REFERENCES
[1] Ou, S.-H. I., Wu, F., Harrich, D., García-Martínez, L. F., Gaynor, R. B., Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J. Virol. 1995, 69 , 3584-3596.
[2] Abhyankar, M. M., Urekar, C., Reddi, P. P., A novel CpG-free vertebrate insulator silences the testis-specific SP-10 gene in somatic tissues: role for TDP-43 in insulator function. J Biol Chem 2007, 282 , 36143-36154.
[3] Konopka, A., Whelan, D. R., Jamali, M. S., Perri, E., et al. , Impaired NHEJ repair in amyotrophic lateral sclerosis is associated with TDP-43 mutations. Mol Neurodegener 2020,15 , 51.
[4] Mitra, J., Guerrero, E. N., Hegde, P. M., Liachko, N. F., et al. , Motor neuron disease-associated loss of nuclear TDP-43 is linked to DNA double-strand break repair defects. Proc Natl Acad Sci U S A 2019, 116 , 4696-4705.
[5] Giannini, M., Bayona-Feliu, A., Sproviero, D., Barroso, S. I., et al. , TDP-43 mutations link Amyotrophic Lateral Sclerosis with R-loop homeostasis and R loop-mediated DNA damage. PLoS Genet 2020, 16 , e1009260.
[6] Wood, M., Quinet, A., Lin, Y. L., Davis, A. A., et al. , TDP-43 dysfunction results in R-loop accumulation and DNA replication defects. J Cell Sci 2020, 133 .
[7] Buratti, E., Baralle, F. E., Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J. Biol. Chem.2001, 276 , 36337-36343.
[8] Ling, J. P., Pletnikova, O., Troncoso, J. C., Wong, P. C., TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science 2015, 349 , 650-655.
[9] Polymenidou, M., Lagier-Tourenne, C., Hutt, K. R., Huelga, S. C., et al. , Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci. 2011, 14 , 459-468.
[10] Tollervey, J. R., Curk, T., Rogelj, B., Briese, M., et al. , Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci. 2011, 14 , 452-458.
[11] Eréndira Avendaño-Vázquez, S., Dhir, A., Bembich, S., Buratti, E., et al. , Autoregulation of TDP-43 mRNA levels involves interplay between transcription, splicing, and alternative polyA site selection. Genes Dev 2012, 26 , 1679-1684.
[12] Baughn, M. W., Melamed, Z., Lopez-Erauskin, J., Beccari, M. S., et al. , Mechanism of STMN2 cryptic splice-polyadenylation and its correction for TDP-43 proteinopathies. Science 2023,379 , 1140-1149.
[13] Buratti, E., De Conti, L., Stuani, C., Romano, M., et al. , Nuclear factor TDP-43 can affect selected microRNA levels.FEBS J. 2010, 277 , 2268-2281.
[14] Kawahara, Y., Mieda-Sato, A., TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc Natl Acad Sci USA 2012, 109 , 3347-3352.
[15] Strong, M. J., Volkening, K., Hammond, R., Yang, W., et al. , TDP43 is a human low molecular weight neurofilament (h NFL) mRNA-binding protein. Mol. Cell. Neurosci. 2007, 35 , 320-327.
[16] Fiesel, F. C., Voigt, A., Weber, S. S., Van den Haute, C., et al. , Knockdown of transactive response DNA-binding protein (TDP-43) downregulates histone deacetylase 6. EMBO J. 2010,29 , 209-221.
[17] Yu, Z., Fan, D., Gui, B., Shi, L., et al. , Neurodegeneration-associated TDP-43 interacts with fragile X mental retardation protein (FMRP)/Staufen (STAU1) and regulates SIRT1 expression in neuronal cells. J. Biol. Chem. 2012, 287 , 22560-22572.
[18] Neelagandan, N., Gonnella, G., Dang, S., Janiesch, P. C., et al. , TDP-43 enhances translation of specific mRNAs linked to neurodegenerative disease. Nucleic Acids Res 2019, 47 , 341-361.
[19] Alami, N. H., Smith, R. B., Carrasco, M. A., Williams, L. A., et al. , Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 2014, 81 , 536-543.
