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A novel, data-driven approach to derive spatially coherent extent of occurrence maps for biogeographic studies

Abstract
As a source of information on species’ geographic distributions, macroecologists and biogeographers have had to rely on expert-derived range maps to study biodiversity patterns at large scales. In addition to being biased towards well-studied taxa and subjective by nature, such maps suffer from a lack of consistency in how species’ absences are treated within the wider distribution. Using the finer resolution of the Interim Biogeographic Regionalization for Australia (subregions) and example sets of Australian species as study system, we developed a reproducible, data-driven approach to map the extent of occurrence (EOO) of hundreds—or even thousands—of species by combining presence-only data and subregions (i.e., non-equal-sized operational units that represent homogenous areas of unique environmental features) within a unifying quantitative framework. From data-driven and expert-derived range maps for 533 birds, species richness’ estimates differ at three biogeographical scales—whit bias (mean error) at coarser resolution (ecoregion) being half that at subregional scale—and the spatial association between pairs of these birds’ presence-absence maps vary from nearly zero to almost one (representing such pattern almost either differently or identically, respectively). Holes within the wider distribution of the EOO maps for pairs of amphibians, mammals, reptiles, and plants seem to respond to the demarcation of different subpopulations over Australia rather than causing an underestimation of a species’ empirical distribution. These results demonstrate that this approach can reliably map EOO of species whose distributions aligns with three broad types of geographic patterns (wide-range, habitat-specialists, and range-restricted species). This alternative to expert-derived range maps can serve as a basis for more robust, data-driven studies of biogeographic biodiversity patterns, thus improving our understanding and conservation efforts of global biodiversity.
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1. Introduction
Species’ occurrences and range maps are two of the primary sources of our knowledge about the geographic distribution of species, making these two types of occupancy data essential for macroecological and biogeographic studies (Jetz et al., 2012). As the input data for modeling species distributions, georeferenced species’ records have been used, for example, to estimate the impact of global environmental change on species, to identify important sites for conservation, and to map species’ ranges. While species’ records can also be aggregated to map biogeographic patterns (e.g., Bloomfield et al., 2018, Ondei et al., 2019, Smith et al., 2018), it is range maps that are increasingly recognized as quantitative spatial objects appropriate for this type of analysis (Marsh et al., 2022). As such, species’ range maps have been used to investigate taxonomic richness and composition, niche attributes, and range-size dynamics (Jetz and Rahbek, 2002, Kreft and Jetz, 2010, Lyons et al., 2019, Olalla-Tárraga et al., 2011). Further, they have been linked with other facets of biodiversity (e.g., phylogenetic) to reveal the intrinsic and extrinsic forces responsible for the formation of the zoogeographic regions we know today (Ficetola et al., 2017, Holt et al., 2013), and to evaluate the variation in functional and phylogenetic diversity (Jarzyna et al., 2021, Maestri and Duarte, 2020). Like species’ occurrences, range maps have also been used for systematic conservation planning (Lamoreux et al., 2006, Pacifici et al., 2018) and conservation assessment (Bachman et al., 2019, Brooks et al., 2019). Notably, in recent decades, both types of occupancy data have become increasingly accessible over large extents and at an increasingly finer resolution for many taxa. Yet, in addition to being biased towards well-studied groups of species (Jetz et al., 2012), species’ occurrences and range maps continue to be constrained by data and methodological limitations.

One reason is that species’ occurrences are heavily biased towards areas more easily accessible (e.g., roads, visitor centers, tracks, etc.), with a greater number of observations for species that are diurnal, conspicuous, charismatic, and easy to identify. To deal with this, ecologists and biogeographers have used several approaches to ameliorate the pervasive effect of sampling bias on their analyses (Aiello-Lammens et al., 2015). Spatial thinning is a commonly used alternative, because it acts on the root of the issue (i.e., uneven collection of species records in the geographic space; Anderson, 2012, Kadmon et al., 2004, Reddy and Dávalos, 2003) by randomly selecting either a fixed number of records based on a stratified sample (e.g., one record per grid cell) or the maximum number of species occurrences that meets a minimum nearest neighbor distance constraint (Boria et al., 2014, Pearson et al., 2007). In both approaches, the filtering of species’ records is subject of calculation based on the scale of the study system, the resolution of analysis, and the number and spatial arrangement of point-observation records, making the empirical determination of the optimal degree of thinning a largely goal-oriented rather than theory-driven task.

