References
Adam, K. C. S., Robison, M. K., & Vogel, E. K. (2018). Contralateral
Delay Activity Tracks Fluctuations in Working Memory Performance.Journal of Cognitive Neuroscience , 30 (9), 1229–1240.
https://doi.org/10.1162/jocn_a_01233
Akyürek, E. G., & Schubö, A. (2011). The allocation of attention in
displays with simultaneously presented singletons. Biological
Psychology , 87 (2), 218–225.
https://doi.org/10.1016/j.biopsycho.2011.02.022
Altschuler, T. S., Molholm,
S., Russo, N. N., Snyder, A. C., Brandwein, A. B., Blanco, D., & Foxe,
J. J. (2012). Early electrophysiological indices of illusory contour
processing within the lateral occipital complex are virtually impervious
to manipulations of illusion strength. NeuroImage, 59(4),
4074–4085.
https://doi.org/10.1016/j.neuroimage.2011.10.051
Bacigalupo, F., & Luck, S. J. (2019). Lateralized suppression of
alpha-band EEG activity as a mechanism of target processing. The
Journal of Neuroscience , 39 (5), 900–917.
https://doi.org/10.1523/JNEUROSCI.0183-18.2018
Barras, C., & Kerzel, D. (2017). Salient-but-irrelevant stimuli cause
attentional capture in difficult, but attentional suppression in easy
visual search. Psychophysiology , 54 (12), 1826–1838.
https://doi.org/10.1111/psyp.12962
Bocincova, A., & Johnson, J. S. (2019). The time course of encoding and
maintenance of task-relevant versus irrelevant object features in
working memory. Cortex , 111 , 196–209.
https://doi.org/10.1016/j.cortex.2018.10.013
Boudewyn, M. A., & Carter, C. S. (2018). Electrophysiological
correlates of adaptive control and attentional engagement in patients
with first episode schizophrenia and healthy young adults.Psychophysiology , 55 (3).
https://doi.org/10.1111/psyp.12820
Brady, T. F., Konkle, T., &
Alvarez, G. A. (2011). A review of visual memory capacity: Beyond
individual items and toward structured representations. Journal of
Vision, 11(5), 4.
https://doi.org/10.1167/11.5.4
Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial
Vision , 10 (4), 433–436. https://doi.org/10.1163/156856897x00357
Bundesen, C., Habekost, T., & Kyllingsbæk, S. (2011). A neural theory
of visual attention and short-term memory (NTVA).Neuropsychologia , 49 (6), 1446–1457.
https://doi.org/10.1016/j.neuropsychologia.2010.12.006
Chen, S., Kocsis, A., Liesefeld, H. R., Müller, H. J., & Conci, M.
(2021a). Object-based grouping benefits without integrated feature
representations in visual working memory. Attention, Perception,
& Psychophysics, 83 (3), 1357-1374.
https://doi.org/10.3758/s13414-020-02153-5
Chen, S., Glasauer, S., Müller, H. J., & Conci, M. (2018a). Surface
filling-in and contour interpolation contribute independently to Kanizsa
figure formation. Journal of Experimental Psychology. Human
Perception and Performance , 44 (9), 1399–1413.
https://doi.org/10.1037/xhp0000540
Chen, S., Töllner, T., Müller, H. J., & Conci, M. (2018b). Object
maintenance beyond their visible parts in working memory. Journal
of Neurophysiology , 119 (1), 347–355.
https://doi.org/10.1152/jn.00469.2017
Chen, S., Weidner, R., Zeng, H., Fink, G. R., Müller, H. J., & Conci,
M. (2020). Tracking the completion of parts into whole objects:
Retinotopic activation in response to illusory figures in the lateral
occipital complex. NeuroImage , 207 , 116426.
https://doi.org/10.1016/j.neuroimage.2019.116426
Chen, S., Weidner, R., Zeng, H., Fink, G. R., Müller, H. J., & Conci,
M. (2021b). Feedback from lateral occipital cortex to V1/V2 triggers
object completion: Evidence from functional magnetic resonance imaging
and dynamic causal modeling. Human Brain Mapping, 42 (17),
5581-5594.
https://doi.org/10.1002/hbm.25637
Conci, M., Gramann, K., Müller, H. J., & Elliott, M. A. (2006).