[20] Colombrita, C., Zennaro, E., Fallini, C., Weber, M., et al. , TDP-43 is recruited to stress granules in conditions of oxidative insult. J Neurochem 2009, 111 , 1051-1061.
[21] Neumann, M., Sampathu, D. M., Kwong, L. K., Truax, A. C., et al. , Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006, 314 , 130-133.
[22] Arai, T., Hasegawa, M., Akiyama, H., Ikeda, K., et al. , TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis.Biochem. Biophys. Res. Commun. 2006, 351 , 602-611.
[23] Neumann, M., Mackenzie, I. R. A., Review: Neuropathology of non-tau frontotemporal lobar degeneration. Neuropathol Appl Neurobiol 2019, 45 , 19-40.
[24] Sreedharan, J., Blair, I. P., Tripathi, V. B., Hu, X., et al. , TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008, 319 , 1668-1672.
[25] Gitcho, M. A., Baloh, R. H., Chakraverty, S., Mayo, K., et al. , TDP-43 A315T mutation in familial motor neuron disease.Ann Neurol 2008, 63 , 535-538.
[26] Kabashi, E., Valdmanis, P. N., Dion, P., Spiegelman, D., et al. , TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 2008,40 , 572-574.
[27] Van Deerlin, V. M., Leverenz, J. B., Bekris, L. M., Bird, T. D., et al. , TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis.Lancet Neurol 2008, 7 , 409-416.
[28] Gavin, A.-C., Bösche, M., Krause, R., Grandi, P., et al. , Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002, 415 , 141-147.
[29] Bürckstümmer, T., Bennett, K. L., Preradovic, A., Schütze, G., et al. , An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat Methods 2006,3 , 1013-1019.
[30] Gloeckner, C. J., Boldt, K., Schumacher, A., Roepman, R., Ueffing, M., A novel tandem affinity purification strategy for the efficient isolation and characterisation of native protein complexes.Proteomics 2007, 7 , 4228-4234.
[31] Boldt, K., van Reeuwijk, J., Lu, Q., Koutroumpas, K., et al. , An organelle-specific protein landscape identifies novel diseases and molecular mechanisms. Nat Commun 2016, 7 , 11491.
[32] Ino, Y., Yamaoka, Y., Tanaka, K., Miyakawa, K., et al. , Integrated tandem affinity protein purification using the polyhistidine plus extra 4 amino acids (HiP4) tag system. Proteomics 2023, e2200334.
[33] Brymora, A., Valova, V. A., Robinson, P. J., Protein-protein interactions identified by pull-down experiments and mass spectrometry.Curr Protoc Cell Biol 2004, Chapter 17 , Unit 17 15.
[34] Pourhaghighi, R., Ash, P. E. A., Phanse, S., Goebels, F., et al. , BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain. Cell Syst 2020, 10 , 333-350 e314.
[35] Selbach, M., Mann, M., Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK).Nat Methods 2006, 3 , 981-983.
[36] Meixner, A., Boldt, K., Van Troys, M., Askenazi, M., et al. , A QUICK screen for Lrrk2 interaction partners–leucine-rich repeat kinase 2 is involved in actin cytoskeleton dynamics. Mol Cell Proteomics 2011, 10 , M110 001172.
[37] Gruijs da Silva, L. A., Simonetti, F., Hutten, S., Riemenschneider, H., et al. , Disease-linked TDP-43 hyperphosphorylation suppresses TDP-43 condensation and aggregation.EMBO J 2022, 41 , e108443.
[38] Kawaguchi, T., Rollins, M. G., Moinpour, M., Morera, A. A., et al. , Changes to the TDP-43 and FUS Interactomes Induced by DNA Damage. J Proteome Res 2020, 19 , 360-370.
[39] Feneberg, E., Charles, P. D., Finelli, M. J., Scott, C., et al. , Detection and quantification of novel C-terminal TDP-43 fragments in ALS-TDP. Brain Pathol 2021, 31 , e12923.
[40] Freibaum, B. D., Chitta, R. K., High, A. A., Taylor, J. P., Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J Proteome Res 2010, 9 , 1104-1120.