A species’ range map represents the areas where a species can be found during its lifetime. Range maps have been derived using deductive approaches, and analytical, transparent, and reproducible methods (Gaston and Fuller, 2009, Jetz et al., 2012, Marsh et al., 2022). Both the extent of occurrence (EOO) and the area of occupancy (AOO) are metrics used to estimate a species’ geographic range size. Despite EOO and AOO metrics representing fundamentally different aspects of the size of a species’ geographic range (Gaston and Fuller, 2009), the former has been regarded as a less accurate way of measuring range size than the latter, due for instance to patchiness of subpopulations within the overall extent (Hurlbert and Jetz, 2007, Jetz et al., 2008, Shaw et al., 2003). Notably, both metrics can be estimated using the same methodological approaches (Gaston and Fuller, 2009), and the creation and update of most range maps available are similar, in that the tacit knowledge of experts are used to compile species records, alongside ancillary data, to hand-draw polygons that demarcate the regions within which a species lives (Marsh et al., 2022). Given the array and disparity of data sources and type, expert-derived range maps differ in quality both among species and between regions for a given species (Marsh et al., 2022, Palacio et al., 2021). Commission and omission errors have both been attributed to expert-derived range maps (Gaston, 1991, Graham and Hijmans, 2006, Mainali et al., 2020, Peterson et al., 2018). Issues of accuracy are prominent at higher resolution and covary with ecological attributes (Ficetola et al., 2014, Hurlbert and Jetz, 2007, Hurlbert and White, 2005, Jetz et al., 2008). Nonetheless, this lack of consistency also stems from how experts balance the level of spatial detail given to the edges of species’ ranges and the identification of its different populations (i.e., precision; Marsh et al., 2022).

With the boom in availability of big data in ecology, researchers have focused on estimating species distributions at higher resolution and with greater accuracy (Brooks et al., 2019, García-Roselló et al., 2019, Palacio et al., 2021). A common approach is to map the geographic range of a species using the continuous suitability or probability values resulting from correlative species-distribution models (Gaston and Fuller, 2009, Graham and Hijmans, 2006). Statistical models are valuable tools for estimating the EOO and AOO of a species (IUCN, 2022), as they can predict significant portions of the species' distribution and identify unoccupied but suitable areas that might be overlooked in traditional range estimates (Kass et al., 2021, Peterson et al., 2018). Defining a range boundary means applying a threshold to these continuous values on a grid frame. Their success thus depends on modeling decisions that are species- and system-specific, making it challenging to consistently implement this approach across multiple species (Palacio et al., 2021). When all of the methodological idiosyncrasies are carefully considered and justified, modeled range maps have been shown to help improve accuracy (García-Roselló et al., 2019, Gaston and Fuller, 2009), which is useful for applied purposes—such as conservation planning and decision-making at a local scale (Breiner et al., 2017, Pena et al., 2014, Syfert et al., 2014). However, these are not necessarily appropriate for biodiversity research at large geographic scales, for which the use of coarser spatial resolutions is advised (Hurlbert and Jetz, 2007). Further, the grid-based nature of these range maps can be problematic because if a uniform grid of cells is imposed on continuous geographical phenomena when aggregating data, the resulting spatial pattern can include artifacts of the size, shape, and positioning of the unit of analysis (Heywood et al., 2011, Moat et al., 2018). For example, studies using empirical and simulated data have shown that there was substantial uncertainty in species range estimates due to the variation in the origin of the grid frame (Breiner and Bergamini, 2018, Keith et al., 2018, Moat et al., 2018). One possible solution to the necessity of having spatially coherent range maps for macroecological scales that are independent from a grid-based approach is to use an interpolation technique (e.g., inverse distance weighting, kernel density function) to estimate a continuous surface from discrete measures (i.e., species occurrences) within the spatial context of non-equal-sized operational units that represent homogenous areas of unique environmental features.

