References
Ahammed, G.J., Xu, W., Liu, A., and Chen, S. (2018) COMT1silencing aggravates heat stress-induced reduction in photosynthesis by decreasing chlorophyll content, photosystem II activity, and electron transport efficiency in tomato. Front Plant Sci . 9, 998.
Akter, N. and Rafiqul Islam, M. (2017) Heat stress effects and management in wheat. A review. Agron. Sustain. Dev. 37, 1–17.
Altaf, M.A., Shahid, R., Ren, M.X., Altaf, M.M., Khan, L.U., Shahid, S., and Jahan, M.S. (2021) Melatonin alleviates salt damage in tomato seedling: A root architecture system, photosynthetic capacity, ion homeostasis, and antioxidant enzymes analysis. Sci. Hortic. , 285, 110145.
An, J.P., Yao, J.F., Wang, X.N., You, C.X., Wang, X.F., and Hao, Y.J. (2017) MdHY5 positively regulates cold tolerance via CBF-dependent and CBF-independent pathways in apple. J. Plant Physiol. 218, 275–281.
Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol . 11, R106.
Arnao, M.B. and Hernández-Ruiz, J. (2015) Functions of melatonin in plants: a review. J. Pineal Res. 59, 133–150.
Byeon, Y. and Back, K. (2014) Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities. J. Pineal Res. 56, 189–195.
Choudhury, F.K., Rivero, R.M., Blumwald, E., and Mittler, R. (2017) Reactive oxygen species, abiotic stress and stress combination.Plant J . 90, 856–867.
Dionisio-Sese, M.L. and Tobita, S. (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135, 1–9.
Dong, Q., Duan, D., Zheng, W., Huang, D., Wang, Q., Li, X., et al . (2021) MdVQ37 overexpression reduces basal thermotolerance in transgenic apple by affecting transcription factor activity and salicylic acid homeostasis. Hortic. Res . 8, 220.
El Habti, A., Fleury, D., Jewell, N., Garnett, T., and Tricker, P.J. (2020) Tolerance of combined drought and heat stress is associated with transpiration maintenance and water soluble carbohydrates in wheat grains. Front. Plant Sci. 11, 568693.
Farmer, E.E. and Mueller, M.J. (2013) ROS-mediated lipid peroxidation and RES-activated signaling. Annu. Rev. Plant Biol. 64, 429–450.
Feller, U. (2007) Stomatal opening at elevated temperature: an underestimated regulatory mechanism? Gen. Appl. Plant Physiol.19–31.
Friedrich, T., Oberkofler, V., Trindade, I., Altmann, S., Brzezinka, K., Lämke, J., et al. (2021) Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nat Commun . 12, 3426.
Gill, S.S. and Tuteja, N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930.
Gommers, C. (2020) Keep cool and open up: temperature-induced somatal opening. Plant Physiol. 182, 1188–1189.
Hare, P.D., Cress, W.A., and Van Staden, J. (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ . 21, 535–553.
Hasanuzzaman, M., Nahar, K., Alam, Md., Roychowdhury, R., and Fujita, M. (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 14, 9643–9684.
Häusler, R.E., Ludewig, F., and Krueger, S. (2014) Amino acids–A life between metabolism and signaling. Plant Sci. 229, 225–237.
Higashi, Y., Ohama, N., Ishikawa, T., Katori, T., Shimura, A., Kusakabe, K., et al. (2013) HsfA1d, a protein identified via FOX hunting using thellungiella salsuginea cDNAs improves heat tolerance by regulating heat-stress-responsive gene expression. Mol. Plant 6, 411–422.
Hoffman, L., DaCosta, M., Ebdon, J.S., and Zhao, J. (2012) Effects of drought preconditioning on freezing tolerance of perennial ryegrass.Environ. Exp. Bot. 79, 11–20.
Huo, L., Guo, Z., Wang, P., Zhang, Z., Jia, X., Sun, Y., et al.(2020) MdATG8i functions positively in apple salt tolerance by maintaining photosynthetic ability and increasing the accumulation of arginine and polyamines. Environ. Exp. Bot. 172, 103989.