[41] Ling, S.-C., Albuquerque, C. P., Han, J. S., Lagier-Tourenne, C., et al. , ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc Natl Acad Sci USA 2010, 107 , 13318-13323.
[42] Ratushny, V., Golemis, E., Resolving the network of cell signaling pathways using the evolving yeast two-hybrid system.Biotechniques 2008, 44 , 655-662.
[43] Haenig, C., Atias, N., Taylor, A. K., Mazza, A., et al. , Interactome Mapping Provides a Network of Neurodegenerative Disease Proteins and Uncovers Widespread Protein Aggregation in Affected Brains.Cell Rep 2020, 32 , 108050.
[44] Hans, F., Fiesel, F. C., Strong, J. C., Jäckel, S., et al. , UBE2E ubiquitin-conjugating enzymes and ubiquitin isopeptidase Y regulate TDP-43 protein ubiquitination. J. Biol. Chem. 2014,289 , 19164-19179.
[45] Pfeiffer, C. T., Paulo, J. A., Gygi, S. P., Rockman, H. A., Proximity labeling for investigating protein-protein interactions.Methods Cell Biol 2022, 169 , 237-266.
[46] Chou, C. C., Zhang, Y., Umoh, M. E., Vaughan, S. W., et al. , TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat Neurosci 2018,21 , 228-239.
[47] Kuo, P.-H., Chiang, C.-H., Wang, Y.-T., Doudeva, L. G., Yuan, H. S., The crystal structure of TDP-43 RRM1-DNA complex reveals the specific recognition for UG- and TG-rich nucleic acids. Nucleic Acids Res 2014, 42 , 4712-4722.
[48] Morera, A. A., Ahmed, N. S., Schwartz, J. C., TDP-43 regulates transcription at protein-coding genes and Alu retrotransposons.Biochim Biophys Acta Gene Regul Mech 2019, 1862 , 194434.
[49] Acharya, K. K., Govind, C. K., Shore, A. N., Stoler, M. H., Reddi, P. P., cis-requirement for the maintenance of round spermatid-specific transcription. Dev Biol 2006, 295 , 781-790.
[50] Lalmansingh, A. S., Urekar, C. J., Reddi, P. P., TDP-43 is a transcriptional repressor: the testis-specific mouse acrv1 gene is a TDP-43 target in vivo. J Biol Chem 2011, 286 , 10970-10982.
[51] Schwenk, B. M., Hartmann, H., Serdaroglu, A., Schludi, M. H., et al. , TDP-43 loss of function inhibits endosomal trafficking and alters trophic signaling in neurons. EMBO J 2016,35 , 2350-2370.
[52] Saini, H. K., Griffiths-Jones, S., Enright, A. J., Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci U S A2007, 104 , 17719-17724.
[53] Shukla, G. C., Singh, J., Barik, S., MicroRNAs: Processing, Maturation, Target Recognition and Regulatory Functions. Mol Cell Pharmacol 2011, 3 , 83-92.
[54] Kim, K. Y., Lee, H.-W., Shim, Y.-M., Mook-Jung, I., et al. , A phosphomimetic mutant TDP-43 (S409/410E) induces Drosha instability and cytotoxicity in Neuro 2A cells. Biochem Biophys Res Commun 2015, 464 , 236-243.
[55] Hawley, Z. C. E., Campos-Melo, D., Strong, M. J., Evidence of A Negative Feedback Network Between TDP-43 and miRNAs Dependent on TDP-43 Nuclear Localization. J Mol Biol 2020, 432 , 166695.
[56] Di Carlo, V., Grossi, E., Laneve, P., Morlando, M., et al. , TDP-43 regulates the microprocessor complex activity during in vitro neuronal differentiation. Mol Neurobiol 2013, 48 , 952-963.
[57] Kocerha, J., Kouri, N., Baker, M., Finch, N., et al. , Altered microRNA expression in frontotemporal lobar degeneration with TDP-43 pathology caused by progranulin mutations. BMC Genomics2011, 12 , 527.
[58] Mohagheghi, F., Prudencio, M., Stuani, C., Cook, C., et al. , TDP-43 functions within a network of hnRNP proteins to inhibit the production of a truncated human SORT1 receptor. Hum Mol Genet2016, 25 , 534-545.