Our goal herein is to develop such an approach. Specifically, to map species’ ranges at a coarse resolution, we sought to estimate the EOO of a species by combining presence-only data with the operational units of a biogeographic scheme within a consistent quantitative framework. Using Australia and some of its key species as study system, we aimed to do the following: 
1) Set data requirements and define kernel-density parameters (i.e., bandwidth and confidence region) to estimate a species’ EOO objectively, using as a basis an example set of wide-ranging, coastal, and range-restricted bird species; 
2) Compare data-driven EOO maps to expert-derived range maps for a large sample of bird species in terms of the degree of spatial association between these maps, and the total number of birds within biogeographic areas at multiple biogeographical scales (i.e., subregional, bioregional, and ecoregional richness of birds); and
3) Test the utility and generality of the approach to estimate the EOO beyond the distributional patterns of birds, by visually examining data-driven EOO maps for a set example of amphibian, mammal, reptile, and vascular plant species.

Our intention was to provide a straightforward, methodologically transparent and data-driven alternative to expert-generated approaches for mapping the geographic range of hundreds, or even thousands, of species. In doing so, we explicitly focused on minimizing the confounding effect that the lack of consistency in the precision of expert-derived range maps can have in our understanding of biodiversity patterns at a large scale (i.e., evaluating the trade-off between how roughly the edges of a species’ range are approximated, and how finely its subpopulations are demarcated; Marsh et al., 2022). The overall workflow of the approach’s development and application is described in Fig. 1.
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Fig. 1 Overall workflow of our approach to deriving spatially coherent extent of occurrence maps for biogeographic studies.
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2.1. Details of the case study
Australia provides an ideal study system against which to develop and evaluate the proposed approach, because it has a well-catalogued biota across a wide climatic and biogeographic span, ranging from deserts to tropical forests. It is one of the ten most biodiverse countries (Mittermeier et al., 1997), but the only one with a comprehensive inventory of species occurrences across taxa, databased within a centralized, open-access repository (e.g., the Atlas of Living Australia). Further, birds and mammals, which are well-studied taxa in many other regions too, are conspicuous and vulnerable to extinction in Australia (Johnson, 2006). Perhaps most notably for this work, Australia is an island continent with naturally defined oceanic boundaries and has a clearly defined bioregionalization framework—known as the Interim Biogeographic Regionalization for Australia (IBRA; Thackway and Cresswell, 1995).

Initiated by the Australia government, the IBRA framework is the first and only attempt at a complete biotic regionalization of Australia (Ebach, 2012). The IBRA framework is a hierarchical system of smaller biogeographic areas (subregions, which demarcate major regional ecosystems) nested within large ones (bioregions, which cluster interacting ecosystems that are repeated in a similar form throughout an area). Compared to other country-based bioregionalizations (Bailey, 1995, Omernik, 2004), IBRA is one of the few biogeographic frameworks that has been explicitly defined as a more detailed geographic division of WWF’s ecoregions (Department of Agriculture, Water and the Environment, 2012a), which is one of the most widely accepted biogeographic templates.


2.2. Details of the datasets
We downloaded occurrences for the target species from the spatial portal of the Atlas of Living Australia (ALA; Belbin, 2011). This dataset included records for all bird species native to Australia, as well as the occurrences for two species of amphibians, mammals, reptiles, and vascular plants (Details on how these data is used in this study can be found in sections 3 and 4). As in a previous study on the IBRA framework (Ondei et al., 2019), we omitted species’ records that lacked geographic information, were from before 1990, or were situated outside the geographic extent of the study system; and in the case of birds, we also excluded any record with unidentifiable scientific names.

