References
Ahammed, G.J., Xu, W., Liu, A., and Chen, S. (2018) COMT1silencing aggravates heat stress-induced reduction in photosynthesis by
decreasing chlorophyll content, photosystem II activity, and electron
transport efficiency in tomato. Front Plant Sci . 9, 998.
Akter, N. and Rafiqul Islam, M. (2017) Heat stress effects and
management in wheat. A review. Agron. Sustain. Dev. 37, 1–17.
Altaf, M.A., Shahid, R., Ren, M.X., Altaf, M.M., Khan, L.U., Shahid, S.,
and Jahan, M.S. (2021) Melatonin alleviates salt damage in tomato
seedling: A root architecture system, photosynthetic capacity, ion
homeostasis, and antioxidant enzymes analysis. Sci. Hortic. , 285,
110145.
An, J.P., Yao, J.F., Wang, X.N., You, C.X., Wang, X.F., and Hao, Y.J.
(2017) MdHY5 positively regulates cold tolerance via CBF-dependent and
CBF-independent pathways in apple. J. Plant Physiol. 218,
275–281.
Anders, S. and Huber, W. (2010) Differential expression analysis for
sequence count data. Genome Biol . 11, R106.
Arnao, M.B. and Hernández-Ruiz, J. (2015) Functions of melatonin in
plants: a review. J. Pineal Res. 59, 133–150.
Byeon, Y. and Back, K. (2014) Melatonin synthesis in rice seedlings in
vivo is enhanced at high temperatures and under dark conditions due to
increased serotonin N-acetyltransferase and N-acetylserotonin
methyltransferase activities. J. Pineal Res. 56, 189–195.
Choudhury, F.K., Rivero, R.M., Blumwald, E., and Mittler, R. (2017)
Reactive oxygen species, abiotic stress and stress combination.Plant J . 90, 856–867.
Dionisio-Sese, M.L. and Tobita, S. (1998) Antioxidant responses of rice
seedlings to salinity stress. Plant Sci. 135, 1–9.
Dong, Q., Duan, D., Zheng, W., Huang, D., Wang, Q., Li, X., et
al . (2021) MdVQ37 overexpression reduces basal thermotolerance
in transgenic apple by affecting transcription factor activity and
salicylic acid homeostasis. Hortic. Res . 8, 220.
El Habti, A., Fleury, D., Jewell, N., Garnett, T., and Tricker, P.J.
(2020) Tolerance of combined drought and heat stress is associated with
transpiration maintenance and water soluble carbohydrates in wheat
grains. Front. Plant Sci. 11, 568693.
Farmer, E.E. and Mueller, M.J. (2013) ROS-mediated lipid peroxidation
and RES-activated signaling. Annu. Rev. Plant Biol. 64, 429–450.
Feller, U. (2007) Stomatal opening at elevated temperature: an
underestimated regulatory mechanism? Gen. Appl. Plant Physiol.19–31.
Friedrich, T., Oberkofler, V., Trindade, I., Altmann, S., Brzezinka, K.,
Lämke, J., et al. (2021) Heteromeric HSFA2/HSFA3 complexes drive
transcriptional memory after heat stress in Arabidopsis. Nat
Commun . 12, 3426.
Gill, S.S. and Tuteja, N. (2010) Reactive oxygen species and antioxidant
machinery in abiotic stress tolerance in crop plants. Plant
Physiol. Biochem. 48, 909–930.
Gommers, C. (2020) Keep cool and open up: temperature-induced somatal
opening. Plant Physiol. 182, 1188–1189.
Hare, P.D., Cress, W.A., and Van Staden, J. (1998) Dissecting the roles
of osmolyte accumulation during stress. Plant Cell Environ . 21,
535–553.
Hasanuzzaman, M., Nahar, K., Alam, Md., Roychowdhury, R., and Fujita, M.
(2013) Physiological, biochemical, and molecular mechanisms of heat
stress tolerance in plants. Int. J. Mol. Sci. 14, 9643–9684.
Häusler, R.E., Ludewig, F., and Krueger, S. (2014) Amino acids–A life
between metabolism and signaling. Plant Sci. 229, 225–237.
Higashi, Y., Ohama, N., Ishikawa, T., Katori, T., Shimura, A., Kusakabe,
K., et al. (2013) HsfA1d, a protein identified via FOX hunting
using thellungiella salsuginea cDNAs improves heat tolerance by
regulating heat-stress-responsive gene expression. Mol. Plant 6,
411–422.
Hoffman, L., DaCosta, M., Ebdon, J.S., and Zhao, J. (2012) Effects of
drought preconditioning on freezing tolerance of perennial ryegrass.Environ. Exp. Bot. 79, 11–20.