[59] Buratti, E., Brindisi, A., Giombi, M., Tisminetzky, S., et al. , TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing.J Biol Chem 2005, 280 , 37572-37584.
[60] Koike, Y., Pickles, S., Estades Ayuso, V., Jansen-West, K., et al. , TDP-43 and other hnRNPs regulate cryptic exon inclusion of a key ALS/FTD risk gene, UNC13A. PLoS Biol 2023,21 , e3002028.
[61] Bishof, I., Dammer, E. B., Duong, D. M., Kundinger, S. R., et al. , RNA-binding proteins with basic-acidic dipeptide (BAD) domains self-assemble and aggregate in Alzheimer’s disease.J Biol Chem 2018, 293 , 11047-11066.
[62] Wilkinson, M. E., Charenton, C., Nagai, K., RNA Splicing by the Spliceosome. Annu Rev Biochem 2020, 89 , 359-388.
[63] Bergfort, A., Preußner, M., Kuropka, B., Ilik, I. A., et al. , A multi-factor trafficking site on the spliceosome remodeling enzyme BRR2 recruits C9ORF78 to regulate alternative splicing. Nat Commun 2022, 13 , 1132.
[64] Mund, M., Neu, A., Ullmann, J., Neu, U., Sprangers, R., Structure of the LSm657 complex: an assembly intermediate of the LSm1-7 and LSm2-8 rings. J Mol Biol 2011, 414 , 165-176.
[65] Bertram, K., Agafonov, D. E., Dybkov, O., Haselbach, D., et al. , Cryo-EM Structure of a Pre-catalytic Human Spliceosome Primed for Activation. Cell 2017, 170 , 701-713 e711.
[66] Bouveret, E., Rigaut, G., Shevchenko, A., Wilm, M., Séraphin, B., A Sm-like protein complex that participates in mRNA degradation.EMBO J 2000, 19 , 1661-1671.
[67] Ingelfinger, D., Arndt-Jovin, D. J., Lührmann, R., Achsel, T., The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci. RNA 2002, 8 , 1489-1501.
[68] Tharun, S., He, W., Mayes, A. E., Lennertz, P., et al. , Yeast Sm-like proteins function in mRNA decapping and decay.Nature 2000, 404 , 515-518.
[69] Vindry, C., Weil, D., Standart, N., Pat1 RNA-binding proteins: Multitasking shuttling proteins. Wiley Interdiscip Rev RNA 2019,10 , e1557.
[70] Sachdev, R., Hondele, M., Linsenmeier, M., Vallotton, P., et al. , Pat1 promotes processing body assembly by enhancing the phase separation of the DEAD-box ATPase Dhh1 and RNA. Elife 2019,8 .
[71] Lobel, J. H., Gross, J. D., Pdc2/Pat1 increases the range of decay factors and RNA bound by the Lsm1-7 complex. RNA 2020,26 , 1380-1388.
[72] Ayala, Y. M., De Conti, L., Eréndira Avendaño-Vázquez, S., Dhir, A., et al. , TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J. 2011, 30 , 277-288.
[73] Koyama, A., Sugai, A., Kato, T., Ishihara, T., et al. , Increased cytoplasmic TARDBP mRNA in affected spinal motor neurons in ALS caused by abnormal autoregulation of TDP-43.Nucleic Acids Res 2016, 44 , 5820-5836.
[74] Igaz, L. M., Kwong, L. K., Lee, E. B., Chen-Plotkin, A., et al. , Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. J Clin Invest 2011,121 , 726-738.
[75] Gitcho, M. A., Bigio, E. H., Mishra, M., Johnson, N., et al. , TARDBP 3’-UTR variant in autopsy-confirmed frontotemporal lobar degeneration with TDP-43 proteinopathy. Acta Neuropathol2009, 118 , 633-645.
[76] Koehler, L. C., Grese, Z. R., Bastos, A. C. S., Mamede, L. D., et al. , TDP-43 Oligomerization and Phase Separation Properties Are Necessary for Autoregulation. Front Neurosci 2022,16 , 818655.
