Protein structure modeling
Modeled structures of proteins for which experimental structures are not available were used from the AlphaFold database (36) and used without further optimization. Protein structures were visualized and analyzed, including structural superimposition, using Chimera (37).
AUTHOR CONTRIBUTIONS
All authors contributed in conceptualizing the project, AD and NC expressed, purified, crystallized and solved protein structures. SD and GB curated sequence databases and analyzed sequence-structure correlations. All authors contributed in the final analysis and writing the manuscript.
ACKNOWLEDGMENTS
AD acknowledges a grant from Indian Council of Medical Researh BIC(11/12)/2015 for financial support and GB acknowledges financial support from intra-mural grants from Bose Institute, Department of Science and Technology, Govt. of India.
CONFLICT OF INTEREST STATEMENT
No competing interests declared.
DATA AVAILABILITY STATEMENT
Structures of Eco -GluRS is available in protein data bank (pdb ID: 8i9i).
ORCHID
Gautam Basu https://orcid.org/0000-0002-6301-1618
Saumya Dasgupta https://orcid.org/0000-0003-2995-6324
Nipa Chongdar https://orcid.org/0000-0002-3894-2285
Aditya Dev https://orcid.org/0000-0001-9735-4646
REFERENCES
1. Tawfik DS, Gruic-Sovulj I. How evolution shapes enzyme selectivity – lessons from aminoacyl-tRNA synthetases and other amino acid utilizing enzymes. The FEBS Journal 2020;287 :1284–1305.
2. Giegé R, Eriani G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Research 2023;51 :1528–1570.
3. Freist W, Gauss DH, Söll D, Lapointe J. Glutamyl-tRNA sythetase.Biol Chem 1997;378 :1313–1329.
4. Dasgupta S, Basu G. Evolutionary insights about bacterial GlxRS from whole genome analyses: is GluRS2 a chimera? BMC Evol Biol2014;14 :26.
5. Nureki O, O’Donoghue P, Watanabe N, Ohmori A, Oshikane H, Araiso Y et al. Structure of an archaeal non-discriminating glutamyl-tRNA synthetase: a missing link in the evolution of Gln-tRNAGln formation.Nucleic Acids Res 2010;38 :7286–7297.
6. Schulze JO, Masoumi A, Nickel D, Jahn M, Jahn D, Schubert W-D et al. Crystal structure of a non-discriminating glutamyl-tRNA synthetase.J Mol Biol 2006;361 :888–897.
7. Curnow AW, Hong K, Yuan R, Kim S, Martins O, Winkler W et al. Glu-tRNAGln amidotransferase: A novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation.Proceedings of the National Academy of Sciences1997;94 :11819–11826.
8. Rogers KC, Söll D. Divergence of glutamate and glutamine aminoacylation pathways: providing the evolutionary rationale for mischarging. J Mol Evol 1995;40 :476–481.
9. Saha R, Dasgupta S, Basu G, Roy S. A chimaeric glutamyl:glutaminyl-tRNA synthetase: implications for evolution.Biochem J 2009;417 :449–455.
10. Chang K-M, Hendrickson TL. Recognition of tRNAGln by Helicobacter pylori GluRS2–a tRNAGln-specific glutamyl-tRNA synthetase.Nucleic Acids Res 2009;37 :6942–6949.
11. Salazar JC, Ahel I, Orellana O, Tumbula-Hansen D, Krieger R, Daniels L, Söll D. Coevolution of an aminoacyl-tRNA synthetase with its tRNA substrates. Proceedings of the National Academy of Sciences of the United States of America 2003;100 . doi:10.1073/pnas.1936123100
12. Nureki O, Vassylyev DG, Katayanagi K, Shimizu T, Sekine S, Kigawa T, Miyazawa T, Yokoyama S, Morikawa K. Architectures of class-defining and specific domains of glutamyl-tRNA synthetase. Science (New York, NY) 1995;267 . doi:10.1126/science.7701318
13. Sekine S-I, Nureki O, Dubois DY, Bernier S, Chênevert R, Lapointe J et al. ATP binding by glutamyl-tRNA synthetase is switched to the productive mode by tRNA binding. EMBO J2003;22 :676–688.
