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Introduction  

This supplemental material includes additional material that explains the process of 

groundwater recharge, different tests of data binning, in-depth explanations of variables 

used in the main manuscript, in-depth descriptions of the recharge model implementation 

and multiple experiments to test the validity of SONAR.  
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S1 Groundwater recharge 

Groundwater recharge can be defined as downward flow of water towards the water 

table adding water to an aquifer. This could be through downward percolation of soil 

water excess or through seepage from surface water bodies. The definition however can 

vary largely in its details between research communities and models (see Table S1).  

 

Figure S1 Global groundwater recharge simulated by a global hydrological model on a 

0.5° spatial resolution. Scatter points are colored by two different climatic areas: areas 

where there is more water than potential evapotranspiration (energy-limited) and areas 

where there is more evapotranspiration than water (water-limited). The x and y-axis are 

limited to the majority of points for better readability (precipitation may reach over 8000 

mm/yr and recharge over 4000 mm/yr). 

S2 Strategies for testing subsets of binned data 

The following figures assess how the correlation metric works in determining the first 

split decision. First, for equally-sized bins (as used in the main manuscript) and then for 

equally-spaced bins. The split decision is reached by taking one bin at a time and putting 

it into a virtual “bucket” that is then used to calculate the correlation of the data inside the 

bucket. In the “from=left” approach we start adding bins starting with small values on the 

x-axis and with “from=right” we start adding bin starting from high values. Thus, in the 

end we test different subsets of data. In SONAR both methods are implemented since the 

correlation is calculated both on the data inside the bucket and outside the bucket. 
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To show differences the figures are shown for two example models: CLM4.5 and PCR-

GlobWB. The black line indicates how much of the data was used at a particular moment 

to calculate the correlation. The dotted line indicates a possible first split (when the 

correlation was highest.  

Equally-sized bins 

 

Figure S2 Change of correlation between precipitation and recharge calculated by the 

model CLM4.5. by selecting different data subsets for three different variables: 

precipitation, net radiation, and temperature and two different strategies in selecting subsets 

of data. The black line indicates the %of data points used to calculate the correlation at a 

given point. The red line indicates a possible split (point with highest correlation. 
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Figure S3 Change of correlation between precipitation and recharge calculated by the 

model PCR-GlobWB. by selecting different data subsets for three different variables: 

precipitation, net radiation, and temperature and two different strategies in selecting 

subsets of data. The black line indicates the %of data points used to calculate the 

correlation at a given point. The red line indicates a possible split (point with highest 

correlation. 

Equally-spaced bins 

 

Figure S4 Change of correlation between precipitation and recharge calculated by the 

model CLM4.5. by selecting different data subsets for three different variables: 

precipitation, net radiation, and temperature and two different strategies in selecting subsets 
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of data. The black line indicates the %of data points used to calculate the correlation at a 

given point. The red line indicates a possible split (point with highest correlation. 

 

 

 

Figure S5 Change of correlation between precipitation and recharge calculated by the 

model PCR-GlobWB. by selecting different data subsets for three different variables: 

precipitation, net radiation, and temperature and two different strategies in selecting 

subsets of data. The black line indicates the %of data points used to calculate the 

correlation at a given point. The red line indicates a possible split (point with highest 

correlation. 

S3 Explanatory variables used for the evaluation 

The model outputs are based on the ISIMIP (Warszawski et al., 2014) framework and 

were aggregate into yearly means. The data used here is equal to the data available in 

Gnann et al. (2023) and the models used equal to Reinecke et al. (2021). 
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Table S1 List of global hydrological models (GHMs) used in the example analysis. The 

groundwater recharge (GWR) implementation description is adapted from Reinecke et al. 

(2021). 

 

Model Groundwater Recharge implementation Model Reference 

WaterGAP GWR in WaterGAP2 is calculated as being a 
fraction of runoff from land based on soil 
texture, relief, aquifer type, and the existence 
of permafrost or glaciers, taking into account a 
soil-texture dependent maximum daily 
groundwater recharge rate (P. Döll & Fiedler, 
2008). If a grid cell is defined as semiarid or arid 
and has a medium or coarse soil texture, GWR 
will only occur if daily precipitation exceeds a 
critical value (P. Döll & Fiedler, 2008); otherwise, 
the water runs off. Runoff from 
land that does not contribute to GWR is 
transferred to surface water bodies as fast 
surface runoff. WaterGAP further computes 
focused recharge beneath surface water bodies 
in semiarid and arid grid cells, which is not 
considered in this study. 