[77] Bembich, S., Herzog, J. S., De Conti, L., Stuani, C., et al. , Predominance of spliceosomal complex formation over polyadenylation site selection in TDP-43 autoregulation. Nucleic Acids Res 2014, 42 , 3362-3371.
[78] Torres, P., Ramírez-Núñez, O., Romero-Guevara, R., Barés, G., et al. , Cryptic exon splicing function of TARDBP interacts with autophagy in nervous tissue. Autophagy 2018, 14 , 1398-1403.
[79] Sephton, C. F., Cenik, C., Kucukural, A., Dammer, E. B., et al. , Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein complexes. J Biol Chem 2011, 286 , 1204-1215.
[80] Colombrita, C., Onesto, E., Megiorni, F., Pizzuti, A., et al. , TDP-43 and FUS RNA-binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post-transcriptional fate in motoneuron-like cells. J Biol Chem2012, 287 , 15635-15647.
[81] Caccamo, A., Majumder, S., Deng, J. J., Bai, Y., et al. , Rapamycin rescues TDP-43 mislocalization and the associated low molecular mass neurofilament instability. J Biol Chem 2009,284 , 27416-27424.
[82] Sidibé, H., Khalfallah, Y., Xiao, S., Gómez, N. B., et al. , TDP-43 stabilizes G3BP1 mRNA: relevance to amyotrophic lateral sclerosis/frontotemporal dementia. Brain 2021,144 , 3461-3476.
[83] McDonald, K. K., Aulas, A., Destroismaisons, L., Pickles, S., et al. , TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1.Hum Mol Genet 2011, 20 , 1400-1410.
[84] Kim, S. H., Shanware, N. P., Bowler, M. J., Tibbetts, R. S., Amyotrophic lateral sclerosis-associated proteins TDP-43 and FUS/TLS function in a common biochemical complex to co-regulate HDAC6 mRNA.J. Biol. Chem. 2010, 285 , 34097-34105.
[85] Müller-McNicoll, M., Botti, V., de Jesus Domingues, A. M., Brandl, H., et al. , SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export. Genes Dev 2016,30 , 553-566.
[86] Fallini, C., Bassell, G. J., Rossoll, W., The ALS disease protein TDP-43 is actively transported in motor neuron axons and regulates axon outgrowth. Hum Mol Genet 2012, 21 , 3703-3718.
[87] Chu, J.-F., Majumder, P., Chatterjee, B., Huang, S.-L., Shen, C.-K. J., TDP-43 Regulates Coupled Dendritic mRNA Transport-Translation Processes in Co-operation with FMRP and Staufen1. Cell Rep 2019,29 , 3118-3133 e3116.
[88] Vishal, S. S., Wijegunawardana, D., Salaikumaran, M. R., Gopal, P. P., Sequence Determinants of TDP-43 Ribonucleoprotein Condensate Formation and Axonal Transport in Neurons. Front Cell Dev Biol2022, 10 , 876893.
[89] Gopal, P. P., Nirschl, J. J., Klinman, E., Holzbaur, E. L., Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons. Proc Natl Acad Sci U S A 2017, 114 , E2466-E2475.
[90] Anderson, P., Kedersha, N., RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 2009, 10 , 430-436.
[91] Jain, S., Wheeler, J. R., Walters, R. W., Agrawal, A., et al. , ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure. Cell 2016, 164 , 487-498.
[92] Kedersha, N., Chen, S., Gilks, N., Li, W., et al. , Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol Biol Cell 2002, 13 , 195-210.
[93] Mateju, D., Eichenberger, B., Voigt, F., Eglinger, J., et al. , Single-Molecule Imaging Reveals Translation of mRNAs Localized to Stress Granules. Cell 2020, 183 , 1801-1812 e1813.
[94] Putnam, A., Thomas, L., Seydoux, G., RNA granules: functional compartments or incidental condensates? Genes Dev 2023.
[95] Liu-Yesucevitz, L., Bilgutay, A., Zhang, Y.-J., Vanderweyde, T., et al. , Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS One 2010, 5 , e13250.
[96] Aulas, A., Stabile, S., Vande Velde, C., Endogenous TDP-43, but not FUS, contributes to stress granule assembly via G3BP. Mol Neurodegener 2012, 7 , 54.