For the biogeographic template, we downloaded version seven of IBRA subregions’ names and borders (Department of Agriculture, Water and the Environment, 2012b), which included 419 biogeographical operational units. From the shapefile representing IBRA subregions, we omitted all polygons corresponding to oceanic islands and islets (< 1 km2 landmass). This resulted in the removal of nine IBRA subregions. We used this spatial information (n = 1,362 discrete polygons) to derive a three-tier hierarchical system of biogeographic operational units for Australia—where 410 IBRA subregions are nested within 85 IBRA bioregions, which are nested within 37 WWF ecoregions. This was possible as bioregions are a more detailed geographic classification of the WWF’s Terrestrial Ecoregions (Department of Agriculture, Water and the Environment, 2012a). Our goal in doing this was to base our comparison between data-driven EOO maps and expert-derived range maps on the most up-to-date bioregionalization for the conservation of Australia’s biodiversity. We used ArcMap (ESRI, 2017) to generate a biogeographic template for Australia, and to harmonize spatial data to a common coordinate reference system (Australian Albers Equal Area). We did all spatial calculations and feature engineering in R (R Core Team, 2020) using the following packages: sf (Pebesma, 2018), spatialEco (Evans, 2019), parallel (R Core Team, 2020), tidyverse (Wickham et al., 2019), reshape2 (Wickham, 2007), lwgeom (Pebesma, 2019), and magrittr (Bache and Wickham, 2014).
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The kernel-density estimator (KDE) is a well-established technique for delimiting a species’ EOO. It is widely applied to area-related problems in ecology, with a rich statistical literature (Fleming and Calabrese, 2017). However, to produce reliable results, KDE relies on having sufficient and spatially unbiased records. There is also a ‘problem of precision’ implicit in KDE. Thus, we developed this approach in two parts, to account for these two preconditions. The first is concerned with homogenizing sampling effort across the biogeographical space and defining a minimum-sample-size threshold. The second focuses on selecting both how roughly the edges of the utilization distribution are approximated (smoothing parameter, known as bandwidth) and how finely the spread of localities is demarcated (confidence region of the utilization distribution).

3.1. Meeting data requirements
We used IBRA subregions as our biogeographical units of analysis to even out the difference in sampling effort across large landscapes. We started by classifying the log-transformed area of subregions into small, medium, and large, which was done using the Jenks natural-breaks optimization algorithm (Jenks, 1977, Jenks and Caspall, 1971), implemented in the BAMMtools (Rabosky et al., 2014) package. Then, we fixed the maximum number of species records in each category to be equal to the categories’ mean size. Finally, we used these fixed values to randomly sample species occurrences without replacement, according to the subregion’s size category. We call this process “Biogeographic thinning”.
For the minimum-sample-size threshold, we set the required number of records after biogeographic thinning to be at least 20 over the landscape—matching the theoretical minimum sample size needed to ensure that the relative mean square error is not greater than 0.1 when estimating a standard bivariate density using a kernel function (Silverman, 1986).

3.2. Parametrizing the kernel density estimator (KDE)
The sensitivity of the KDE interpolation technique was tested to gauge whether it could estimate reliably three broad types of geographic patterns of species’ distributions common across taxa due to response to environmental conditions and/or degree of habitat specialization (i.e., wide-range, habitat-specialist, and range-restricted). We chose birds to demonstrate our approach because they are conspicuous in Australia and a representative dataset that other researchers commonly use when developing and validating bioregionalizations in other regions and globally. Further, their distributions can be matched to these three general geographic patterns. Thus, we used an example set of six bird species that are found across mainland Australia and the large island of Tasmania (wide-range), and which require a specific terrestrial habitat (coastal), and/or inhabit specific regions in both landmasses (range-restricted) as the training subjects.

After biogeographically thinning occurrences of training subjects (section 3.1.), we derived their EOO maps using a Gaussian (bivariate normal) KDE with two smoothing paraments (i.e., reference bandwidth, and plug-in estimator—implemented in the adehabitatHR (Calenge, 2006) and ks (Duong, 2019) packages, respectively) and two options for the confidence region (i.e., 95%, and 99% of the utilization distributions). To select the best-suited KDE parameters combination (i.e., least prone to overestimate species’ utilization distributions), we discriminated between the four different options by visually exploring the spatial coherence of the resulting EOO maps within and across the test subjects (i.e., six bird species). Based on these ‘pilot study’ results and the recommendation of not necessarily mapping disjunctions when measuring a species’ EOO (Gaston and Fuller, 2009), we chose to apply this approach to the other datasets using the plug-in bandwidth with a 99% confidence region as the best-suited parameter combination for delimitating the EOO of wide-range, habitat-specialist, and range-restricted (see results in section 5.1).
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The utility of this approach (i.e., biogeographic thinning, and the best-parameter combination; section 3) was investigated in two ways, by: i) comparing biogeographically based EOO maps to expert-derived species’ range maps across a large sample of birds, based on the degree of spatial association between these maps, and the difference in estimating subregional, bioregional, and ecoregional richness of birds; and ii) exploring if this approach can be used beyond the initial case study (i.e., birds’ distributional patterns).