Electrophysiological correlates of similarity-based interference during
detection of visual forms. Journal of Cognitive Neuroscience ,18 (6), 880–888.
https://doi.org/10.1162/jocn.2006.18.6.880
Conci, M., Müller, H. J., &
Elliott, M. A. (2007). The contrasting impact of global and local object
attributes on Kanizsa figure detection. Perception &
Psychophysics, 69(8), 1278–1294.
https://doi.org/10.3758/BF03192945
Conci, M., Töllner, T.,
Leszczynski, M., & Müller, H. J. (2011). The time-course of global and
local attentional guidance in Kanizsa-figure detection.Neuropsychologia, 49(9), 2456–2464.
https://doi.org/10.1016/j.neuropsychologia.2011.04.023
Corriveau, I.,
Fortier-Gauthier, U., Pomerleau, V. J., McDonald, J., Dell’acqua, R., &
Jolicoeur, P. (2012). Electrophysiological evidence of multitasking
impairment of attentional deployment reflects target-specific
processing, not distractor inhibition. International Journal of
Psychophysiology: Official Journal of the International Organization of
Psychophysiology, 86(2), 152–159.
https://doi.org/10.1016/j.ijpsycho.2012.06.005
Cowan, N. (2001). The magical number 4 in short-term memory: a
reconsideration of mental storage capacity. The Behavioral and
Brain Sciences , 24 (1), 87–114; discussion 114–185.
https://doi.org/10.1017/s0140525x01003922
Delvenne, J.-F., & Bruyer,
R. (2006). A configural effect in visual short-term memory for features
from different parts of an object. Quarterly Journal of
Experimental Psychology , 59(9), 1567–1580.
https://doi.org/10.1080/17470210500256763
Diaz, G. K., Vogel, E. K., &
Awh, E. (2021). Perceptual Grouping Reveals Distinct Roles for Sustained
Slow Wave Activity and Alpha Oscillations in Working Memory.Journal of Cognitive Neuroscience, 33(7), 1354–1364.
https://direct.mit.edu/jocn/article-abstract/33/7/1354/98593
Ecker, U. K. H., Maybery, M.,
& Zimmer, H. D. (2013). Binding of intrinsic and extrinsic features in
working memory. Journal of Experimental Psychology. General,142(1), 218–234.
https://doi.org/10.1037/a0028732
Eimer, M. (1996). The N2pc
component as an indicator of attentional selectivity.Electroencephalography and Clinical Neurophysiology,99(3), 225–234.
https://doi.org/10.1016/0013-4694(96)95711-9
Emrich, S. M., Ruppel, J. D.
N., & Ferber, S. (2008). The role of elaboration in the persistence of
awareness for degraded objects. Consciousness and Cognition,17(1), 319–329.
https://doi.org/10.1016/j.concog.2006.12.001
Engle, R. W., & Kane, M. J. (2004). Executive attention, working memory
capacity, and a two-factor theory of cognitive control. In B. H. Ross
(Ed.), The psychology of learning and motivation: Advances in
research and theory, 4 , 145–199.
Erdfelder, E., Faul, F., & Buchner, A. (1996). GPOWER: A general power
analysis program. Behavior Research Methods, Instruments, &
Computers: A Journal of the Psychonomic Society, Inc , 28 (1),
1–11. https://doi.org/10.3758/BF03203630
Erickson, M. A., Albrecht, M.