[97] Zhang, P., Fan, B., Yang, P., Temirov, J., et al. , Chronic optogenetic induction of stress granules is cytotoxic and reveals the evolution of ALS-FTD pathology. Elife 2019, 8 .
[98] Chen, Y., Cohen, T. J., Aggregation of the nucleic acid-binding protein TDP-43 occurs via distinct routes that are coordinated with stress granule formation. J Biol Chem 2019, 294 , 3696-3706.
[99] Hans, F., Glasebach, H., Kahle, P. J., Multiple distinct pathways lead to hyperubiquitylated insoluble TDP-43 protein independent of its translocation into stress granules. J Biol Chem 2020,295 , 673-689.
[100] Charif, S. E., Luchelli, L., Vila, A., Blaustein, M., Igaz, L. M., Cytoplasmic Expression of the ALS/FTD-Related Protein TDP-43 Decreases Global Translation Both in vitro and in vivo. Front Cell Neurosci 2020, 14 , 594561.
[101] Russo, A., Scardigli, R., La Regina, F., Murray, M. E., et al. , Increased cytoplasmic TDP-43 reduces global protein synthesis by interacting with RACK1 on polyribosomes. Hum Mol Genet 2017,26 , 1407-1418.
[102] MacNair, L., Xiao, S., Miletic, D., Ghani, M., et al. , MTHFSD and DDX58 are novel RNA-binding proteins abnormally regulated in amyotrophic lateral sclerosis. Brain 2016, 139 , 86-100.
[103] Altman, T., Ionescu, A., Ibraheem, A., Priesmann, D., et al. , Axonal TDP-43 condensates drive neuromuscular junction disruption through inhibition of local synthesis of nuclear encoded mitochondrial proteins. Nat Commun 2021, 12 , 6914.
[104] Wong, C.-E., Jin, L.-W., Chu, Y.-P., Wei, W.-Y., et al. , TDP-43 proteinopathy impairs mRNP granule mediated postsynaptic translation and mRNA metabolism. Theranostics 2021, 11 , 330-345.
[105] Fiesel, F. C., Weber, S. S., Supper, J., Zell, A., Kahle, P. J., TDP-43 regulates global translational yield by splicing of exon junction complex component SKAR. Nucleic Acids Res. 2012,40 , 2668-2682.
[106] Nagano, S., Jinno, J., Abdelhamid, R. F., Jin, Y., et al. , TDP-43 transports ribosomal protein mRNA to regulate axonal local translation in neuronal axons. Acta Neuropathol 2020, 140 , 695-713.
[107] Bjork, R. T., Mortimore, N. P., Loganathan, S., Zarnescu, D. C., Dysregulation of Translation in TDP-43 Proteinopathies: Deficits in the RNA Supply Chain and Local Protein Production. Front Neurosci2022, 16 , 840357.
[108] Guo, F., Jiao, F., Song, Z., Li, S., et al. , Regulation of MALAT1 expression by TDP43 controls the migration and invasion of non-small cell lung cancer cells in vitro. Biochem Biophys Res Commun 2015, 465 , 293-298.
[109] Nguyen, T. M., Kabotyanski, E. B., Reineke, L. C., Shao, J., et al. , The SINEB1 element in the long non-coding RNAMalat1 is necessary for TDP-43 proteostasis. Nucleic Acids Res 2020, 48 , 2621-2642.
[110] Nishimoto, Y., Nakagawa, S., Hirose, T., Okano, H. J., et al. , The long non-coding RNA nuclear-enriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron during the early phase of amyotrophic lateral sclerosis. Mol Brain 2013, 6 , 31.
[111] Modic, M., Grosch, M., Rot, G., Schirge, S., et al. , Cross-Regulation between TDP-43 and Paraspeckles Promotes Pluripotency-Differentiation Transition. Mol Cell 2019,74 , 951-965 e913.
[112] Wang, C., Duan, Y., Duan, G., Wang, Q., et al. , Stress Induces Dynamic, Cytotoxicity-Antagonizing TDP-43 Nuclear Bodies via Paraspeckle LncRNA NEAT1-Mediated Liquid-Liquid Phase Separation.Mol Cell 2020, 79 , 443-458 e447.