Huo, L., Guo, Z., Wang, P., Zhang, Z., Jia, X., Sun, Y., et al.(2020) MdATG8i functions positively in apple salt tolerance by
maintaining photosynthetic ability and increasing the accumulation of
arginine and polyamines. Environ. Exp. Bot. 172, 103989.
Huo, L., Sun, X., Guo, Z., Jia, X., Che, R., Sun, Y., et al.(2020) MdATG18a overexpression improves basal thermotolerance in
transgenic apple by decreasing damage to chloroplasts. Hortic.
Res . 7, 21.
Imran, M., Aaqil Khan, M., Shahzad, R., Bilal, S., Khan, M., Yun, B.W.,et al. (2021) Melatonin ameliorates thermotolerance in soybean
seedling through balancing redox homeostasis and modulating antioxidant
defense, phytohormones and polyamines biosynthesis. Molecules 26,
5116.
IPCC (2021) Summary for policymakers. Climate change 2021: The physical
science basis. Contribution of working group I to the sixth assessment
report of the intergovernmental panel on climate change, 3−32.
Iqbal, N., Fatma, M., Gautam, H., Umar, S., Sofo, A., D’ippolito, I.,
and Khan, N.A. (2021) The crosstalk of melatonin and hydrogen sulfide
determines photosynthetic performance by regulation of carbohydrate
metabolism in wheat under heat stress. Plants , 10, 1778.
Jahan, M.S., Shu, S., Wang, Y., Chen, Z., He, M., Tao, M., et al.(2019) Melatonin alleviates heat-induced damage of tomato seedlings by
balancing redox homeostasis and modulating polyamine and nitric oxide
biosynthesis. BMC Plant Biol . 19, 414.
Jahan, M.S., Shu, S., Wang, Y., Hasan, Md.M., El-Yazied, A.A.,
Alabdallah, N.M., et al. (2021) Melatonin pretreatment confers
heat tolerance and repression of heat-induced senescence in tomato
through the modulation of ABA- and GA-mediated pathways. Front.
Plant Sci. 12, 650955.
Jia, Xin, Mao, K., Wang, P., Wang, Y., Jia, Xumei, Huo, L., et
al. (2021) Overexpression of MdATG8i improves water use
efficiency in transgenic apple by modulating photosynthesis, osmotic
balance, and autophagic activity under moderate water deficit.Hortic. Res . 8, 81.
Khalil SI, El-Bassiouny HMS, Hassanein RA et al. (2009)
Antioxidant defense system in heat shocked wheat plants previously
treated with arginine or putrescine. Aust J Basic Appl Sci . 3,
1517–1526.
Kostaki, K.-I., Coupel-Ledru, A., Bonnell, V.C., Gustavsson, M., Sun,
P., McLaughlin, F.J., et al. (2020) Guard cells integrate light
and temperature signals to control stomatal aperture. Plant
Physiol. 182, 1404–1419.
Kouřil, R., Lazár, D., Ilík, P., Skotnica, J., Krchňák, P., and Nauš, J.
(2004) High-temperature induced chlorophyll fluorescence rise in plants
at 40–50°C: Experimental and theoretical approach. Photosynth.
Res. 81, 49–66.
Li, G., Zhang, C., Zhang, G., Fu, W., Feng, B., Chen, T., et al.(2020) Abscisic acid negatively modulates heat tolerance in rolled leaf
rice by increasing leaf temperature and regulating energy homeostasis.Rice 13, 18.
Li, M., Li, D., Feng, F., Zhang, S., Ma, F., and Cheng, L. (2016).
Proteomic analysis reveals dynamic regulation of fruit development and
sugar and acid accumulation in apple. J. Exp. Bot. , 67,
5145–5157.
Li, X., Li, M.-H., Deng, W.-W., Ahammed, G.J., Wei, J.-P., Yan, P.,et al. (2020) Exogenous melatonin improves tea quality under
moderate high temperatures by increasing epigallocatechin-3-gallate and
theanine biosynthesis in Camellia sinensis L. J.
Plant Physiol. , 253, 153273.
Lichtenthaler, H.K., Langsdorf, G., Lenk, S., and Buschmann, C. (2005)
Chlorophyll fluorescence imaging of photosynthetic activity with the
flash-lamp fluorescence imaging system. Photosynthetica , 43,
355–369.
Liu, S., Kracher, B., Ziegler, J., Birkenbihl, R.P., and Somssich, I.E.
(2015) Negative regulation of ABA signaling by WRKY33 is critical for
Arabidopsis immunity towards Botrytis cinerea 2100 . eLife4, e07295.
Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene
expression data using real-time quantitative PCR and the
2−ΔΔCT Method. Methods , 25, 402–408.
Mishra, S.K., Tripp, J., Winkelhaus, S., Tschiersch, B., Theres, K.,
Nover, L., and Scharf, K.D. (2002) In the complex family of heat stress
transcription factors, HsfA1 has a unique role as master regulator of
thermotolerance in tomato. Genes Dev. 16, 1555–1567.