A., Robinson, B., Luck, S. J., & Gold, J. M. (2017). Impaired
suppression of delay-period alpha and beta is associated with impaired
working memory in schizophrenia. Biological Psychiatry. Cognitive
Neuroscience and Neuroimaging, 2(3), 272–279.
https://doi.org/10.1016/j.bpsc.2016.09.003
Esposito, A., Chiarella, S. G., Raffone, A., Nikolaev, A. R., & van
Leeuwen, C. (2023). Perceptual bias contextualized in visually ambiguous
stimuli. Cognition , 230 , 105284.
https://doi.org/10.1016/j.cognition.2022.105284
Ewerdwalbesloh, J. A., Palva,
S., Rösler, F., & Khader, P. H. (2016). Neural correlates of
maintaining generated images in visual working memory. Human Brain
Mapping, 37(12), 4349–4362.
https://doi.org/10.1002/hbm.23313
Fortier-Gauthier, U., Moffat,
N., Dell’Acqua, R., McDonald, J. J., & Jolicœur, P. (2012).
Contralateral cortical organisation of information in visual short-term
memory: evidence from lateralized brain activity during retrieval.Neuropsychologia, 50(8), 1748–1758.
https://doi.org/10.1016/j.neuropsychologia.2012.03.032
Foster, J. J., Sutterer, D.
W., Serences, J. T., Vogel, E. K., & Awh, E. (2016). The topography of
alpha-band activity tracks the content of spatial working memory.Journal of Neurophysiology, 115(1), 168–177.
https://doi.org/10.1152/jn.00860.2015
Fougnie, D., Cormiea, S. M.,
& Alvarez, G. A. (2013). Object-based benefits without object-based
representations. Journal of Experimental Psychology. General,142(3), 621–626.
https://doi.org/10.1037/a0030300
Fukuda, K., Kang, M.-S., &
Woodman, G. F. (2016). Distinct neural mechanisms for spatially
lateralized and spatially global visual working memory representations.Journal of Neurophysiology, 116(4), 1715–1727.
https://doi.org/10.1152/jn.00991.2015
Fukuda, K., Mance, I., &
Vogel, E. K. (2015). α Power Modulation and Event-Related Slow Wave
Provide Dissociable Correlates of Visual Working Memory. The
Journal of Neuroscience, 35(41), 14009–14016.
https://doi.org/10.1523/JNEUROSCI.5003-14.2015
Fukuda, K., & Vogel, E. K.
(2009). Human variation in overriding attentional capture. The
Journal of Neuroscience, 29(27), 8726–8733.
https://doi.org/10.1523/JNEUROSCI.2145-09.2009
Gao, Z., Gao, Q., Tang, N.,
Shui, R., & Shen, M. (2016). Organization principles in visual working
memory: Evidence from sequential stimulus display. Cognition,146, 277–288.
https://doi.org/10.1016/j.cognition.2015.10.005
Gao, Z., Xu, X., Chen, Z.,
Yin, J., Shen, M., & Shui, R. (2011). Contralateral delay activity
tracks object identity information in visual short term memory.Brain Research, 1406, 30–42.
https://doi.org/10.1016/j.brainres.2011.06.049
Gokce, A., Geyer, T., Finke,
K., Müller, H. J., & Töllner, T. (2014). What pops out in positional
priming of pop-out: insights from event-related EEG lateralizations.Frontiers in Psychology, 5, 688.
https://doi.org/10.3389/fpsyg.2014.00688
Grimault, S., Robitaille, N.,
Grova, C., Lina, J.-M., Dubarry, A.-S., & Jolicoeur, P. (2009).
Oscillatory activity in parietal and dorsolateral prefrontal cortex
during retention in visual short-term memory: additive effects of
spatial attention and memory load. Human Brain Mapping,30(10), 3378–3392.
https://doi.org/10.1002/hbm.20759
Herrmann, C. S., & Bosch, V.
