References
Aboul-Soud, M., Al-Amri, M. Z., Kumar, A., Al-Sheikh, Y. A., Ashour, A. E., & El-Kersh, T. A. (2019). Specific cytotoxic effects of parasporal crystal proteins isolated from native Saudi Arabian Bacillus Thuringiensis strains against cervical cancer cells. Molecules, 24 , 506. https://doi.org/10.3390/molecules24030506.
Ahmed, A. M., Hussein, H. I., El-Kersh, T. A., Al-Sheikh, Y. A., Ayaad, T. H., El-Sadawy, H. A., Al-Mekhlafi, F. A., Ibrahim, M. S., Al-Tamimi, J., & Nasr, F. A. (2017). Larvicidal activities of indigenousBacillus Thuringiensis isolates and nematode symbiotic bacterial toxins against the mosquito vector, Culex Pipiens (Diptera: Culicidae ). Journal of Arthropod-Borne Diseases, 11 , 260–277.
Aronson, A. (2002). Sporulation and delta-endotoxin synthesis by Bacillus Thuringiensis . Cellular and Molecular Life Sciences, 59 , 417–425. https://doi.org/10.1007/s00018-002-8434-6.
Ben-Dov, E. (2014). Bacillus Thuringiensis Subsp.Israelensis and its dipteran-specific toxins. Toxins, 6 , 1222–1243. https://doi.org/10.3390/toxins6041222.
Bravo, A., Gill, S. S., & Soberón, M. (2007). Mode of action ofBacillus Thuringiensis cry and cyt toxins and their potential for insect control. Toxicon, 49 , 423–435. https://doi.org/10.1016/j.toxicon.2006.11.022.
Carozzi, N. B., Kramer, V. C., Warren, G. W., Evola, S., & Koziel, M. (1991). Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Applied and Environmental Microbiology, 57 , 3057–3061. https://doi.org/10.1128/aem.57.11.3057-3061.1991
Chai, P. F., Rathinam, X., Solayappan, M., Ahmad Ghazali, A. H., & Subramaniam, S. (2014). Microscopic analysis of a native Bacillus Thuringiensis strain from Malaysia that produces exosporium-enclosed parasporal inclusion. Microscopy, 63 , 371–375. https://doi.org/10.1093/jmicro/dfu022.
De Barjac, H., & Frachon, E. (1990). Classification of Bacillus Thuringiensis strains. Entomophaga, 35 , 233–240. https://doi.org/10.1007/bf02374798.
De Smith, M. J. (2018). Statistical analysis handbook: a comprehensive handbook of statistical concepts, techniques and software tools. Edinburgh: The Winchelsea Press, Drumlin Security Ltd.
Djenane, Z., Nateche, F., Amziane, M., Gomis-Cebolla, J., El-Aichar, F., Khorf, H., & Ferré, J. (2017). Assessment of the antimicrobial activity and the entomocidal potential of Bacillus Thuringiensis isolates from Algeria. Toxins, 9 , 139. https://doi.org/10.3390/toxins9040139.
Domínguez-Arrizabalaga, M., Villanueva, M., Escriche, B., Ancín-Azpilicueta, C., & Caballero, P. (2020). Insecticidal activity ofBacillus Thuringiensis proteins against coleopteran pests.Toxins, 12 , 430. https://doi.org/10.3390/toxins12070430.
Dubey, G., Kollah, B., Ahirwar, U., Mandal, A., Thakur, J. K., Patra, A. K., & Mohanty, S. R. (2017). Phylloplane bacteria of Jatropha Curcas : diversity, metabolic characteristics, and growth-promoting attributes towards vigor of maize seedling. Canadian Journal of Microbiology, 63 , 822–833. https://doi.org/10.1139/cjm-2017-0189.
El-Kersh, T. A., Ahmed, A. M., Al-Sheikh, Y. A., Tripet, F., Ibrahim, M. S., & Metwalli, A. A. M. (2016). Isolation and characterization of native Bacillus Thuringiensis strains from Saudi Arabia with enhanced larvicidal toxicity against the mosquito vector Anopheles Gambiae (S.L.) . Parasit Vectors, 9 , 647. https://doi.org/10.1186/s13071- 016-1922-6.
Gao, Z., Wu, C., Wu, J., Zhu, L., Gao, M., Wang, Z., Li, Z., & Zhan, X. (2022). Antioxidant and anti-inflammatory properties of an aminoglycan-rich exopolysaccharide from the submerged fermentation of Bacillus thuringiensis. International Journal of Biological Macromolecules, 220 , 1010–1020. https://doi.org/10.1016/j.ijbiomac.2022.08.116
Jeong, H., Choi, S. K., & Park, S. H. (2017). Genome sequences ofBacillus Thuringiensis Serovar Kurstaki Strain BP865 and B. Thuringiensis Serovar Aizawai Strain HD-133. Genome Announcements, 5 , E01544–16. https://doi.org/10.1128/genomea.01544-16.
Lee, H. Y., Kim, J., & Park, S. J. (2017). Role of Α-Actinin 2 in cytoadherence and cytotoxicity of Trichomonas Vaginalis .Journal of Microbiology and Biotechnology, 27 , 1844–1854. https://doi.org/10.4014/jmb.1706.06050
Lone, S. A., Malik, A., Padaria, J. C. (2017). Selection and characterization of Bacillus Thuringiensis strains from northwestern Himalayas toxic against Helicoverpa Armigera.Microbiologyopen, 6 , E00484. https://doi.org/10.1002/mbo3.484.
