References
  1. Riehl, B. D., Kim, E., Bouzid, T. & Lim, J. Y. The role of microenvironmental cues and mechanical loading milieus in breast cancer cell progression and metastasis. Frontiers in Bioengineering and Biotechnology 8, (2021).
  2. Tse, J. M. et al. Mechanical compression drives cancer cells toward invasive phenotype. Proceedings of the National Academy of Sciences 109, 911–916 (2011).
  3. Romani, P., Valcarcel-Jimenez, L., Frezza, C. & Dupont, S. Crosstalk between mechanotransduction and metabolism. Nature Reviews Molecular Cell Biology 22, 22–38 (2020).
  4. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139,891–906 (2009).
  5. Jang, M. et al. Matrix stiffness epigenetically regulates the oncogenic activation of the yes-associated protein in Gastric cancer.Nature Biomedical Engineering 5, 114–123 (2020).
  6. Vasudevan, J., Lim, C. T. & Fernandez, J. G. Cell migration and breast cancer metastasis in biomimetic extracellular matrices with independently tunable stiffness. Advanced Functional Materials30, 2005383 (2020).
  7. Panciera, T. et al. Reprogramming normal cells into tumour precursors requires ECM stiffness and oncogene-mediated changes of cell mechanical properties. Nature Materials 19,797–806 (2020).
  8. Derkus, B. et al. Multicomponent hydrogels for the formation of vascularized bone-like constructs in vitro. Acta Biomaterialia109, 82–94 (2020).
  9. Rezaeeyazdi, M., Colombani, T., Eggermont, L. J. & Bencherif, S. A. Engineering hyaluronic acid-based cryogels for CD44-mediated breast tumor reconstruction. Materials Today Bio 13, 100207 (2022).
  10. Loebel, C., D’Este, M., Alini, M., Zenobi-Wong, M. & Eglin, D. Precise tailoring of tyramine-based hyaluronan hydrogel properties using DMTMM conjugation. Carbohydrate Polymers 115,325–333 (2015).
  11. Isik, M. et al. Mechanically robust hybrid hydrogels of photo-crosslinkable gelatin and laminin-mimetic peptide amphiphiles for neural induction. Biomaterials Science 9,8270–8284 (2021).
  12. D’Souza, A. M. et al. Small molecule CJOC42 improves chemo-sensitivity and increases levels of tumor suppressor proteins in hepatoblastoma cells and in mice by inhibiting oncogene gankyrin.Frontiers in Pharmacology 12, (2021).
  13. Acerbi, I. et al. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration.Integrative Biology 7, 1120–1134 (2015).
  14. Wei, S. C. et al. Matrix stiffness drives epithelial–mesenchymal transition and tumour metastasis through a twist1–G3BP2 mechanotransduction pathway. Nature Cell Biology17, 678–688 (2015).
  15. Yuan, Y., Zhong, W., Ma, G., Zhang, B., Tian, H. Yes-associated protein regulates the growth of human non-small cell lung cancer in response to matrix stiffness. Molecular Medicine Reports11, 4267–4272 (2015).
  16. Krndija, D. et al. Substrate stiffness and the receptor-type tyrosine-protein phosphatase alpha regulate spreading of colon cancer cells through cytoskeletal contractility. Oncogene 29,2724–2738 (2010).
  17. Li, Y. & Kumacheva, E. Hydrogel microenvironments for cancer spheroid growth and drug screening. Science Advances 4, (2018).
  18. Zanconato, F., Cordenonsi, M. & Piccolo, S. Yap and Taz: A signalling hub of the tumour microenvironment. Nature Reviews Cancer19, 454–464 (2019).
  19. Lee, J. Y. et al. Yap-independent mechanotransduction drives breast cancer progression. Nature Communications 10,(2019).
  20. Yuan, M. et al. Yes-associated protein (YAP) functions as a tumor suppressor in breast. Cell Death & Differentiation15, 1752–1759 (2008).
  21. Scott, K. E., Fraley, S. I. & Rangamani, P. A spatial model of yap/taz signaling reveals how stiffness, dimensionality, and shape contribute to emergent outcomes. Proceedings of the National Academy of Sciences 118, (2021).
  22. Cordenonsi, M. et al. The hippo transducer taz confers cancer stem cell-related traits on breast cancer cells. Cell147, 759–772 (2011).
  23. Lahlou, H. et al. Mammary epithelial-specific disruption of the focal adhesion kinase blocks mammary tumor progression.Proceedings of the National Academy of Sciences 104,20302–20307 (2007).
  24. Yue, X. et al. Leukemia inhibitory factor drives glucose metabolic reprogramming to promote breast tumorigenesis. Cell Death & Disease 13, (2022).
  25. Han, J., Li, Q., Chen, Y. & Yang, Y. Recent metabolomics analysis in tumor metabolism reprogramming. Frontiers in Molecular Biosciences 8, (2021).
  26. Warburg, O. On respiratory impairment in cancer cells. Science124, 269–270 (1956).
  27. Wei, Z., Liu, X., Cheng, C., Yu, W. & Yi, P. Metabolism of amino acids in cancer. Frontiers in Cell and Developmental Biology8, (2021).
  28. Koundouros, N. & Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer. British Journal of Cancer 122,4–22 (2019).
  29. Fong, M. Y. et al. Breast-cancer-secreted Mir-122 reprograms glucose metabolism in premetastatic niche to promote metastasis.Nature Cell Biology 17, 183–194 (2015).
  30. Hannun, Y. A. & Obeid, L. M. Sphingolipids and their metabolism in physiology and disease. Nature Reviews Molecular Cell Biology19, 175–191 (2017).
  31. Martínez-Reyes, I. & Chandel, N. S. Mitochondrial TCA cycle metabolites control physiology and disease. Nature Communications 11, (2020).
  32. Patil, M. D., Bhaumik, J., Babykutty, S., Banerjee, U. C. & Fukumura, D. Arginine dependence of tumor cells: Targeting a chink in cancer’s armor. Oncogene 35, 4957–4972 (2016).
  33. Tönjes, M. et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nature Medicine 19, 901–908 (2013).
  34. Sun, L., Zhang, H. & Gao, P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein & Cell13, 877–919 (2021).
  35. Son, J. et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature496, 101–105 (2013).
  36. Ullah Khan, S. & Ullah Khan, M. The role of amino acid metabolic reprogramming in tumor development and immunotherapy.Biochemistry and Molecular Biology 7, 6 (2022).
  37. Li, Y. et al. Matrix stiffness regulates chemosensitivity, stemness characteristics, and autophagy in breast cancer cells.ACS Applied Bio Materials 3, 4474–4485 (2020).
  38. Morandi, A. & Indraccolo, S. Linking metabolic reprogramming to therapy resistance in cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1868, 1–6 (2017).
  39. Germain, N. et al. Lipid metabolism and resistance to anticancer treatment. Biology 9, 474 (2020).
  40. Yoo, H.-C. & Han, J.-M. Amino acid metabolism in cancer drug resistance. Cells 11, 140 (2022).