4.1. Comparison between data-driven and expert-derived maps of birds
As 822 out of 1,201 individual birds with point-georeferenced records in the ALA’s dataset met the minimum-sample-size threshold (i.e., at least 20 occurrences after biogeographic thinning; section 3.1), we estimated their EOO using the best-suited parameter combination to parametrize a KDE for wide-range, habitat-specialist, and range-restricted species (i.e., plug-in bandwidth with a 99% confidence region; section 3.2). This resulted in a set of 822 data-driven EOO maps for 679 species, and 143 subspecies. From the latest version of BirdLife International’s expert-derived range maps at global scale (BirdLife International and Handbook of the Birds of the World, 2021), we kept only range maps overlapping with the bounding box of the study system (n = 832 range maps, with each map representing the distribution of a bird species). Expert-derived range maps include one or multiple polygons coded with information about different attributes of a species’ distribution, which we used to omit any polygon categorized as locally extinct. Of these two sets of occupancy data for bird species (i.e., 679 data-driven EOO maps, and 822 expert-derived range maps), we kept only the maps with the same scientific name in both sets. We did this after standardizing species’ scientific names in each set according to the Integrated Taxonomic Information System—using the taxize R package (Chamberlain and Szöcs, 2013). This resulted in a sample of 553 bird species shared across both sets, which we used to assess how data-driven EOO maps and expert-derived range maps differ in terms of spatial association and estimates of species richness at multiple biogeographic scales. The marked difference in the number of individual birds between the ALA and BirdLife International occupancy data is because the former includes point-georeferenced records for both species and subspecies, whereas the latter only provides range maps for species.

To quantify the degree of spatial association between these maps, we computed an overall global measure of association—called the ‘V-measure’ (Nowosad and Stepinski, 2018). We used this measure to determine the amount of information on the presence-absence of birds over Australia shared between the data-driven EOO maps and the expert-derived range maps. This is possible because the 0–1 range of the V-measure is grounded in information theory and interpretable in terms of analysis of variance—where 0 indicates absence of spatial association between two maps (i.e., totally different distributional pattern) and 1 when the spatial association is perfect (i.e., identical distributional pattern). To do this, we first derived binary maps (i.e., presence-absence) for each bird over Australia using expert-derived range maps and data-driven EOO maps as alternative sources of a species’ presence. Then, we used the sabre R package (Nowosad and Stepinski, 2018) to compute the V-measure between the two binary maps generated for each bird species. Finally, we summarized the amount of shared information on presence-absence (i.e., the V-measure of each pairwise-map comparison) by plotting its distribution and computing its mean and standard deviation for all birds (n = 553), and after omitting the shore and pelagic birds (n = 445: which excluded species from the orders Charadriiformes, Procellariiformes, and Sphenisciformes).

To examine how estimates of bird diversity might differ at multiple biogeographic scales depending on the source of distributional (range-map) data, we quantified the variation and bias in species richness. To do this, we used each dataset of bird maps to derive presence-absence matrices at three biogeographic scales (i.e., IBRA subregions and bioregions, and WWF’s ecoregions), from which we subsequently calculated the total number of birds for each of these biogeographic operational units (i.e., 410, 85, and 37 values of species richness at subregional, bioregional, and ecological scale, respectively). Then, we computed the root-mean-squared error of the difference between species richness from the data-driven EOO maps and that from the expert-derived range maps as a measure of variation, and the mean error for bias. Finally, we plotted variation and bias in species richness to visually summarize the results of this analysis.