(Müller Schmied et al., 
2021) 

PCR-
GlobWB 

PCR-GLOBWB (PCRaster Global Water Balance; 
Sutanudjaja et al., 2018); simulates the water 
storage in two vertically stacked soil layers and 
an underlying groundwater layer. Water 
exchanges are simulated between the layers 
(infiltration, percolation, and capillary rise) and 
the interaction of the top layer with the 
atmosphere (rainfall, evapotranspiration, and 
snowmelt). PCR-GLOBWB also calculates 
canopy interception and snow storage. Natural 
groundwater recharge is fed by net 
precipitation, and additional recharge from 
irrigation occurs as the net flux from the lowest 
soil layer to the groundwater layer, i.e., deep 
percolation minus capillary rise. The ARNO (a 
semi-distributed conceptual rainfall–runoff 
model; (Todini, 1996)) scheme is used to 
separate direct runoff, interflow, and GWR. 
Groundwater recharge can be balanced by 
capillary rise if the top of the groundwater level 
is within 5 m of the topographical surface 
(calculated as the height of the groundwater 

(Sutanudjaja et al., 2018) 
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storage over the storage coefficient on top of 
the streambed elevation and the sub-grid 
distribution of elevation). 

MATSIRO The Minimal Advanced Treatments of Surface 
Interaction and RunOff (MATSIRO; Takata et al., 
2003) is a global land surface model initially 
developed for an atmospheric–ocean general 
circulation model, the Model For 
Interdisciplinary Research On Climate 
(https://ccsr.aori.u-
tokyo.ac.jp/~hasumi/miroc_description.pdf). 
This process-based model calculates water and 
energy flux and storage at and below the land 
surface, also considering the stomatal response 
to CO2 increase in the photosynthesis process. 
The offline version of MATSIRO used for the 
ISIMIP2b simulation explicitly takes vertical 
groundwater dynamics into account, including 
groundwater pumping (Y. Pokhrel et al., 2012; Y. 
N. Pokhrel et al., 2015). Soil moisture flux 
between the 15 soil layers is expressed as a 
function of the vertical gradient of the hydraulic 
potential, which is the sum of the matric 
potential and the gravitational head, and the 
soil moisture movement is calculated by 
Richards equation. MATSIRO calculates net 
groundwater recharge as a budget of 
gravitational drainage into and capillary rise 
from the layer where the groundwater table 
exists. A simplified TOPMODEL (TOPography-
based MODEL; (Beven & Kirkby, 1979)) is used 
to represent surface runoff 
processes, and groundwater discharge is 
simulated by using an unconfined aquifer model 
(Koirala et al., 2014). 

(Takata et al., 2003) 

LPJML Lund Potsdam Jena managed Land (LPJmL) is a 
dynamic global vegetation model that simulates 
the growth and productivity of both natural and 
agricultural vegetation as being coherently 
linked through their water, carbon, and energy 
fluxes (Schaphoff et al., 2018). The soil column 
is divided into six active hydrological layers, with 
a total thickness of 13 m depth. Percolation of 
infiltrated water through the soil column is 

(Schaphoff et al., 2018) 
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calculated according to a storage routine 
technique that simulates free water in the soil 
bucket. Excess water over the saturation levels 
produces lateral runoff in each layer (subsurface 
runoff). GWR is considered to be percolation 
(seepage) from the bottom soil layer. As there is 
no groundwater storage in LPJmL, for the 
ISIMIP2b protocol, seepage from the base soil 
layer is reported as both GWR and groundwater 
runoff, which is routed directly (with no time 
delay) back into the river system. 

JULES-W1 The Joint UK Land Environment Simulator 
(JULES; Best et al., 2011; W1 stands for water-
related simulations in the ISIMIP framework) is 
a land surface model initially developed by the 
Met Office as the land surface component of the 
Met Office Unified Model. JULES is a process-
based model that simulates the carbon, water, 
energy, and momentum fluxes between land 
and atmosphere, including plant–carbon 
interactions (Clark et al., 2011). The rainfall that 
reaches the ground is partitioned into Hortonian 
surface runoff and an infiltration component. A 
total of four soil layers represent 
the soil column, with a total thickness of 3 m, 
with a unit hydraulic head gradient lower 
boundary condition and no groundwater 
component. The water that infiltrates the soil 
moves down the soil layers that are updated 
using a finite difference form of the Richards 
equation (Best et al., 2011). The saturation 
excess water from the bottom soil layer 
becomes subsurface runoff that can be 
considered to be GWR (Le Vine et al., 2016). 

