References
Abelho, M. (2001). From litterfall to breakdown in streams: A review.The Scientific World Journal , 1, 656–680. https ://doi.org/10.1100/tsw.2001.103
Abelho, M. (2009). Leaf-Litter Mixtures Affect Breakdown and Macroinvertebrate Colonization Rates in a Stream Ecosystem.International Review of Hydrobiology , 94 , 436-451. https://doi.org/10.1002/iroh.200811159
Abelho, M. & Descals, E. (2019). Litter movement pathways across terrestrial–aquatic ecosystem boundaries affect litter colonization and decomposition in streams. Functional Ecology , 33 , 1785–1797. https://doi.org/10.1111/1365-2435.13356
Abril, M., Menéndez, M. & Ferreira, V. (2021). Decomposition of leaf litter mixtures in streams: effects of component litter species and current velocity. Aquatic Sciences , 83 , 54. https://doi.org/10.1007/s00027-021-00810-x
Ball, B. A., Hunter, M. D., Kominoski, J. S., Swan, C. M. & Bradford, M. A. (2008). Consequences of non-random species loss for decomposition dynamics: experimental evidence for additive and non-additive effects.Journal of Ecology , 96 , 303–313. https://doi.org/10.1111/j.1365-2745.2007.01346.x
Bärlocher, F. (2005). Freshwater Fungal Communities. In J. Dighton, J. White & P Oudemans (Eds.), The Fungal Community. Its organization and role in the ecosystem, 3rd ed. (pp.39–59). CRC Press. DOI: 10.1201/9781420027891.ch3
Bastian, M., Pearson, R. G. & Boyero, L. (2008). Effects of diversity loss on ecosystem function across trophic levels and ecosystems: A test in a detritus-based tropical food web. Austral Ecology ,33 , 301–306. https://doi.org/10.1111/j.1442-9993.2007.01817.x
Benfield, E. F. (1997). Comparison of litterfall input to streams.Journal of the North American Benthological Society , 16, 104–108. https ://doi.org/10.2307/1468242
Bonanomi, G., Capodilupo, M., Incerti, G. & Mazzoleni, S. (2014). Nitrogen transfer in litter mixture enhances decomposition rate, temperature sensitivity, and C quality changes. Plant and Soil ,381 , 307–321. https://doi.org/10.1007/s11104-014-2119-4
Bruder, A., Chauvet, E. & Gessner, M. O. (2011). Litter diversity, fungal decomposers and litter decomposition under simulated stream intermittency. Functional Ecology , 25 , 1269–1277. https://www.jstor.org/stable/41319623
Chapman, S., K., Newman, G. S., Hart, S. C., Schweitzer, J. A. & Koch, G. W. (2013). Leaf litter mixtures alter microbial community development: mechanisms for non-additive effects in litter decomposition. PLoS ONE , 8 , e62671. https://doi.org/10.1371/journal.pone.0062671
Chen, X. & Chen, H. Y. H. (2021). Plant mixture balances terrestrial ecosystem C:N:P stoichiometry. Nature Communications , 12 , 4562. https://doi.org/10.1038/s41467-021-24889-w
Dang, C. K., Gessner, M. O. & Chauvet, E. (2007). Influence of conidial traits and leaf structure on attachment success of aquatic hyphomycetes on leaf litter. Mycologia , 99 , 24‑32. https://www.jstor.org/stable/20444803
Epps, K.Y., Comerford, N.B., Reeves, J.B. III, Cropper, W.P. Jr & Araujo, Q.R. (2007). Chemical diversity – highlighting a species richness and ecosystem function disconnect. Oikos , 116 , 1831–1840. https://doi.org/10.1111/j.0030-1299.2007.15853.x
Gartner, T. B. & Cardon, Z. G. (2004). Decomposition dynamics in mixed-species leaf litter. Oikos , 104 , 230-246. https://doi.org/10.1111/j.0030-1299.2004.12738.x
Gessner, M. O. (1997). Fungal biomass, production and sporulation associated with particulate organic matter in streams. Limnetica ,13 , 33–44.