(2001). Gestalt perception modulates early visual processing.Neuroreport, 12(5), 901–904.
https://doi.org/10.1097/00001756-200104170-00007
Jannati, A., Gaspar, J. M.,
& McDonald, J. J. (2013). Tracking target and distractor processing in
fixed-feature visual search: evidence from human electrophysiology.Journal of Experimental Psychology. Human Perception and
Performance, 39(6), 1713–1730.
https://doi.org/10.1037/a0032251
Jeffreys, H. (1961).Theory of probability, Clarendon. Oxford.
Kasai, T., Takeya, R., &
Tanaka, S. (2015). Emergence of visual objects involves multiple stages
of spatial selection. Attention, Perception & Psychophysics,77(2), 441–449.
https://doi.org/10.3758/s13414-014-0799-8
Kass, R. E., & Raftery, A.
E. (1995). Bayes Factors. Journal of the American Statistical
Association, 90(430), 773–795.
https://doi.org/10.1080/01621459.1995.10476572
Landman, R., Spekreijse, H., & Lamme, V. A. F. (2003). Large capacity
storage of integrated objects before change blindness. Vision
Research , 43 (2), 149–164.
https://doi.org/10.1016/s0042-6989(02)00402-9
Lee, T. S., & Nguyen, M. (2001). Dynamics of subjective contour
formation in the early visual cortex. Proceedings of the National
Academy of Sciences of the United States of America , 98 (4),
1907–1911.
https://doi.org/10.1073/pnas.031579998
Lozano-Soldevilla, D., ter Huurne, N., Cools, R., & Jensen, O. (2014).
GABAergic modulation of visual gamma and alpha oscillations and its
consequences for working memory performance. Current Biology ,24 (24), 2878–2887.
https://doi.org/10.1016/j.cub.2014.10.017
Luck, S. J., & Vogel, E. K.
(1997). The capacity of visual working memory for features and
conjunctions. Nature, 390(6657), 279–281.
https://doi.org/10.1038/36846
Luria, R., Balaban, H., Awh,
E., & Vogel, E. K. (2016). The contralateral delay activity as a neural
measure of visual working memory. Neuroscience and Biobehavioral
Reviews, 62, 100–108.
https://doi.org/10.1016/j.neubiorev.2016.01.003
Luria, R., & Vogel, E. K.
(2011). Shape and color conjunction stimuli are represented as bound
objects in visual working memory. Neuropsychologia, 49(6),
1632–1639.
https://doi.org/10.1016/j.neuropsychologia.2010.11.031
Machizawa, M. G., Goh, C. C.
W., & Driver, J. (2012). Human visual short-term memory precision can
be varied at will when the number of retained items is low.Psychological Science, 23(6), 554–559.
https://doi.org/10.1177/0956797611431988
Marini, F., & Marzi, C. A.
(2016). Gestalt Perceptual Organization of Visual Stimuli Captures
Attention Automatically: Electrophysiological Evidence. Frontiers
in Human Neuroscience, 10, 446.
https://doi.org/10.3389/fnhum.2016.00446
Martinez, A., Ramanathan, D.
S., Foxe, J. J., Javitt, D. C., & Hillyard, S. A. (2007). The role of
spatial attention in the selection of real and illusory objects.The Journal of Neuroscience, 27(30), 7963–7973.
https://doi.org/10.1523/JNEUROSCI.0031-07.2007
Ma, W. J., Husain, M., &
Bays, P. M. (2014). Changing concepts of working memory. Nature
Neuroscience, 17(3), 347–356.
https://doi.org/10.1038/nn.3655
Mazaheri, A., & Jensen, O.
(2008). Asymmetric amplitude modulations of brain oscillations generate
slow evoked responses. The Journal of Neuroscience,28(31), 7781–7787.
https://doi.org/10.1523/JNEUROSCI.1631-08.2008
Medendorp, W. P., Kramer, G.