Mendoza-Almanza, G., Esparza-Ibarra, E. L., Ayala-Luján, J. L., Mercado-Reyes, M., Godina-González, S., Hernández-Barrales, M., & Olmos-Soto, J. (2020). The cytocidal spectrum of Bacillus Thuringiensis toxins: from insects to human cancer cells. Toxins, 12 , 301. https://doi.org/10.3390/toxins12050301.
Mizuki, E., Park, Y. S., Saitoh, H., Yamashita, S., Akao, T., Higuch, I. K., & Ohba, M. (2000). Parasporin, a human leukemic cell-recognizing parasporal protein of Bacillus Thuringiensis . Clinical and Vaccine Immunology, 7 , 625–634. https://doi.org/10.1128/cdli.7.4.625-634.2000.
Monnerat, R. G., Soares, C. M., Capdeville, G., Jones, G., Martins, E. S., Praça, L., Cordeiro, B. A., Braz, S. V., Dos Santos, R. C., & Berry, C. (2009). Translocation and insecticidal activity ofBacillus Thuringiensis living inside of plants. Microbial Biotechnology, 2 , 512–520. https://doi.org/10.1111/j.1751-7915.2009.00116.x.
Noda, T., Kagoshima, K., Uemori, A., Yasutake, K., Ichikawa, M., & Ohba, M. (2009). Occurrence of Bacillus Thuringiensis in canopies of a natural lucidophyllous forest in Japan. Current Microbiology, 58 , 195–200. https://doi.org/10.1007/s00284-008-9307-5.
Onofre, J., Pacheco, S., Torres-Quintero, M. C., Gill, S. S., Soberon, M., & Bravo, A. (2020). The Cyt1Aa toxin from Bacillus Thuringiensis inserts into target membranes via different mechanisms in insects, red blood cells, and lipid liposomes. Journal of Biological Chemistry, 295 , 9606–9617. https://doi.org/10.1074/jbc.ra120.013869.
Palma, L., Muñoz, D., Berry, C., Murillo, J., & Caballero, P. (2014).Bacillus Thuringiensis toxins: an overview of their biocidal activity. Toxins, 6 , 3296–3325. https://doi.org/10.3390/toxins6123296.
Pardo-López, L., Soberón, M., & Bravo, A. (2013). Bacillus Thuringiensis insecticidal three-domain cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiology Reviews, 37 , 3–22. https://doi.org/10.1111/j.1574-6976.2012.00341.x.
Pinto, L. M., Dörr, N. C., Ribeiro, A. P., De Salles, S. M., De Oliveira, J. V., Menezes, V. G., & Fiuza, L. M. (2012). Bacillus Thuringiensis monogenic strains: screening and interactions with insecticides used against rice pests. Brazilian Journal of Microbiology, 43 , 618–626. https://doi.org/10.1590/s1517-83822012000200025.
Poornima, K., Saranya, V., Abirami, P., Binuramesh, C., Suguna, P., Selvanayagam, P., & Shenbagarathai, R. (2012). Phenotypic and genotypic characterization of B.T. LDC-391 strain that produce cytocidal proteins against human cancer cells. Bioinformation, 8 , 461–465. https://doi.org/10.6026/97320630008461.
Rahman, M. M., Lim, S. J., & Park, Y. C. (2022). Molecular identification of bacillus isolated from Korean water deer (Hydropotes inermis argyropus) and striped field mouse (Apodemus agrarius) feces by using an SNP-based 16S ribosomal marker. Animals, 12 (8), 979. https://doi.org/10.3390/ani12080979
Swiecicka, I. (2008). Natural occurrence of Bacillus Thuringiensis and Bacillus Cereus in eukaryotic organisms: a case for symbiosis. Biocontrol Science and Technology, 18 , 221–239. https://doi.org/10.1080/09583150801942334.
Swiecicka, I., Fiedoruk, K., & Bednarz, G. (2002). The occurrence and properties of Bacillus Thuringiensis isolated from free-living animals. Letters in Applied Microbiology, 34 , 194–8. https://doi.org/10.1046/j.1472- 765x.2002.01070.x.
Torres-Quintero, M. C., Gómez, I., Pacheco, S., Sánchez, J., Flores, H., Osuna, J., Mendoza, G., Soberón, M., & Bravo, A. (2018). EngineeringBacillus Thuringiensis Cyt1Aa toxin specificity from dipteran to lepidopteran toxicity. Scientific Reports, 8 , 4989. https://doi.org/10.1038/s41598-018-22740-9.
Wei, S., Chelliah, R., Park, B. J., Kim, S. H., Forghani, F., Cho, M. S., Park, D. S., Jin, Y. G., & Oh, D. H. (2019). Differentiation pfBacillus Thuringiensis from Bacillus Cereus group using a unique marker based on real-time PCR. Frontiers in Microbiology, 10 , 883. https://doi.org/10.3389/fmicb.2019.00883.
Xiao, Y., & Wu, K. (2019) Recent progress on the interaction between insects and Bacillus Thuringiensis crops. Philosophical Transactions of the Royal Society B, 374 , 20180316. https://doi.org/10.1098/rstb.2018.0316.
Yusuf, U., Kotwal, S. K., Gupta, S., & Ahmed, T. (2018). Identification and antibiogram pattern of Bacillus Cereus from the milk and milk products in and around Jammu region. Veterinary World, 11 , 186–191. https://doi.org/10.14202/vetworld.2018.186-191.
Zghal, R. Z., Ghedira, K., Elleuch, J., Kharrat, M., & Tounsi, S. (2018). Genome sequence analysis of a novel Bacillus thuringiensis strain BLB406 active against Aedes aegypti larvae, a novel potential bioinsecticide. International Journal of Biological Macromolecules, 116 , 1153–1162. https://doi.org/10.1016/j.ijbiomac.2018.05.119