4.2. Extrapolation to other taxa
To test its utility and generality, we assessed whether this approach can be extrapolated to other taxa. We used our approach to map the EOO for pairs of amphibians, mammals, reptiles, and vascular plants endemic to mainland Australia and/or Tasmania. We visually examined the spatial coherence of the resulting EOO map of each of these wider-evaluation subjects, and within the broader taxonomic groups, by looking for signs that the edges of its utilization distribution and/or the spread of its localities were poorly represented at bioregional scale. All analyses, calculations, and statistical summaries were done in R (R Core Team, 2020). Maps were prepared in ArcMap (ESRI, 2017).
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5.1. Determining the best-suited parameter combination
The preliminary investigation showed that the reference bandwidth was the least-suited alternative to approximating the utilization distribution, because even when using a 95% confidence region to demarcate the spread of localities, the EOO maps were clearly overestimated for all six training subjects (Fig. 2 a–c, g–i). This was not the case when using the plug-in bandwidth estimator, meaning that, based on visual checks, this smoothing parameter did a better job at controlling how roughly the edges of the utilization distribution were approximated.

When using 95% or 99% confidence regions to map the utilization distributions estimated with the plug-in estimator, there were some important differences in how finely the spread of species’ localities were demarcated for the training subjects (Fig. 2 d–f, j–l). With a 95% confidence region, there was a tendency to produce disjunctions in the EOO maps. Such a distributional feature was less prominent when using 99% regions, while still being capable of distinguishing outliers that might represent either vagrant species or misidentifications. Further, EOO maps delimited using 99% or 95% differed little in some cases (Fig. 2 f, and l).
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Fig. 2 Extent of occurrence maps for the example set of bird species (i.e., training subjects) used to parametrize the Kernel Density Estimator (KDE). Note: Each map shows the overlap between Australia’s bioregions and species’ utilization distributions using a Gaussian (bivariate normal) KDE with either the reference bandwidth (a–c, and g–i) or the plug-in estimator (d–f, and j–l) as the smoothing parameter. Green and purple polygons are for the 95% and 99% confidence regions, respectively.
5.2. Spatial association between data-driven EOO maps and expert-derived range maps
Information on the presence and absence of bird species over Australia varied greatly depending on whether this pattern was mapped using data-driven EOO maps or expert-derived range maps (Fig. 3).
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Fig. 3 Distribution of the degree of spatial association between pairwise comparisons of presence-absence maps using species’ expert-derived range maps or data-driven extent of occurrence maps. Note: Grey dots represent each V-measure for all species (top, n = 553) and terrestrial birds (bottom, n = 445). Terrestrial birds excluded species from the orders Charadriiformes, Procellariiformes, and Sphenisciformes. The 0–1 range of the V-measure is grounded in information theory and interpretable in terms of analysis of variance—where 0 indicates absence of spatial association between two maps (i.e., a totally different distributional pattern) and 1 when the spatial association is perfect (i.e., identical distributional pattern). SD stands for standard deviation.

The degree of spatial association (i.e., V-measure) ranged from near zero to almost one for all birds and when shore and pelagic species were excluded (i.e., for exclusively terrestrial birds). The two alternative maps tended to produce, on average, more similar patterns of presence-absence, with smaller uncertainty in the amount of information on the presence and absence, for the case of terrestrial birds only (Fig. 3).

5.3. Estimates of species richness at multiple biogeographic scales
There were considerable differences between estimates of species richness at all three biogeographical scales when comparing those generated using the expert-derived range maps versus the data-driven EEO maps (Fig. 4). 
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Fig. 4 Diversity comparison across multiple biogeographic scales. Note: For alpha diversity, variation is the root mean square error (RMSE) between the species richness from the data-driven maps, compared to that from BridLife range maps, with bias being the average difference (i.e., mean error). For bias, the y axis could in theory extents from -553 to 553.
The variation between estimates of species richness (root mean square error) at the ecoregional scale was about a third less than the variation of species richness at subregional scale. On average, using data-driven EOO maps resulted in higher estimates of species richness compared to expert approaches (bias). As expected, the difference in biogeographic estimates of species richness decreased as the size of the biogeographic operational units increased, with bias (mean error) at ecoregional scale being about half that at the subregional scale (Fig. 4).