F. I., Jensen, O., Oostenveld, R., Schoffelen, J.-M., & Fries, P.
(2007). Oscillatory activity in human parietal and occipital cortex
shows hemispheric lateralization and memory effects in a delayed
double-step saccade task. Cerebral Cortex, 17(10),
2364–2374.
https://doi.org/10.1093/cercor/bhl145
Michotte, A., Thines, G., & Crabbe, G. (1991). Amodal completion of
perceptual structures. In G. Thines, A. Costall, & G. Butterworth
(Eds.), Michotte’s experimental phenomenology of perception (pp.
140–167). Hillsdale, NJ: Erlbaum. (Original work published 1964)
Morey, C. C. (2019). Perceptual grouping boosts visual working memory
capacity and reduces effort during retention. British Journal of
Psychology , 110 (2), 306–327.
https://doi.org/10.1111/bjop.12355
Morey, C. C., Cong, Y.,
Zheng, Y., Price, M., & Morey, R. D. (2015). The color-sharing bonus:
Roles of perceptual organization and attentive processes in visual
working memory. Archives of Scientific Psychology, 3(1),
18-29. https://doi.org/10.1037/arc0000014
Murphy, J., Devue, C., Corballis, P. M., & Grimshaw, G. M. (2020).
Proactive Control of Emotional Distraction: Evidence From EEG Alpha
Suppression. Frontiers in Human Neuroscience , 14 , 318.
https://doi.org/10.3389/fnhum.2020.00318
Murray, M. M., Foxe, D. M.,
Javitt, D. C., & Foxe, J. J. (2004). Setting boundaries: brain dynamics
of modal and amodal illusory shape completion in humans. The
Journal of Neuroscience, 24(31), 6898–6903.
https://doi.org/10.1523/JNEUROSCI.1996-04.2004
Murray, M. M., Wylie, G. R.,
Higgins, B. A., Javitt, D. C., Schroeder, C. E., & Foxe, J. J. (2002).
The spatiotemporal dynamics of illusory contour processing: combined
high-density electrical mapping, source analysis, and functional
magnetic resonance imaging. The Journal of Neuroscience,22(12), 5055–5073.
https://doi.org/10.1523/JNEUROSCI.22-12-05055.2002
Nie, Q.-Y., Maurer, M, Müller, H. J., & Conci, M. (2016). Inhibition
drives configural superiority of illusory Gestalt: Combined behavioral
and drift-diffusion model evidence, Cognition, 150 , 150-162.
http://dx.doi.org/10.1016/j.cognition.2016.02.007
Nie, Q.-Y., Müller, H. J., &
Conci, M. (2017). Hierarchical organization in visual working memory:
From global ensemble to individual object structure. Cognition,159, 85–96.
https://doi.org/10.1016/j.cognition.2016.11.009
Nikolaev, A. R., Gepshtein, S., Kubovy, M., & van Leeuwen, C. (2008).
Dissociation of early evoked cortical activity in perceptual grouping.Experimental Brain Research. Experimentelle Hirnforschung.
Experimentation Cerebrale , 186 (1), 107–122.
https://doi.org/10.1007/s00221-007-1214-7
Nikolaev, A. R., Gepshtein, S., & van Leeuwen, C. (2016). Intermittent
regime of brain activity at the early, bias-guided stage of perceptual
learning. Journal of Vision , 16 (14), 11.
https://doi.org/10.1167/16.14.11
Noonan, M. P., Adamian, N.,
Pike, A., Printzlau, F., Crittenden, B. M., & Stokes, M. G. (2016).
Distinct Mechanisms for Distractor Suppression and Target Facilitation.The Journal of Neuroscience, 36(6), 1797–1807.
https://doi.org/10.1523/JNEUROSCI.2133-15.2016
Oberauer, K., & Hein, L.
(2012). Attention to Information in Working Memory. Current
Directions in Psychological Science, 21(3), 164–169.
https://doi.org/10.1177/0963721412444727
Olson, I. R., & Jiang, Y.