Gessner, M. O., Swan, C. M., Dang, C. K., McKie, B. G., Bardgett, R. D., Wall, D. H. & Hättenschwiler, S. (2010). Diversity meets decomposition.Trends in Ecology and Evolution , 25 , 372–380. https://doi.org/10.1016/j.tree.2010.01.010
Grossman, J. J., Cavender-Bares, J. & Hobbie, S. E. (2020). Functional diversity of leaf litter mixtures slows decomposition of labile but not recalcitrant carbon over two years. Ecological Monographs ,90 , e01407. https://doi.org/10.1002/ecm.1407
Hättenschwiler, S. & Gasser, P. (2005). Soil animals alter plant litter diversity effects on decomposition. Proceedings of the National Academy of Sciences , 102 , 1519-1524. https://doi.org/10.1073/pnas.0404977102
Hättenschwiler, S., Tiunov, A. V. & Scheu, S. (2005). Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics , 36 , 191–218. https://www.jstor.org/stable/30033802
Hui, D. & Jackson, R. B. (2009). Assessing interactive responses in litter decomposition in mixed species litter. Plant and Soil ,314 , 263–271. https://doi.org/10.1007/s11104-008-9726-x
Jabiol, J. & Chauvet, E. (2015). Biodiversity and litter decomposition: a case study in a Mediterranean stream. Freshwater Science ,34 , 423–30. https://doi.org/10.1086/680094
Jabiol, J., Cornut, J., Danger, M., Jouffroy, M., Elger, A. & Chauvet, E. (2014). Litter identity mediates predator impacts on the functioning of an aquatic detritus-based food web. Oecologia , 176 , 225-235. http://dx.doi.org/10.1007/s00442-014-2990-y
Kearns, S. G. & Bärlocher, F. (2008). Leaf surface roughness influences colonization success of aquatic hyphomycete conidia. Fungal Ecology , 1 , 13‑18. https://doi.org/10.1016/j.funeco.2007.07.001
Kou, L., Jiang, L., Hättenschwiler, S., Zhang, M., Niu, S., Fu, X., … & Wang, H. (2020). Diversity-decomposition relationships in forests worldwide. eLife , 9, e55813. https://doi.org/10.7554/eLife.55813
Liu, J., Liu, X., Song, Q., Compson, Z. G., LeRoy, C. J., Luan, F., … & Yang, Q. (2020). Synergistic effects: a common theme in mixed-species litter decomposition. New Phytologist , 227 : 757–765. https://doi.org/10.1111/nph.16556
López‑Rojo, N., Martínez, A., Pérez, J., Basaguren, A., Pozo, J. & Boyero, L. (2018). Leaf traits drive plant diversity effects on litter decomposition and FPOM production in streams. PLoS ONE ,13 , e0198243. https://doi.org/10.1371/journal.pone.0198243
López‑Rojo, N., Pérez, J., Basaguren, A., Pozo, J., Rubio‑Ríos, J., Casas, J. J. & Boyero, L. (2020). Effects of two measures of riparian plant biodiversity on litter decomposition and associated processes in stream microcosms. Scientific Reports , 10 , 19682. https://doi.org/10.1038/s41598-020-76656-4
Lummer, D., Scheu, S. & Butenschoen, O. (2012). Connecting litter quality, microbial community and nitrogen transfer mechanisms in decomposing litter mixtures. Oikos , 121 , 1649-1655. https://doi.org/10.1111/j.1600-0706.2011.20073.x
Marks, J. C. (2019). Revisiting the fates of dead leaves that fall into streams. Annual Review of Ecology, Evolution, and Systematics , 50, 547–568.
Migliorini, G. H. & Romero, G. Q. (2020). Warming and leaf litter functional diversity, not litter quality, drive decomposition in a freshwater ecosystem. Scientific Reports , 10 , 20333. https://doi.org/10.1038/s41598-020-77382-7
Mori, A.S., Cornelissen, J. H. C., Fujii, S., Okada, K. & Isbell, F. (2020). A meta-analysis on decomposition quantifies afterlife effects of plant diversity as a global change driver. Nature Communications ,11 , 4547. https://doi.org/10.1038/s41467-020-18296-w
Porre, R. J., van der Werf, W., Deyn, G. B. D., Stomph, T. J. & Hoffland, E. (2020). Is litter decomposition enhanced in species mixtures? A meta-analysis. Soil Biology and Biochemistry ,145 , 107791. https://doi.org/10.1016/j.soilbio.2020.107791
Pörtner, H.-O., Roberts, D.C., Adams, H., Adelekan, I., Adler, C., Adrian, R., … & Zaiton Ibrahim, Z. (2022). Technical Summary. In H.-O. Pörtner et al. (Eds.), Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 37–118). Cambridge University Press. https://doi.org/10.1017/9781009325844.002.