Huo, L., Sun, X., Guo, Z., Jia, X., Che, R., Sun, Y., et al.(2020) MdATG18a overexpression improves basal thermotolerance in transgenic apple by decreasing damage to chloroplasts. Hortic. Res . 7, 21.
Imran, M., Aaqil Khan, M., Shahzad, R., Bilal, S., Khan, M., Yun, B.W.,et al. (2021) Melatonin ameliorates thermotolerance in soybean seedling through balancing redox homeostasis and modulating antioxidant defense, phytohormones and polyamines biosynthesis. Molecules 26, 5116.
IPCC (2021) Summary for policymakers. Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 3−32.
Iqbal, N., Fatma, M., Gautam, H., Umar, S., Sofo, A., D’ippolito, I., and Khan, N.A. (2021) The crosstalk of melatonin and hydrogen sulfide determines photosynthetic performance by regulation of carbohydrate metabolism in wheat under heat stress. Plants , 10, 1778.
Jahan, M.S., Shu, S., Wang, Y., Chen, Z., He, M., Tao, M., et al.(2019) Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. BMC Plant Biol . 19, 414.
Jahan, M.S., Shu, S., Wang, Y., Hasan, Md.M., El-Yazied, A.A., Alabdallah, N.M., et al. (2021) Melatonin pretreatment confers heat tolerance and repression of heat-induced senescence in tomato through the modulation of ABA- and GA-mediated pathways. Front. Plant Sci. 12, 650955.
Jia, Xin, Mao, K., Wang, P., Wang, Y., Jia, Xumei, Huo, L., et al. (2021) Overexpression of MdATG8i improves water use efficiency in transgenic apple by modulating photosynthesis, osmotic balance, and autophagic activity under moderate water deficit.Hortic. Res . 8, 81.
Khalil SI, El-Bassiouny HMS, Hassanein RA et al. (2009) Antioxidant defense system in heat shocked wheat plants previously treated with arginine or putrescine. Aust J Basic Appl Sci . 3, 1517–1526.
Kostaki, K.-I., Coupel-Ledru, A., Bonnell, V.C., Gustavsson, M., Sun, P., McLaughlin, F.J., et al. (2020) Guard cells integrate light and temperature signals to control stomatal aperture. Plant Physiol. 182, 1404–1419.
Kouřil, R., Lazár, D., Ilík, P., Skotnica, J., Krchňák, P., and Nauš, J. (2004) High-temperature induced chlorophyll fluorescence rise in plants at 40–50°C: Experimental and theoretical approach. Photosynth. Res. 81, 49–66.
Li, G., Zhang, C., Zhang, G., Fu, W., Feng, B., Chen, T., et al.(2020) Abscisic acid negatively modulates heat tolerance in rolled leaf rice by increasing leaf temperature and regulating energy homeostasis.Rice 13, 18.
Li, M., Li, D., Feng, F., Zhang, S., Ma, F., and Cheng, L. (2016). Proteomic analysis reveals dynamic regulation of fruit development and sugar and acid accumulation in apple. J. Exp. Bot. , 67, 5145–5157.
Li, X., Li, M.-H., Deng, W.-W., Ahammed, G.J., Wei, J.-P., Yan, P.,et al. (2020) Exogenous melatonin improves tea quality under moderate high temperatures by increasing epigallocatechin-3-gallate and theanine biosynthesis in Camellia sinensis L. J. Plant Physiol. , 253, 153273.
Lichtenthaler, H.K., Langsdorf, G., Lenk, S., and Buschmann, C. (2005) Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system. Photosynthetica , 43, 355–369.
Liu, S., Kracher, B., Ziegler, J., Birkenbihl, R.P., and Somssich, I.E. (2015) Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100 . eLife4, e07295.
Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods , 25, 402–408.
Mishra, S.K., Tripp, J., Winkelhaus, S., Tschiersch, B., Theres, K., Nover, L., and Scharf, K.D. (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev. 16, 1555–1567.
