatures. A Adv. Funct. Mater. 2021 ,31 , 2104071.
- Milowska, K. Z.; Majewski, J. A. Functionalization of carbon nanotubes
with -CH(n), -NH(n) fragments, -COOH and -OH groups. J. Chem.
Phys. 2013 , 138 , 194704.
- Pal, K.; Banthia, A. K.; Majumdar, D. K. Preparation and
characterization of polyvinyl alcohol-gelatin hydrogel membranes for
biomedical applications. AAPS PharmSciTech 2007 ,8 , 21.
- Lee, H. Y.; Park, S. H.; Kim, J. H.; Kim, M. S. Temperature-responsive
hydrogels via the electrostatic interaction of amphiphilic diblock
copolymers with pendant-ion groups. Polym. Chem. 2017 ,8 , 6606-6616.
- Han, C.-G.; Qian, X.; Li, Q.; Deng, B.; Zhu, Y.; Han, Z.; Zhang, W.;
Wang, W.; Feng, S.-P.; Chen, G.; Liu, W. Giant thermopower of ionic
gelatin near room temperature. Science 2020 ,368 , 1091-1098.
- Lei, W.; Khan, S.; Chen, L.; Suzuki, N.; Terashima, C.; Liu, K.;
Fujishima, A.; Liu, M. Hierarchical structures hydrogel evaporator and
superhydrophilic water collect device for efficient solar steam
evaporation. Nano Res. 2021 , 14 , 1135-1140.
- Simič, R.; Yetkin, M.; Zhang, K.; Spencer, N. D. Importance of
Hydration and Surface Structure for Friction of Acrylamide Hydrogels.Tribol. Lett. 2020 , 68 , 64.
- Hua, J.; Ng, P. F.; Fei, B. High-strength hydrogels: Microstructure
design, characterization and applications. J. Polym. Sci., Part
B: Polym. Phys. 2018 , 56 , 1325-1335.
- Mu, Q.; Cui, K.; Wang, Z. J.; Matsuda, T.; Cui, W.; Kato, H.; Namiki,
S.; Yamazaki, T.; Frauenlob, M.; Nonoyama, T.; Tsuda, M.; Tanaka, S.;
Nakajima, T.; Gong, J. P. Force-triggered rapid microstructure growth
on hydrogel surface for on-demand functions. Nat. Commun.2022 , 13 , 6213.
- Koh, W.-G.; Revzin, A.; Pishko, M. V. Poly(ethylene glycol) Hydrogel
Microstructures Encapsulating Living Cells. Langmuir2002 , 18 , 2459-2462.
- Sarker, B.; Papageorgiou, D. G.; Silva, R.; Zehnder, T.; Gul-E-Noor,
F.; Bertmer, M.; Kaschta, J.; Chrissafis, K.; Detsch, R.; Boccaccini,
A. R. Fabrication of alginate–gelatin crosslinked hydrogel
microcapsules and evaluation of the microstructure and
physico-chemical properties. J. Mater. Chem. B 2014 ,2 , 1470-1482.
- Revzin, A.; Russell, R. J.; Yadavalli, V. K.; Koh, W.-G.; Deister, C.;
Hile, D. D.; Mellott, M. B.; Pishko, M. V. Fabrication of
Poly(ethylene glycol) Hydrogel Microstructures Using Photolithography.Langmuir 2001 , 17 , 5440-5447.
- Zhang, Y.; Chen, H.; Li, J. Recent advances on gelatin methacrylate
hydrogels with controlled microstructures for tissue engineering.IInt. J. Biol. Macromol. 2022 , 221 , 91-107.
- Yang, W.; Yu, H.; Liang, W.; Wang, Y.; Liu, L. Rapid Fabrication of
Hydrogel Microstructures Using UV-Induced Projection
Printing. Micromachines 2015 , 6 , 1903-1913.
- Guan, J.; He, H.; Hansford, D. J.; Lee, L. J. Self-Folding of
Three-Dimensional Hydrogel Microstructures. J. PHYS. CHEM. B2005 , 109 , 23134-23137.