(Best et al., 2011) 

H08 H08 (Hanasaki et al., 2018) is a GHM that 
includes various components for water use and 
management. It consists of five major 
components, namely a simple bucket-type land 
surface model, a river routing model, a crop 
growth model, which is mainly used to estimate 
the timing of planting, harvesting, and irrigation 
in cropland, a reservoir operation model, and a 
water abstraction model. The abstraction model 
supplies water to meet the daily water demand 

(Hanasaki et al., 2018) 
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of three sectors (irrigation, industry, and 
municipality) from six available and accessible 
sources (river, local reservoir, aqueduct, 
seawater desalination, renewable groundwater, 
and non-renewable groundwater) and one 
hypothetical one termed unspecified surface 
water. It has two soil layers; one is to represent 
the unsaturated rootzone and the other the 
saturated zone (groundwater). The scheme of 
GWR computation is identical to Döll and Fiedler 
(2008). 

CWATM The Community Water Model (CWatM) is a 
large-scale integrated hydrological model which 
encompasses general surface and groundwater 
hydrological processes, including human 
hydrological activities such as water use and 
reservoir regulation (Burek et al., 2020). CWatM 
takes six land cover classes into account and 
applies the tile approach. This hydrological 
model has three soil layers and one 
groundwater storage. The depth of the first soil 
layer is 5 cm, and the depth of second and third 
layers vary over grids, depending on the 
rootzone depth of each land cover class, 
resulting in total soil depth of up to 1.5 m. 
Groundwater storage is designed being as a 
linear reservoir. CWatM includes preferential 
bypass flow directly into groundwater storage 
and capillary rise from groundwater storage and 
percolation from the third soil layer to 
groundwater storage. Hence, the groundwater 
recharge reported by CWatM in ISIMIP2b is the 
net recharge calculated from these three terms. 

(Burek et al., 2020) 

CLM4.5 The Community Land Model version 4.5 
(CLM4.5; Swenson and Lawrence, 2015) is the 
land component of the Community Earth 
System Model (CESM), a fully coupled, state-of-
the-art Earth system model. CLM is a land 
surface model representing the physical, 
chemical, and biological processes through 
which terrestrial ecosystems influence and are 
influenced by climate, including CO2, across a 
variety of spatial and temporal scales (Lawrence 
et al. 2015). Individual land grid points can be 

(S. C. Swenson & Lawrence, 
2015) 
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composed of multiple land units due to the 
nested tile approach, which enables the 
implementation of multiple soil columns and 
represents biomes as a combination of different 
plant functional types. Groundwater processes, 
including sub-surface runoff, recharge, and 
water table depth variations, are simulated 
based on the SIMTOP scheme (SImple 
groundwater Model TOPgraphy based; (Oleson 
et al., 2013). 

 

 

 

Table S2 Explanatory variables used. Except for landcover all explanatory variables are 

based on ISIMIP (Warszawski et al., 2014) data aggregated  

 

Feature Temporal aggregation Source 

Precipitation Long-term mean (30-years; bias-
corrected GCMs) 

ISIMIP, (Gnann et al., 
2023)   

PET Long-term mean (model ensemble) ISIMIP, (Gnann et al., 
2023) 

Aridity (PET/P) See PET and P - 

Temperature Long-term mean (30-years, bias-
corrected GCM) 

ISIMIP (Gnann et al., 
2023) 

Temperature (cold day 
indicator) 

Days below 1°C (30-years, bias-
corrected GCM 

ISIMIP (Gnann et al., 
2023) 

Land cover (Forest, 
Shrubland, Grassland, 
Sparsely Veg., Bare areas, 
Wetlands, Cropland, 
Waterbodies, Snow/ice, 
Artificial) 

GlobCover (aggregated to 0.5° with 
area-weighted Mode) 

(ESA, 2010) 
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Figure S6 Landcover classes. 

 

 
Figure S7 Precipitation in mm/yr. 
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Figure S8 PET in mm/yr. 

 

 
Figure S9 Aridity index as PET/P. 
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Fig S10 Daily mean temperature in °C. 

