Protein structure modeling
Modeled structures of proteins for which experimental structures are not
available were used from the AlphaFold database (36) and used without
further optimization. Protein structures were visualized and analyzed,
including structural superimposition, using Chimera (37).
AUTHOR CONTRIBUTIONS
All authors contributed in conceptualizing the project, AD and NC
expressed, purified, crystallized and solved protein structures. SD and
GB curated sequence databases and analyzed sequence-structure
correlations. All authors contributed in the final analysis and writing
the manuscript.
ACKNOWLEDGMENTS
AD acknowledges a grant from Indian Council of Medical Researh
BIC(11/12)/2015 for financial support and GB acknowledges financial
support from intra-mural grants from Bose Institute, Department of
Science and Technology, Govt. of India.
CONFLICT OF INTEREST STATEMENT
No competing interests declared.
DATA AVAILABILITY STATEMENT
Structures of Eco -GluRS is available in protein data bank (pdb
ID: 8i9i).
ORCHID
Gautam Basu https://orcid.org/0000-0002-6301-1618
Saumya Dasgupta https://orcid.org/0000-0003-2995-6324
Nipa Chongdar https://orcid.org/0000-0002-3894-2285
Aditya Dev https://orcid.org/0000-0001-9735-4646
REFERENCES
1. Tawfik DS, Gruic-Sovulj I. How evolution shapes enzyme selectivity –
lessons from aminoacyl-tRNA synthetases and other amino acid utilizing
enzymes. The FEBS Journal 2020;287 :1284–1305.
2. Giegé R, Eriani G. The tRNA identity landscape for aminoacylation and
beyond. Nucleic Acids Research 2023;51 :1528–1570.
3. Freist W, Gauss DH, Söll D, Lapointe J. Glutamyl-tRNA sythetase.Biol Chem 1997;378 :1313–1329.
4. Dasgupta S, Basu G. Evolutionary insights about bacterial GlxRS from
whole genome analyses: is GluRS2 a chimera? BMC Evol Biol2014;14 :26.
5. Nureki O, O’Donoghue P, Watanabe N, Ohmori A, Oshikane H, Araiso Y et
al. Structure of an archaeal non-discriminating glutamyl-tRNA
synthetase: a missing link in the evolution of Gln-tRNAGln formation.Nucleic Acids Res 2010;38 :7286–7297.
6. Schulze JO, Masoumi A, Nickel D, Jahn M, Jahn D, Schubert W-D et al.
Crystal structure of a non-discriminating glutamyl-tRNA synthetase.J Mol Biol 2006;361 :888–897.
7. Curnow AW, Hong K, Yuan R, Kim S, Martins O, Winkler W et al.
Glu-tRNAGln amidotransferase: A novel heterotrimeric enzyme required for
correct decoding of glutamine codons during translation.Proceedings of the National Academy of Sciences1997;94 :11819–11826.
8. Rogers KC, Söll D. Divergence of glutamate and glutamine
aminoacylation pathways: providing the evolutionary rationale for
mischarging. J Mol Evol 1995;40 :476–481.
9. Saha R, Dasgupta S, Basu G, Roy S. A chimaeric
glutamyl:glutaminyl-tRNA synthetase: implications for evolution.Biochem J 2009;417 :449–455.
10. Chang K-M, Hendrickson TL. Recognition of tRNAGln by Helicobacter
pylori GluRS2–a tRNAGln-specific glutamyl-tRNA synthetase.Nucleic Acids Res 2009;37 :6942–6949.
11. Salazar JC, Ahel I, Orellana O, Tumbula-Hansen D, Krieger R, Daniels
L, Söll D. Coevolution of an aminoacyl-tRNA synthetase with its tRNA
substrates. Proceedings of the National Academy of Sciences of the
United States of America 2003;100 . doi:10.1073/pnas.1936123100
12. Nureki O, Vassylyev DG, Katayanagi K, Shimizu T, Sekine S, Kigawa T,
Miyazawa T, Yokoyama S, Morikawa K. Architectures of class-defining and
specific domains of glutamyl-tRNA synthetase. Science (New York,
NY) 1995;267 . doi:10.1126/science.7701318
13. Sekine S-I, Nureki O, Dubois DY, Bernier S, Chênevert R, Lapointe J
et al. ATP binding by glutamyl-tRNA synthetase is switched to the
productive mode by tRNA binding. EMBO J2003;22 :676–688.
14. Lapointe J, Levasseur S, Kern D. Glutamyl-tRNA synthetase from
Escherichia coli. Methods Enzymol 1985;113 :42–49.