(2002). Is visual short-term memory object based? Rejection of the
“strong-object” hypothesis. Perception & Psychophysics,64(7), 1055–1067.
https://doi.org/10.3758/BF03194756
Peterson, D. J., &
Berryhill, M. E. (2013). The Gestalt principle of similarity benefits
visual working memory. Psychonomic Bulletin & Review,20(6), 1282–1289.
https://doi.org/10.3758/s13423-013-0460-x
Peterson, D. J., Gözenman, F., Arciniega, H., & Berryhill, M. E.
(2015). Contralateral delay activity tracks the influence of Gestalt
grouping principles on active visual working memory representations.Attention, Perception & Psychophysics , 77 (7), 2270–2283.
https://doi.org/10.3758/s13414-015-0929-y
Pinto, Y., Sligte, I. G., Shapiro, K. L., & Lamme, V. A. F. (2013).
Fragile visual short-term memory is an object-based and
location-specific store. Psychonomic Bulletin & Review ,20 (4), 732–739. https://doi.org/10.3758/s13423-013-0393-4
Printzlau, F. A. B., Myers,
N. E., Manohar, S. G., & Stokes, M. G. (2022). Neural Reinstatement
Tracks Spread of Attention between Object Features in Working Memory.Journal of Cognitive Neuroscience, 34(9), 1681–1701.
https://doi.org/10.1162/jocn_a_01879
Proverbio, A. M., & Zani, A.
(2002). Electrophysiological indexes of illusory contours perception in
humans. Neuropsychologia, 40(5), 479–491.
https://doi.org/10.1016/s0028-3932(01)00135-x
Pun, C., Emrich, S. M.,
Wilson, K. E., Stergiopoulos, E., & Ferber, S. (2012). In and out of
consciousness: sustained electrophysiological activity reflects
individual differences in perceptual awareness. Psychonomic
Bulletin & Review, 19(3), 429–435.
https://doi.org/10.3758/s13423-012-0220-3
Rauschenberger, R., &
Yantis, S. (2001). Attentional capture by globally defined objects.Perception & Psychophysics, 63(7), 1250–1261.
https://doi.org/10.3758/BF03194538
Senkowski, D., Röttger, S.,
Grimm, S., Foxe, J. J., & Herrmann, C. S. (2005). Kanizsa subjective
figures capture visual spatial attention: evidence from
electrophysiological and behavioral data. Neuropsychologia,43(6), 872–886.
https://doi.org/10.1016/j.neuropsychologia.2004.09.010
Serences, J. T., Ester, E.
F., Vogel, E. K., & Awh, E. (2009). Stimulus-specific delay activity in
human primary visual cortex. Psychological Science, 20(2),
207–214.
https://doi.org/10.1111/j.1467-9280.2009.02276.x
Souza, A. S., & Oberauer, K.
(2017). The contributions of visual and central attention to visual
working memory. Attention, Perception & Psychophysics,79(7), 1897–1916.
https://doi.org/10.3758/s13414-017-1357-y
Stanley, D. A., & Rubin, N.
(2003). fMRI activation in response to illusory contours and salient
regions in the human lateral occipital complex. Neuron,37(2), 323–331. https://doi.org/10.1016/S0896-6273(02)01148-0
Thut, G., Nietzel, A., Brandt, S. A., & Pascual-Leone, A. (2006).
α-Band Electroencephalographic activity over occipital cortex indexes
visuospatial attention bias and predicts visual target detection.The Journal of Neuroscience , 26 (37), 9494–9502.
https://doi.org/10.1523/JNEUROSCI.0875-06.2006
Töllner, T., Conci, M., &
Müller, H. J. (2015). Predictive distractor context facilitates
attentional selection of high, but not intermediate and low, salience
targets. Human Brain Mapping, 36(3), 935–944.
https://doi.org/10.1002/hbm.22677
Töllner, T., Müller, H. J.,
& Zehetleitner, M. (2012). Top-down dimensional weight set determines
the capture of visual attention: evidence from the PCN component.Cerebral Cortex, 22(7), 1554–1563.