 

 

 
Fig S11 Days below 0°C. 
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Fig S12 Scatterplot of the aridity index and the mean daily temperature in °C. 

 

S3 How do different categorizations of recharge effect the results? 

 

A difference in recharge classes only affects the results of the classification algorithms of 

CART (Fig. S13). SONAR does not make any prior assumptions about classes. 
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a)  b)   c)  

Fig S13 CART classification for the same global model and three different choices of 

what constitutes low recharge (class 0 in this text representation)): a) less than 1mm, b) 

less than 10mm and c) less than 100mm (as use in the main text). Text representation 

need to be read from left (values on the far left represent the first split, values on the far 

right the leaf nodes with the different recharge classifications) to right. 
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S4 Path comparison between trees 

 
Fig S14 A simple example of the path visualization used in this manuscript with the 

established flower classification problem (Unwin & Kleinman, 2021). Left the CART tree 

and right the path representation in the same colors for the explanatory variables. 

 



 

 

17 

 

 
Fig S15 Full CART tree of the three depicted in Fig. 3 of the main manuscript next to the 

corresponding path visualization. 
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Fig S16 Full CIT tree of the three depicted in Fig. 3 of the main manuscript next to the 

corresponding path visualization. 
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S5 Additional SONAR trees of other all models 

 

The following shows all SONAR trees of the 8 investigated models. The trees of the two 

models shown in the main manuscript are equal to the ones shown here in text 

representation. Text representation need to be read from left (values on the far left 

represent the first split, values on the far right the leaf nodes with the different recharge 

classifications) to right. 

 

 
Fig S17 SONAR tree for the model PCR-GlobWB. 

 

  
Fig S18 SONAR tree for the model WaterGAP2. 

 

 
Fig S19 SONAR tree for the model CLM4.5. 

 

 
Fig S20 SONAR tree for the model CWATM. 
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Fig S21 SONAR tree for the model H08. 

 

 

 
Fig S22 SONAR tree for the model Jules-W1. 

 

 

 
Fig S23 SONAR tree for the model LPJML. 

 

 
Fig S24 SONAR tree for the model MATSIRO. 

S6 Tree growth without minimum number of point requirement 

 

If the number of point requirement is set to a very low value (in the following: > 0.1% of 

points of parent node and at least 10) even SONAR trees grow bigger. However, the 

number of points in splits is likely to low to allow a meaningful calculation of a 

correlation. 
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Fig S25 SONAR tree of the model LPJML with almost no requirements on the minimum 

number of points per split. 

 

S7 Artificial generation of recharge test data 

 

Experiment 1: Completely random groundwater recharge 

 

In this experiment the groundwater recharge data is substituted by randomly generated 

data. The data lies within the same ranges as the original but does not follow its 

distribution or any spatial patterns. Fig. S26 shows the resulting values plotted as a global 

map. With the chosen explanatory variables SONAR does not find any splits for the 

randomly generated data. 
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Fig S26 Randomly generated recharge data plotted as a global map. 

 

 

Experiment 2: Precipitation as dominant control 

 

In this experiment we also generate groundwater recharge data based only on 

precipitation. To create a perfect correlation, we simply turn precipitation into recharge 

based on the following rules (Fig. S27). 

 

Multiplier k for the four climatic regions: 

 

Wet cold regions: 0.2 

Dry cold regions: 0.4 

Dry warm regions: 0.6 

Wet warm regions: 0.8 

 

Groundwater recharge = Precipitation * k  

 

This tests whether SONAR is correctly picking up this introduced signal. The resulting 

tree is shown in the text representation in Fig. S28. The dominant driver is always 

precipitation confirming that SONAR correctly picks up the artificially introduced 

relationship. Splits are based on PET which is likely because PET is a good proxy for 

separating water and energy limited regions (Fig. S8). 
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Fig S27 Groundwater recharge based on precipitation. 

 

 

 
Fig S28 SONAR tree of the generated groundwater recharge. 

 

Experiment 3: PET as dominant control 

 

This experiment works equally to experiment 2, but with PET instead of precipitation. PET 

is here turned directly into groundwater recharge: 10% of PET = recharge. The resulting 

SONAR tree is shown in text from in Fig. S30. Even if the tree grows relatively large PET is 

always identified as the dominant control (as the introduced correlation is 1). 
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Fig S29 Groundwater recharge generated based on PET. 

 

 
Fig S30 SONAR tree for recharge that is only based on PET. 
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