Sanpera-Calbet, I., Lecerf, A. & Chauvet, E. (2009). Leaf diversity influences in-stream litter decomposition through effects on shredders.Freshwater Biology , 54 , 1671-1682. https://doi.org/10.1111/j.1365-2427.2009.02216.x
Santonja, M., Rodríguez-Pérez, H., Le Bris, N. & Piscart, C. (2020). Leaf nutrients and macroinvertebrates control litter mixing effects on decomposition in temperate streams. Ecosystems , 23 , 400–416. https://doi.org/10.1007/s10021-019-00410-9
Schimel, J. P. & Hättenschwiler, S. (2007). Nitrogen transfer between decomposing leaves of different N status. Soil Biology and Biochemistry , 39 , 1428-1436. https://doi.org/10.1016/j.soilbio.2006.12.037
Schädler, M. & Brandl, R. (2005). Do invertebrate decomposers affect the disappearance rate of litter mixtures? Soil Biology & Biochemistry , 37 , 329–337. https://doi.org/10.1016/j.soilbio.2004.07.042
Seastedt, T. R. (1984). The role of microarthropods in decomposition and mineralization processes. Annual Review of Entomology , 29 , 25–46. https://doi.org/10.1146/annurev.en.29.010184.000325
Shaw, R. G. & Mitchell-Olds, T. (1993). Anova for unbalanced data: an overview. Ecology , 74 , 1638-1645. https://doi.org/10.2307/1939922
Swan, C. M. & Palmer, M. A. (2006). Composition of speciose leaf litter alters stream detritivore growth, feeding activity and leaf breakdown.Oecologia , 147 , 469–478. https://doi.org/10.1007/s00442-005-0297-8
Swan, C. M., Healey, B. & Richardson, D. C. (2008) The role of native riparian tree species in decomposition of invasive tree of heaven (Ailanthus altissima ) leaf litter in an urban stream.Écoscience , 15 , 27–35. https://www.jstor.org/stable/42901958
Vos, V. C. A., van Ruijven, J., Berg, M. P., Peeters, E. T. H. M. & Berendse, F. (2013). Leaf litter quality drives litter mixing effects through complementary resource use among detritivores. Oecologia ,173 , 269–280. https://doi.org/10.1007/s00442-012-2588-1
Wallace, J. B., Eggert, S. L., Meyer, J. L. & Webster, J. R. (1997). Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science , 277, 102–104.
Wardle, D. A., Bonner, K. I. & Nicholson, K. S. (1997). Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function.Oikos , 79 , 247–258. https://doi.org/10.2307/3546010
Wardle, D. A., Nilsson, M.-C., Zackrisson, O. & Gallet, C. (2003). Determinants of litter mixing effects in a Swedish boreal forest.Soil Biology and Biochemistry , 35 , 827-835. https://doi.org/10.1016/S0038-0717(03)00118-4
Zar, J. H. (2010). Biostatistical analysis (5th ed.). Prentice‐Hall.
Zhou, S., Butenschoen, O., Barantal, S., Handa, I. T., Makkonen, M., Vos, V., … & Scheu, S. Decomposition of leaf litter mixtures across biomes: The role of litter identity, diversity and soil fauna.Journal of Ecology , 108 , 2283-2297. https://doi.org/10.1111/1365-2745.13452
Zimmer, M. (2002). Is decomposition of woodland leaf litter influenced by its species richness? Soil Biology and Biochemistry ,34 , 277-284. https://doi.org/10.1016/S0038-0717(01)00173-0
Table 1. Initial leaf litter chemistry (mean ± 1 SE ), decomposition rates (± 95% CL), fungal and shredder colonisation (mean ± 1 SE ) of alder, the mixture, and poplar in the three exposure scenarios (data from Abelho & Descals, 2019).