Nambara, E. and Marion-Poll, A. (2005) Abscisic acid biosynthesis and
catabolism. Annu. Rev. Plant Biol. 56, 165–185.
de Pinto, M.C., Locato, V., Paradiso, A., and De Gara, L. (2015) Role of
redox homeostasis in thermo-tolerance under a climate change scenario:
Fig. 1. Ann Bot . 116, 487–496.
Rossi, S., Chapman, C., Yuan, B., Huang, B., Rossi, S., Chapman, C.,et al. (2021) Glutamate acts as a repressor for heat-induced leaf
senescence involving chlorophyll degradation and amino acid metabolism
in creeping bentgrass. Grass Res . 1, 1–10.
Sheikh-Mohamadi, M.-H., Etemadi, N., Arab, M.M., Aalifar, M., and Arab,
M. (2018) Physiological and ascorbate-glutathione pathway-related genes
responses under drought and heat stress in crested wheatgrass.Sci. Hortic. 242, 195–206.
Sung, D.Y., Kaplan, F., Lee, K.J., and Guy, C.L. (2003) Acquired
tolerance to temperature extremes. Trends Plant Sci. 8, 179–187.
Tan, B., Yan, L., Li, H., Lian, X., Cheng, J., Wang, W., et al.(2021) Genome-wide identification of HSF family in peach and functional
analysis of PpHSF5 involvement in root and aerial organ
development. PeerJ . 9, e10961.
Ummenhofer, C.C. and Meehl, G.A. (2017) Extreme weather and climate
events with ecological relevance: a review. Phil. Trans. R. Soc.
B . 372, 20160135.
Wise, R.R., Olson, A.J., Schrader, S.M., and Sharkey, T.D. (2004)
Electron transport is the functional limitation of photosynthesis in
field-grown Pima cotton plants at high temperature. Plant Cell
Environ . 27, 717–724.
Xalxo R, Yadu B, Chandra J et al. (2020) Alteration in
carbohydrate metabolism modulates thermotolerance of plant under heat
stress. In: Heat Stress Tolerance in Plants . John Wiley & Sons,
Ltd, 77–115.
Xie, K., Guo, J., Wang, S., Ye, W., Sun, F., Zhang, C., and Xi, Y.
(2023) Genome-wide identification, classification, and expression
analysis of heat shock transcription factor family in switchgrass
(Panicum virgatum L. ). Plant Physiol. Biochem. 201,
107848.
Xu, W., Cai, S.Y., Zhang, Y., Wang, Y., Ahammed, G.J., Xia, X.J.,et al. (2016) Melatonin enhances thermotolerance by promoting
cellular protein protection in tomato plants. J. Pineal Res. 61,
457–469.
Yeh, C.-H., Kaplinsky, N.J., Hu, C., and Charng, Y. (2012) Some like it
hot, some like it warm: Phenotyping to explore thermotolerance
diversity. Plant Sci. 195, 10–23.
Zeier, J. (2013) New insights into the regulation of plant immunity by
amino acid metabolic pathways. Plant Cell Environ . 36,
2085–2103.
Zeng, W., Hassan, M.J., Kang, D., Peng, Y., and Li, Z. (2021)
Photosynthetic maintenance and heat shock protein accumulation relating
to γ-aminobutyric acid (GABA)-regulated heat tolerance in creeping
bentgrass (Agrostis stolonifera ). S. Afr. J. Bot. 141,
405–413.
Zhang, C., An, N., Jia, P., Zhang, W., Liang, J., Zhou, H., et
al. (2022) MdNup62 interactions with MdHSFs involved in flowering and
heat-stress tolerance in apple. BMC Plant Biol . 22, 317.
Zhang, J., Shi, Y., Zhang, X., Du, H., Xu, B., and Huang, B. (2017)
Melatonin suppression of heat-induced leaf senescence involves changes
in abscisic acid and cytokinin biosynthesis and signaling pathways in
perennial ryegrass (Lolium perenne L. ). Environ. Exp. Bot.138, 36–45.
Zhang, N., Sun, Q., Zhang, H., Cao, Y., Weeda, S., Ren, S., and Guo,
Y.D. (2015) Roles of melatonin in abiotic stress resistance in plants.J. Exp. Bot. 66, 647–656.
Zhou, J., Wang, J., Yu, J.Q., and Chen, Z. (2014) Role and regulation of
autophagy in heat stress responses of tomato plants. Front. Plant
Sci. 5.
Zhou, K., Li, Y., Hu, L., Zhang, J., Yue, H., Yang, S., et al.(2022) Overexpression of MdASMT9 , an N-acetylserotonin
methyltransferase gene, increases melatonin biosynthesis and improves
water-use efficiency in transgenic apple. Tree Physiol. 42,
1114–1126.