- Fukuie, K.; Iwata, Y.; Iwase, E. Design of Substrate Stretchability
Using Origami-Like Folding Deformation for Flexible Thermoelectric
Generator. Micromachines 2018 , 9 , 315.
- Zou, J.; Wu, S.; Chen, J.; Lei, X.; Li, Q.; Yu, H.; Tang, S.; Ye, D.
Highly Efficient and Environmentally Friendly Fabrication of Robust,
Programmable, and Biocompatible Anisotropic, All-Cellulose,
Wrinkle-Patterned Hydrogels for Cell Alignment. Adv. Mater.2019 , 31 , e1904762.
- Kato, M.; Kashihara, Y.; Asoh, T.-A.; Uyama, H. Geometry Control of
Wrinkle Structures Aligned on Hydrogel Surfaces. Langmuir2020 , 36 , 1467-1473.
- Kim, J. Y.; Oh, J. Y.; Lee, T. I. Multi-dimensional nanocomposites for
stretchable thermoelectric applications. Appl. Phys. Lett.2019 , 114 , 043902.
- Guan, Q.-F.; Han, Z.-M.; Zhu, Y.; Xu, W.-L.; Yang, H.-B.; Ling, Z.-C.;
Yan, B.-B.; Yang, K.-P.; Yin, C.-H.; Wu, H.; Yu, S.-H. Bio-Inspired
Lotus-Fiber-like Spiral Hydrogel Bacterial Cellulose Fibers.Nano Lett. 2021 , 21 , 952-958.
- Nan, K.; Kang, S. D.; Li, K.; Yu, K. J.; Zhu, F.; Wang, J.; Dunn, A.
C.; Zhou, C.; Xie, Z.; Agne, M. T.; Wang, H.; Luan, H.; Zhang, Y.;
Huang, Y.; Snyder, G. J.; Rogers, J. A. Compliant and stretchable
thermoelectric coils for energy harvesting in miniature flexible
devices. Sci. Adv. , 4 , eaau5849.
- Liu, J.; Zhu, Z.; Zhou, W.; Liu, P.; Liu, P.; Liu, G.; Xu, J.; Jiang,
Q.; Jiang, F. Flexible metal-free hybrid hydrogel thermoelectric
fibers. J. Mater. Sci. 2020 , 55 , 8376-8387.
- Sun, T.; Zhou, B.; Zheng, Q.; Wang, L.; Jiang, W.; Snyder, G. J.
Stretchable fabric generates electric power from woven thermoelectric
fibers. Nat. Commun. 2020 , 11 , 572.
- Hao, Y.; He, X.; Wang, L.; Qin, X.; Chen, G.; Yu, J. Stretchable
Thermoelectrics: Strategies, Performances, and Applications.Adv. Funct. Mater. 2021 , 32 , 2109790.
- Sun, T.; Wang, L.; Jiang, W. Pushing thermoelectric generators toward
energy harvesting from the human body: Challenges and strategies.Mater. Today 2022 , 57 , 121-145.
- Wang, C.; Wang, C.; Huang, Z.; Xu, S. Materials and Structures toward
Soft Electronics. Adv. Mater. 2018 , 30 ,
e1801368.
- Sun, T.; Wang, L.; Jiang, W.: Chapter 2 - Stretchable thermoelectric
materials/devices for low-grade thermal energy harvesting. InLow-Grade Thermal Energy Harvesting ; Wang, S., Ed.; Woodhead
Publishing, 2022 ; pp 11-40.
- Xu, C.; Sun, Y.; Zhang, J.; Xu, W.; Tian, H. Adaptable and Wearable
Thermocell Based on Stretchable Hydrogel for Body Heat Harvesting.Adv. Energy Mater. 2022 , 12 , 2201542.
- Feng, L.; Wang, K.; Zhang, X.; Sun, X.; Li, C.; Ge, X.; Ma, Y.
Flexible Solid-State Supercapacitors with Enhanced Performance from
Hierarchically Graphene Nanocomposite Electrodes and Ionic Liquid
Incorporated Gel Polymer Electrolyte. Adv. Funct. Mater.2018 , 28 , 1704463.