Nambara, E. and Marion-Poll, A. (2005) Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 56, 165–185.
de Pinto, M.C., Locato, V., Paradiso, A., and De Gara, L. (2015) Role of redox homeostasis in thermo-tolerance under a climate change scenario: Fig. 1. Ann Bot . 116, 487–496.
Rossi, S., Chapman, C., Yuan, B., Huang, B., Rossi, S., Chapman, C.,et al. (2021) Glutamate acts as a repressor for heat-induced leaf senescence involving chlorophyll degradation and amino acid metabolism in creeping bentgrass. Grass Res . 1, 1–10.
Sheikh-Mohamadi, M.-H., Etemadi, N., Arab, M.M., Aalifar, M., and Arab, M. (2018) Physiological and ascorbate-glutathione pathway-related genes responses under drought and heat stress in crested wheatgrass.Sci. Hortic. 242, 195–206.
Sung, D.Y., Kaplan, F., Lee, K.J., and Guy, C.L. (2003) Acquired tolerance to temperature extremes. Trends Plant Sci. 8, 179–187.
Tan, B., Yan, L., Li, H., Lian, X., Cheng, J., Wang, W., et al.(2021) Genome-wide identification of HSF family in peach and functional analysis of PpHSF5 involvement in root and aerial organ development. PeerJ . 9, e10961.
Ummenhofer, C.C. and Meehl, G.A. (2017) Extreme weather and climate events with ecological relevance: a review. Phil. Trans. R. Soc. B . 372, 20160135.
Wise, R.R., Olson, A.J., Schrader, S.M., and Sharkey, T.D. (2004) Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ . 27, 717–724.
Xalxo R, Yadu B, Chandra J et al. (2020) Alteration in carbohydrate metabolism modulates thermotolerance of plant under heat stress. In: Heat Stress Tolerance in Plants . John Wiley & Sons, Ltd, 77–115.
Xie, K., Guo, J., Wang, S., Ye, W., Sun, F., Zhang, C., and Xi, Y. (2023) Genome-wide identification, classification, and expression analysis of heat shock transcription factor family in switchgrass (Panicum virgatum L. ). Plant Physiol. Biochem. 201, 107848.
Xu, W., Cai, S.Y., Zhang, Y., Wang, Y., Ahammed, G.J., Xia, X.J.,et al. (2016) Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. J. Pineal Res. 61, 457–469.
Yeh, C.-H., Kaplinsky, N.J., Hu, C., and Charng, Y. (2012) Some like it hot, some like it warm: Phenotyping to explore thermotolerance diversity. Plant Sci. 195, 10–23.
Zeier, J. (2013) New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant Cell Environ . 36, 2085–2103.
Zeng, W., Hassan, M.J., Kang, D., Peng, Y., and Li, Z. (2021) Photosynthetic maintenance and heat shock protein accumulation relating to γ-aminobutyric acid (GABA)-regulated heat tolerance in creeping bentgrass (Agrostis stolonifera ). S. Afr. J. Bot. 141, 405–413.
Zhang, C., An, N., Jia, P., Zhang, W., Liang, J., Zhou, H., et al. (2022) MdNup62 interactions with MdHSFs involved in flowering and heat-stress tolerance in apple. BMC Plant Biol . 22, 317.
Zhang, J., Shi, Y., Zhang, X., Du, H., Xu, B., and Huang, B. (2017) Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L. ). Environ. Exp. Bot.138, 36–45.
Zhang, N., Sun, Q., Zhang, H., Cao, Y., Weeda, S., Ren, S., and Guo, Y.D. (2015) Roles of melatonin in abiotic stress resistance in plants.J. Exp. Bot. 66, 647–656.
Zhou, J., Wang, J., Yu, J.Q., and Chen, Z. (2014) Role and regulation of autophagy in heat stress responses of tomato plants. Front. Plant Sci. 5.
Zhou, K., Li, Y., Hu, L., Zhang, J., Yue, H., Yang, S., et al.(2022) Overexpression of MdASMT9 , an N-acetylserotonin methyltransferase gene, increases melatonin biosynthesis and improves water-use efficiency in transgenic apple. Tree Physiol. 42, 1114–1126.