https://doi.org/10.1093/cercor/bhr231
Unsworth, N., Fukuda, K., Awh, E., & Vogel, E. K. (2014). Working
memory and fluid intelligence: capacity, attention control, and
secondary memory retrieval. Cognitive Psychology , 71 ,
1–26.https://doi.org/10.1016/j.cogpsych.2014.01.003
van Dijk, H., van der Werf,
J., Mazaheri, A., Medendorp, W. P., & Jensen, O. (2010). Modulations in
oscillatory activity with amplitude asymmetry can produce cognitively
relevant event-related responses. Proceedings of the National
Academy of Sciences of the United States of America, 107(2),
900–905.
https://doi.org/10.1073/pnas.0908821107
van Ede, F. (2018). Mnemonic
and attentional roles for states of attenuated alpha oscillations in
perceptual working memory: a review. The European Journal of
Neuroscience, 48(7), 2509–2515.
https://doi.org/10.1111/ejn.13759
Vogel, E. K., & Machizawa,
M. G. (2004). Neural activity predicts individual differences in visual
working memory capacity. Nature, 428(6984), 748–751.
https://doi.org/10.1038/nature02447
Vogel, E. K., Woodman, G. F.,
& Luck, S. J. (2001). Storage of features, conjunctions and objects in
visual working memory. Journal of Experimental Psychology. Human
Perception and Performance, 27(1), 92–114.
https://doi.org/10.1037//0096-1523.27.1.92
Walther, D. B., & Koch, C. (2007). Attention in hierarchical models of
object recognition. Progress in Brain Research , 165 ,
57–78. https://doi.org/10.1016/S0079-6123(06)65005-X
Wang, S., Megla, E. E., & Woodman, G. F. (2021). Stimulus-induced alpha
suppression tracks the difficulty of attentional selection, not visual
working memory storage. Journal of Cognitive Neuroscience ,33 (3), 536–562.
https://doi.org/10.1162/jocn_a_01637
Wang, S., Rajsic, J., & Woodman, G. F. (2019). The contralateral delay
activity tracks the sequential loading of objects into visual working
memory, unlike lteralized alpha oscillations. Journal of Cognitive
Neuroscience , 31 (11), 1689–1698.
https://doi.org/10.1162/jocn_a_01446
Wascher, E., & Beste, C.
(2010). Tuning perceptual competition. Journal of
Neurophysiology, 103(2), 1057–1065.
https://doi.org/10.1152/jn.00376.2009
Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual
memory. Journal of Experimental Psychology. General ,131 (1),
48–64. https://doi.org/10.1037/0096-3445.131.1.48
Wiegand, I., Finke, K.,
Töllner, T., Starman, K., Müller, H. J., & Conci, M. (2015).
Age-related decline in global form suppression. Biological
Psychology, 112, 116–124.
https://doi.org/10.1016/j.biopsycho.2015.10.006
Woodman, G. F., Vecera, S. P., & Luck, S. J. (2003). Perceptual
organization influences visual working memory. Psychonomic
Bulletin & Review , 10 (1), 80–87.
https://doi.org/10.3758/BF03196470
Woodman, G. F., & Vogel, E.
K. (2008). Selective storage and maintenance of an object’s features in
visual working memory. Psychonomic Bulletin & Review,15(1), 223–229.
https://doi.org/10.3758/PBR.15.1.223
Woodman, G. F., Wang, S., Sutterer, D. W., Reinhart, R. M. G., &
Fukuda, K. (2022). Alpha suppression indexes a spotlight of
visual-spatial attention that can shine on both perceptual and memory
representations. Psychonomic Bulletin & Review, 29 (3), 681–698.
https://doi.org/10.3758/s13423-021-02034-4
Xu, Y. (2002). Encoding color
and shape from different parts of an object in visual short-term memory.Perception & Psychophysics, 64(8), 1260–1280.
https://doi.org/10.3758/BF03194770