- Lu, J.; Xiong, T.; Zhou, W.; Yang, L.; Tang, Z.; Chen, S. Metal Nickel
Foam as an Efficient and Stable Electrode for Hydrogen Evolution
Reaction in Acidic Electrolyte under Reasonable Overpotentials.ACS ACS Appl. Mater. Interfaces 2016 , 8 ,
5065-5069.
- Zhao, J.; Zheng, X.; Deng, Y.; Li, T.; Shao, Y.; Gruverman, A.;
Shield, J.; Huang, J. Is Cu a stable electrode material in hybrid
perovskite solar cells for a 30-year lifetime? Energy Environ.
Sci. 2016 , 9 , 3650-3656.
- Cattin, L.; El Mahlali, A.; Cherif, M. A.; Touihri, S.; El Jouad, Z.;
Mouchaal, Y.; Blanchard, P.; Louarn, G.; Essaidi, H.; Addou, M.;
Khelil, A.; Torchio, P.; Bernède, J. C. New
dielectric/metal/dielectric electrode for organic photovoltaic cells
using Cu:Al alloy as metal. J. Alloys Compd. 2020 ,819 , 152974.
- Bi, Y. G.; Liu, Y. F.; Zhang, X. L.; Yin, D.; Wang, W. Q.; Feng, J.;
Sun, H. B. Ultrathin Metal Films as the Transparent Electrode in
ITO‐Free Organic Optoelectronic Devices. Adv. Opt. Mater.2019 , 7 , 1800778.
- Jung, S.-M.; Kwon, J.; Lee, J.; Han, I. K.; Kim, K.-S.; Kim, Y. S.;
Kim, Y.-T. Cost-efficient nickel-based thermo-electrochemical cells
for utilizing low-grade thermal energy. J. Power Sources2021 , 494 , 229705.
- Yu, B.; Xiao, H.; Zeng, Y.; Liu, S.; Wu, D.; Liu, P.; Guo, J.; Xie,
W.; Duan, J.; Zhou, J. Cost-effective n-type thermocells enabled by
thermosensitive crystallizations and 3D multi-structured electrodes.Nano Energy 2022 , 93 , 106795.
- Jung, S.-M.; Kwon, J.; Lee, J.; Lee, B.-J.; Kim, K.-S.; Yu, D.-S.;
Kim, Y.-T. Hybrid thermo-electrochemical energy harvesters for
conversion of low-grade thermal energy into electricity via tungsten
electrodes. Appl. Energy 2021 , 299 , 117334.
- Berggren, M.; Malliaras, G. G. How conducting polymer electrodes
operate. Science 2019 , 364 , 233-234.
- Horike, S.; Wei, Q.; Kirihara, K.; Mukaida, M.; Koshiba, Y.; Ishida,
K. Anomalous n-type conversion of thermoelectric polarity in ionic
hydrogels using PEDOT:PSS electrodes. J. Mater. Chem. C2021 , 9 , 15813-15819.
- Jia, Z.; Wang, Z.; Xu, C.; Liang, J.; Wei, B.; Wu, D.; Zhu, S. Study
on poly(methyl methacrylate)/carbon nanotube composites. Mat.
Sci. Eng. A 1999 , 271 , 395-400.
- Kim, K. T.; Choi, S. Y.; Shin, E. H.; Moon, K. S.; Koo, H. Y.; Lee,
G.-G.; Ha, G. H. The influence of CNTs on the thermoelectric
properties of a CNT/Bi2Te3 composite. Carbon 2013 ,52 , 541-549.
- He, Y.; Lin, X.; Feng, Y.; Luo, B.; Liu, M. Carbon Nanotube Ink
Dispersed by Chitin Nanocrystals for Thermoelectric Converter for
Self-Powering Multifunctional Wearable Electronics. Adv. Sci.2022 , 9 , 2204675.
- Li, F.; Xue, H.; Lin, X.; Zhao, H.; Zhang, T. Wearable Temperature
Sensor with High Resolution for Skin Temperature Monitoring. ACS
Appl. Mater. Interfaces 2022 , 14 , 43844-43852.