[113] Shelkovnikova, T. A., Kukharsky, M. S., An, H., Dimasi, P., et al. , Protective paraspeckle hyper-assembly downstream of TDP-43 loss of function in amyotrophic lateral sclerosis. Mol Neurodegener 2018, 13 , 30.
[114] Suzuki, H., Shibagaki, Y., Hattori, S., Matsuoka, M., C9-ALS/FTD-linked proline-arginine dipeptide repeat protein associates with paraspeckle components and increases paraspeckle formation.Cell Death Dis 2019, 10 , 746.
[115] Matsukawa, K., Kukharsky, M. S., Park, S. K., Park, S., et al. , Long non-coding RNA NEAT1_1 ameliorates TDP-43 toxicity in in vivo models of TDP-43 proteinopathy. RNA Biol 2021, 18 , 1546-1554.
[116] Sekar, D., Tusubira, D., Ross, K., TDP-43 and NEAT long non-coding RNA: Roles in neurodegenerative disease. Front Cell Neurosci 2022, 16 , 954912.
[117] Liu, X., Li, D., Zhang, W., Guo, M., Zhan, Q., Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay. EMBO J 2012, 31 , 4415-4427.
[118] Keihani, S., Kluever, V., Mandad, S., Bansal, V., et al. , The long noncoding RNA neuroLNC regulates presynaptic activity by interacting with the neurodegeneration-associated protein TDP-43. Sci Adv 2019, 5 , eaay2670.
[119] Balas, M. M., Porman, A. M., Hansen, K. C., Johnson, A. M., SILAC-MS Profiling of Reconstituted Human Chromatin Platforms for the Study of Transcription and RNA Regulation. J Proteome Res 2018,17 , 3475-3484.
[120] Pandya-Jones, A., Markaki, Y., Serizay, J., Chitiashvili, T., et al. , A protein assembly mediates Xist localization and gene silencing. Nature 2020, 587 , 145-151.
[121] Lu, Z., Guo, J. K., Wei, Y., Dou, D. R., et al. , Structural modularity of the XIST ribonucleoprotein complex. Nat Commun 2020, 11 , 6163.
[122] Ayala, Y. M., Zago, P., D’Ambrogio, A., Xu, Y.-F., et al. , Structural determinants of the cellular localization and shuttling of TDP-43. J. Cell Sci. 2008, 121 , 3778-3785.
[123] Pinarbasi, E. S., Cağatay, T., Fung, H. Y. J., Li, Y. C., et al. , Active nuclear import and passive nuclear export are the primary determinants of TDP-43 localization. Sci. Rep. 2018,8 , 7083.
[124] Doll, S. G., Meshkin, H., Bryer, A. J., Li, F., et al. , Recognition of the TDP-43 nuclear localization signal by importin α1/β.Cell Rep 2022, 39 , 111007.
[125] García Morato, J., Hans, F., von Zweydorf, F., Feederle, R., et al. , Sirtuin-1 sensitive lysine-136 acetylation drives phase separation and pathological aggregation of TDP-43. Nat Commun 2022, 13 , 1223.
[126] Hans, F., Eckert, M., von Zweydorf, F., Gloeckner, C. J., Kahle, P. J., Identification and characterization of ubiquitinylation sites in TAR DNA-binding protein of 43 kDa (TDP-43). J. Biol. Chem. 2018, 293 , 16083-16099.
[127] Winton, M. J., Igaz, L. M., Wong, M. M., Kwong, L. K., et al. , Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. J. Biol. Chem. 2008, 283 , 13302-13309.
[128] Gasset-Rosa, F., Lu, S., Yu, H., Chen, C., et al. , Cytoplasmic TDP-43 De-mixing Independent of Stress Granules Drives Inhibition of Nuclear Import, Loss of Nuclear TDP-43, and Cell Death.Neuron 2019, 102 , 339-357 e337.
[129] Khalil, B., Chhangani, D., Wren, M. C., Smith, C. L., et al. , Nuclear import receptors are recruited by FG-nucleoporins to rescue hallmarks of TDP-43 proteinopathy. Mol Neurodegener 2022,17 , 80.