5.4. Extrapolation to other taxa
Like with the example set of birds (i.e., the six training subjects; Fig. 2), the data-driven EOO maps for a ‘pilot study’ pair of amphibian, mammal, reptile and vascular plant species were visually spatially coherent (Fig. 5). First, disjunctions or holes in the distribution of these wider-evaluation subjects seemed to respond to the demarcation of different populations across the model system rather than causing an underestimation of a species’ utilization distribution. Second, records corresponding to vagrant individuals or misidentification were systematically excluded from the estimation of these species’ EOO at biogeographical scale, an output that was also observed in the bird’s training set (Fig. 2).
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Fig. 5 Extent of occurrence maps for the example pairs of (a) amphibian, (b) mammal, (c) reptile, and (d) vascular plants (species), visualized to check the utility of the approach for other taxa. Note: Each map shows the overlap between Australia’s bioregions and species’ utilization distributions using a Gaussian (bivariate normal) kernel density function with the plug-in estimator as smoothing parameter and 99% confidence region.
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Despite their subjective nature, expert-derive range maps are increasingly recognized as quantitative spatial objects suitable for studying biodiversity patterns at large scales (Marsh et al., 2022). Due to their higher resolution and greater accuracy, data-driven maps of species’ distributions are useful for applied purposes but not for macroecological and biogeographic research (Palacio et al., 2021). Further, as these alternatives rely on a uniformed grid-based approach when estimating species’ distributions, the resulting maps can include artifacts of the size, shape, and positioning of the unit of analysis (Heywood et al., 2011, Moat et al., 2018). To address these limitations, we herein developed a reproducible, data-driven approach to map, at coarse resolutions, the probable range (extent of occurrence; EOO) of hundreds—or even thousands—of species by combining presence-only data and subregions (i.e., the finer resolution of the IBRA framework) within a unifying quantitative framework. Our findings show that this approach provides an objective, straightforward, data-driven methodology to expert-derived range maps (Figs. 3–5). This is because it can be used to reliably map species’ EOO for three broad types of geographic patterns of species’ distributions common across taxa due to response to environmental conditions and/or degree of habitat specialization (i.e., wide-range, habitat-specialist, and range-restricted). 

When estimating species’ range sizes at a given scale, there is no simple formula that fits all purposes (Jetz et al., 2008, Qiao et al., 2015). The computation of species diversity patterns within units of analysis should thus be expected to differ depending on the range maps used as source of information, with the discrepancy decreasing as the units of analysis’ size increases (Hurlbert and Jetz, 2007). For example, when using expert-range maps for mammals from two different sources, the difference in species richness in a grid of 0.5 degrees was up to 158 species (Marsh et al., 2022). Our comparison of data-driven EOO maps and expert-derived range maps for Australian native birds in terms of species richness aligns with this expectation and result (Fig. 4). A very likely explanation of this mismatch is because of how species’ absences were treated within the wider distribution in data-driven EOO maps and expert-derived maps (i.e., how roughly the edges of a species’ range are approximated, and how finely its subpopulations are demarcated; precision; Marsh et al., 2022), as shown by the marked differences in the degree of spatial association between patterns of birds’ presence-absence using data-driven EOO maps or expert-derived range maps (Fig. 3). To certain degree, difference in pairwise-map comparisons can also be attributed to disparities in mapping scale of the coastline, especially for shore and pelagic birds, as well as to the exclusion of large freshwater bodies for terrestrial species in expert-driven but not in data-driven maps. All this makes it impractical to claim, unanimously, that one set of maps is superior to another (census Marsh et al. 2021), and which is also not the purpose of this study. Yet, we are confident that the use of a standardized level of precision to map species’ EOO minimizes the confounding effect that the lack of consistency in the precision of expert-derived range maps can have in our understanding of biogeographic biodiversity patterns. 