- Yang, P.; Liu, K.; Chen, Q.; Mo, X.; Zhou, Y.; Li, S.; Feng, G.; Zhou,
J. Wearable Thermocells Based on Gel Electrolytes for the Utilization
of Body Heat. Angew Chem. Int. Ed. Engl. 2016 ,55 , 12050-12053.
- Mu, X.; Zhou, J.; Wang, P.; Chen, H.; Yang, T.; Chen, S.; Miao, L.;
Mori, T. A robust starch–polyacrylamide hydrogel with scavenging
energy harvesting capacity for efficient solar
thermoelectricity–freshwater cogeneration. Energy Environ.
Sci. 2022 , 15 , 3388-3399.
- Zhang, D.; Mao, Y.; Ye, F.; Li, Q.; Bai, P.; He, W.; Ma, R.
Stretchable thermogalvanic hydrogel thermocell with record-high
specific output power density enabled by ion-induced crystallization.
Energy Environ. Sci. 2022 , 15 , 2974-2982.
- Tian, C.; Bai, C.; Wang, T.; Yan, Z.; Zhang, Z.; Zhuo, K.; Zhang, H.
Thermogalvanic hydrogel electrolyte for harvesting biothermal energy
enabled by a novel redox couple of SO4/32- ions. Nano Energy2023 , 106.
- Fang, R.; Li, X.; Khan, S. A.; Wang, Z.; Cui, X.; Zhang, H.; Lin,
Z.-H. Anhydrous Thermogalvanic Gel for Simultaneous Waste Heat
Recovery and Thermal Management of Electronics. ACS Appl. Polym.
Mater. 2023.
- Kim, T.; Lee, J. S.; Lee, G.; Yoon, H.; Yoon, J.; Kang, T. J.; Kim, Y.
H. High thermopower of ferri/ferrocyanide redox couple in
organic-water solutions. Nano Energy 2017 , 31 ,
160-167.
- Wang, H.; Zhuang, X.; Xie, W.; Jin, H.; Liu, R.; Yu, B.; Duan, J.;
Huang, L.; Zhou, J. Thermosensitive-CsI3-crystal-driven high-power
I−/I3− thermocells. Cell Rep. Phys. Sci. 2022 ,3 , 100737.
- Yin, P.; Geng, Y.; Zhao, L.; Meng, Q.; Xin, Z.; Luo, L.; Wang, B.;
Mao, Z.; Sui, X.; Wu, W.; Feng, X. Robust and flexible bacterial
cellulose-based thermogalvanic cells for low-grade heat harvesting in
extreme environments. Chem. Eng. J. 2023 , 457.
- Wang, P.; Chen, T.; Zhang, X.; Duan, W.; Zhang, C.; Han, H.; Xie, Q. A
Superhydrophobic Hydrogel for Self-Healing and Robust Strain Sensor
with Liquid Impalement Resistance. Chin. J. Chem.2021 , 39 , 3393-3398.
- Massetti, M.; Jiao, F.; Ferguson, A. J.; Zhao, D.; Wijeratne, K.;
Würger, A.; Blackburn, J. L.; Crispin, X.; Fabiano, S. Unconventional
Thermoelectric Materials for Energy Harvesting and Sensing
Applications. Chem. Rev. 2021 , 121 ,
12465-12547.
- Liu, L.; Zhang, D.; Bai, P.; Mao, Y.; Li, Q.; Guo, J.; Fang, Y.; Ma,
R. Strong Tough Thermogalvanic Hydrogel Thermocell With
Extraordinarily High Thermoelectric Performance. Adv. Mater.2023 , n/a , 2300696.
- Zhang, D.; Mao, Y.; Bai, P.; Li, Q.; He, W.; Cui, H.; Ye, F.; Li, C.;
Ma, R.; Chen, Y. Multifunctional Superelastic Graphene-Based
Thermoelectric Sponges for Wearable and Thermal Management Devices.Nano Lett. 2022 , 22 , 3417-3424.]
- Li, J.; Wang, Z.; Khan, S. A.; Li, N.; Huang, Z.; Zhang, H.
Self-powered information conversion based on thermogalvanic hydrogel
with interpenetrating networks for nursing aphasic patients.Nano Energy 2023 , 113 , 108612.