15. Dasgupta S, Saha R, Dey C, Banerjee R, Roy S, Basu G. The role of
the catalytic domain of E. coli GluRS in tRNAGln discrimination.FEBS letters 2009;583 . doi:10.1016/j.febslet.2009.05.041
16. Dasgupta S, Manna D, Basu G. Structural and functional consequences
of mutating a proteobacteria-specific surface residue in the catalytic
domain of Escherichia coli GluRS. FEBS letters 2012;586 .
doi:10.1016/j.febslet.2012.05.006
17. Dubois DY, Blais SP, Huot JL, Lapointe J. A C-truncated
glutamyl-tRNA synthetase specific for tRNA(Glu) is stimulated by its
free complementary distal domain: mechanistic and evolutionary
implications. Biochemistry 2009;48 :6012–6021.
18. Sekine S, Nureki O, Sakamoto K, Niimi T, Tateno M, Go M et al. Major
identity determinants in the ‘augmented D helix’ of tRNA(Glu) from
Escherichia coli. J Mol Biol 1996;256 :685–700.
19. Liu J, Lin SX, Blochet JE, Pézolet M, Lapointe J. The glutamyl-tRNA
synthetase of Escherichia coli contains one atom of zinc essential for
its native conformation and its catalytic activity. Biochemistry1993;32 . doi:10.1021/bi00093a016
20. Chongdar N, Dasgupta S, Datta AB, Basu G. Dispensability of zinc and
the putative zinc-binding domain in bacterial glutamyl-tRNA synthetase.Biosci Rep 2015;35 :e00184.
21. Makarova KS, Aravind L, Koonin EV. SWIM, a novel Zn-chelating domain
present in bacteria, archaea and eukaryotes. Trends Biochem Sci2002;27 :384–386.
22. Moen SO, Edwards TE, Dranow DM, Clifton MC, Sankaran B, Van Voorhis
WC et al. Ligand co-crystallization of aminoacyl-tRNA synthetases from
infectious disease organisms. Sci Rep 2017;7 :223.
23. Campanacci V, Dubois DY, Becker HD, Kern D, Spinelli S, Valencia C
et al. The Escherichia coli YadB gene product reveals a novel
aminoacyl-tRNA synthetase like activity. J Mol Biol2004;337 :273–283.
24. Blaise M, Becker HD, Lapointe J, Cambillau C, Giegé R, Kern D.
Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of
aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon.Biochimie 2005;87 . doi:10.1016/j.biochi.2005.03.007
25. Sekine S, Nureki O, Tateno M, Yokoyama S. The identity determinants
required for the discrimination between tRNAGlu and tRNAAsp by
glutamyl-tRNA synthetase from Escherichia coli. Eur J Biochem1999;261 :354–360.
26. Sekine S, Nureki O, Shimada A, Vassylyev DG, Yokoyama S. Structural
basis for anticodon recognition by discriminating glutamyl-tRNA
synthetase. Nature structural biology 2001;8 .
doi:10.1038/84927
27. Chongdar N, Dasgupta S, Datta AB, Basu G. Preliminary X-ray
crystallographic analysis of an engineered glutamyl-tRNA synthetase from
Escherichia coli. Acta Crystallogr F Struct Biol Commun. 2014 Jul;70(Pt
7):922-7. doi: 10.1107/S2053230X14010723.
28. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read
RJ. Phaser crystallographic software. J Appl Crystallogr2007;40 :658–674.
29. Emsley P, Cowtan K. Coot: model-building tools for molecular
graphics. Acta Crystallogr D Biol Crystallogr2004;60 :2126–2132.
30. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a
program to check the stereochemical quality of protein structures.J Appl Cryst 1993;26 :283–291.
31. Chattopadhyaya S, Chakravorty D, Basu G. A collective motion
description of tubulin βT7 loop dynamics. Biophys Physicobiol2019;16 :264–273.
32. Basu G, Sivanesan D, Kawabata T, Go N. Electrostatic potential of
nucleotide-free protein is sufficient for discrimination between adenine
and guanine-specific binding sites. J Mol Biol2004;342 :1053–1066.
33. Banerjee M, Roy D, Bhattacharyya B, Basu G. Differential
colchicine-binding across eukaryotic families: The role of highly
conserved Pro268β and Ala248β residues in animal tubulin. FEBS
Letters 2007;581 :5019–5023.
34. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice.Nucleic Acids Res 1994;22 :4673–4680.
35. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG:
Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res1999;27 :29–34.
36. David A, Islam S, Tankhilevich E, Sternberg MJE. The AlphaFold
Database of Protein Structures: A Biologist’s Guide. J Mol Biol2022;434 :167336.
37. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng
EC, Ferrin TE. UCSF Chimera–a visualization system for exploratory
research and analysis. J Comput Chem. 2004;25 :1605–12.