14. Lapointe J, Levasseur S, Kern D. Glutamyl-tRNA synthetase from Escherichia coli. Methods Enzymol 1985;113 :42–49.
15. Dasgupta S, Saha R, Dey C, Banerjee R, Roy S, Basu G. The role of the catalytic domain of E. coli GluRS in tRNAGln discrimination.FEBS letters 2009;583 . doi:10.1016/j.febslet.2009.05.041
16. Dasgupta S, Manna D, Basu G. Structural and functional consequences of mutating a proteobacteria-specific surface residue in the catalytic domain of Escherichia coli GluRS. FEBS letters 2012;586 . doi:10.1016/j.febslet.2012.05.006
17. Dubois DY, Blais SP, Huot JL, Lapointe J. A C-truncated glutamyl-tRNA synthetase specific for tRNA(Glu) is stimulated by its free complementary distal domain: mechanistic and evolutionary implications. Biochemistry 2009;48 :6012–6021.
18. Sekine S, Nureki O, Sakamoto K, Niimi T, Tateno M, Go M et al. Major identity determinants in the ‘augmented D helix’ of tRNA(Glu) from Escherichia coli. J Mol Biol 1996;256 :685–700.
19. Liu J, Lin SX, Blochet JE, Pézolet M, Lapointe J. The glutamyl-tRNA synthetase of Escherichia coli contains one atom of zinc essential for its native conformation and its catalytic activity. Biochemistry1993;32 . doi:10.1021/bi00093a016
20. Chongdar N, Dasgupta S, Datta AB, Basu G. Dispensability of zinc and the putative zinc-binding domain in bacterial glutamyl-tRNA synthetase.Biosci Rep 2015;35 :e00184.
21. Makarova KS, Aravind L, Koonin EV. SWIM, a novel Zn-chelating domain present in bacteria, archaea and eukaryotes. Trends Biochem Sci2002;27 :384–386.
22. Moen SO, Edwards TE, Dranow DM, Clifton MC, Sankaran B, Van Voorhis WC et al. Ligand co-crystallization of aminoacyl-tRNA synthetases from infectious disease organisms. Sci Rep 2017;7 :223.
23. Campanacci V, Dubois DY, Becker HD, Kern D, Spinelli S, Valencia C et al. The Escherichia coli YadB gene product reveals a novel aminoacyl-tRNA synthetase like activity. J Mol Biol2004;337 :273–283.
24. Blaise M, Becker HD, Lapointe J, Cambillau C, Giegé R, Kern D. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon.Biochimie 2005;87 . doi:10.1016/j.biochi.2005.03.007
25. Sekine S, Nureki O, Tateno M, Yokoyama S. The identity determinants required for the discrimination between tRNAGlu and tRNAAsp by glutamyl-tRNA synthetase from Escherichia coli. Eur J Biochem1999;261 :354–360.
26. Sekine S, Nureki O, Shimada A, Vassylyev DG, Yokoyama S. Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase. Nature structural biology 2001;8 . doi:10.1038/84927
27. Chongdar N, Dasgupta S, Datta AB, Basu G. Preliminary X-ray crystallographic analysis of an engineered glutamyl-tRNA synthetase from Escherichia coli. Acta Crystallogr F Struct Biol Commun. 2014 Jul;70(Pt 7):922-7. doi: 10.1107/S2053230X14010723.
28. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr2007;40 :658–674.
29. Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr2004;60 :2126–2132.
30. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures.J Appl Cryst 1993;26 :283–291.
31. Chattopadhyaya S, Chakravorty D, Basu G. A collective motion description of tubulin βT7 loop dynamics. Biophys Physicobiol2019;16 :264–273.
32. Basu G, Sivanesan D, Kawabata T, Go N. Electrostatic potential of nucleotide-free protein is sufficient for discrimination between adenine and guanine-specific binding sites. J Mol Biol2004;342 :1053–1066.
33. Banerjee M, Roy D, Bhattacharyya B, Basu G. Differential colchicine-binding across eukaryotic families: The role of highly conserved Pro268β and Ala248β residues in animal tubulin. FEBS Letters 2007;581 :5019–5023.
34. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Nucleic Acids Res 1994;22 :4673–4680.
35. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res1999;27 :29–34.
36. David A, Islam S, Tankhilevich E, Sternberg MJE. The AlphaFold Database of Protein Structures: A Biologist’s Guide. J Mol Biol2022;434 :167336.
37. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004;25 :1605–12.