While we know that the use of expert-derived range maps is problematic for grid-based analyses smaller than ~ 200 km due to the scale dependance of most ecological phenomena (Hurlbert and Jetz, 2007), these maps also suffer from a systemic lack of consistency in how finely experts demarcate a species’ range edges and delineate its subpopulations (i.e., precision; Marsh et al., 2022). This can have a confounding effect on estimates of biodiversity patterns at large scales, thus in turn affecting our understanding and conservation efforts of global biodiversity. The discrepancy between patterns of species richness inferred from expert-derived range maps and data-driven EOO maps across biogeographical scales suggests that some of our conclusions about the richness-environment relationships might have been inadvertently mischaracterized. In conservation biogeography, the mismatch in species richness suggests that the prioritization of global and regional conservation efforts might have led to an overestimation and/or misidentification of important areas for biodiversity, such as key biodiversity areas, and biodiversity hotspots—which largely relied on taxon richness inferred from expert-derive range maps to identify priority sites. The ecological and conservation implications of using expert-derived range maps or data-driven EOO maps is like those documented between expert-derived range maps and atlas data (Hurlbert and Jetz, 2007). Thus, one should also not expect that data-driven EOO maps would be appropriate for local application. However, they can be an objective starting point to estimate fine-scale metrics of species’ range size (e.g., the area of occupancy, and the habitat of occupancy).

As a basis for biodiversity research and conservation at large scale, we argue this approach is an outstanding alternative to objectively define the edges of a species’ geographic range and can be applied in many contexts due to the plethora of non-equal-size operational units that already exists (see Mackey et al., 2008 for a summary of such biogeographic templates from global to local scale). However, as all species’ range maps are dependent on the type and source of data (Gaston and Fuller, 2009, Marsh et al., 2022), there are a couple of caveats worth noticing due to this approach’s reliance on species’ records. First, the extent to which this approach map species’ EOO is subject to biases in the data (e.g., sampling intensity) and species’ ecological attributes (e.g., conspicuousness). By homogenizing the difference in sample effort across large landscape and setting a minimum-sample-size threshold (section 3.1), we ameliorated the mischaracterization of a species’ range at biogeographic scale due to these two confounding factors. Second, the data-driven delineation of species’ EOO does not include information on species’ absences. While including absences could improve the output of this approach, such type of distributional information is extremely hard to obtain even for well-studied taxa, such as birds (Palacio et al., 2021). This makes it unsuitable to map EOO for more than a handful of species, thus constraining the utility to study biogeographic biodiversity patterns. Because biotic interactions are responsible for community structure and are increasingly recognized as drivers of species’ ranges at large scale (Anderson, 2017, Wisz et al., 2013), one could use the increasing accessibility to ecological datasets (Daru et al., 2017, Ficetola et al., 2017), and methodological advances in bioregionalization (e.g., Bloomfield et al., 2018, Coops et al., 2018, Edler et al., 2017, Holt et al., 2013, Maestri and Duarte, 2020) to further improve the mapping of species’ EEO by incorporating information on interspecific interactions, either explicitly in the estimation of species’ probable ranges or implicitly through the use of species interactions in the delineation of biogeographic operational units.

Using Australia and some of its key species as study system, this work demonstrates that spatially coherent, objective, data-driven range maps that are independent from a grid-based approach can be reliably estimated for many species across broad taxonomic groups by combining presence-only data and non-equal-sized operational units that represent homogenous areas of unique environmental features—in this study, 410 IBRA subregions—within a consistent quantitative framework. This approach addresses many of the constraints of expert-derived range maps. Because data-driven EOO maps are based on the probabilistic distribution of the optimum number of species with respect to the size of subregions, they vary little in quality and may better reflect recent range shifts due to environmental change—two common issues of expert-based distributional maps (Di Marco et al., 2017, Rondinini et al., 2011)—as well as being reproducible and appropriate for dealing with outliers, such as vagrant individuals, and misidentifications. Such reproducible and objective maps of species ranges, at coarse resolution for hundreds—or even thousands—of species, opens the possibility to more robust data-driven studies of biodiversity patterns at large geographical scales, and thus improving our understanding and conservation efforts of Earth’s biodiversity.
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