[130] Cohen, T. J., Hwang, A. W., Unger, T., Trojanowski, J. Q., Lee, V. M.-Y., Redox signalling directly regulates TDP-43 via cysteine oxidation and disulphide cross-linking. EMBO J 2012, 31 , 1241-1252.
[131] Pirie, E., Oh, C., Zhang, X., Han, X., et al. , S-nitrosylated TDP-43 triggers aggregation, cell-to-cell spread, and neurotoxicity in hiPSCs and in vivo models of ALS/FTD. Proc Natl Acad Sci U S A 2021, 118 .
[132] Inukai, Y., Nonaka, T., Arai, T., Yoshida, M., et al. , Abnormal phosphorylation of Ser409/410 of TDP-43 in FTLD-U and ALS.FEBS Lett 2008, 582 , 2899-2904.
[133] Neumann, M., Kwong, L. K., Lee, E. B., Kremmer, E., et al. , Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol. 2009, 117 , 137-149.
[134] Hasegawa, M., Arai, T., Nonaka, T., Kametani, F., et al. , Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann. Neurol. 2008, 64 , 60-70.
[135] Neumann, M., Frick, P., Paron, F., Kosten, J., et al. , Correction to: Antibody against TDP-43 phosphorylated at serine 369 suggests conformational differences of TDP-43 aggregates among FTLD-TDP subtypes. Acta Neuropathol 2021, 141 , 137.
[136] Kametani, F., Obi, T., Shishido, T., Akatsu, H., et al. , Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains. Sci. Rep. 2016, 6 , 23281.
[137] Okochi, M., Walter, J., Koyama, A., Nakajo, S., et al. , Constitutive phosphorylation of the Parkinson’s disease associated alpha-synuclein. J Biol Chem 2000, 275 , 390-397.
[138] Singh, T. J., Grundke-Iqbal, I., Iqbal, K., Phosphorylation of tau protein by casein kinase-1 converts it to an abnormal Alzheimer-like state. J Neurochem 1995, 64 , 1420-1423.
[139] Choksi, D. K., Roy, B., Chatterjee, S., Yusuff, T., et al. , TDP-43 Phosphorylation by casein kinase Iepsilon promotes oligomerization and enhances toxicity in vivo. Hum Mol Genet2014, 23 , 1025-1035.
[140] Nonaka, T., Suzuki, G., Tanaka, Y., Kametani, F., et al. , Phosphorylation of TAR DNA-binding Protein of 43 kDa (TDP-43) by Truncated Casein Kinase 1delta Triggers Mislocalization and Accumulation of TDP-43. J Biol Chem 2016, 291 , 5473-5483.
[141] Hicks, D. A., Cross, L. L., Williamson, R., Rattray, M., Endoplasmic Reticulum Stress Signalling Induces Casein Kinase 1-Dependent Formation of Cytosolic TDP-43 Inclusions in Motor Neuron-Like Cells. Neurochem Res 2020, 45 , 1354-1364.
[142] Martinez-Gonzalez, L., Rodriguez-Cueto, C., Cabezudo, D., Bartolome, F., et al. , Motor neuron preservation and decrease of in vivo TDP-43 phosphorylation by protein CK-1delta kinase inhibitor treatment. Sci Rep 2020, 10 , 4449.
[143] Salado, I. G., Redondo, M., Bello, M. L., Perez, C., et al. , Protein kinase CK-1 inhibitors as new potential drugs for amyotrophic lateral sclerosis. J Med Chem 2014, 57 , 2755-2772.
[144] Liachko, N. F., McMillan, P. J., Guthrie, C. R., Bird, T. D., et al. , CDC7 inhibition blocks pathological TDP-43 phosphorylation and neurodegeneration. Ann Neurol 2013,74 , 39-52.
[145] Rojas-Prats, E., Martinez-Gonzalez, L., Gonzalo-Consuegra, C., Liachko, N. F., et al. , Targeting nuclear protein TDP-43 by cell division cycle kinase 7 inhibitors: A new therapeutic approach for amyotrophic lateral sclerosis. Eur J Med Chem 2021, 210 , 112968.
[146] Vaca, G., Martinez-Gonzalez, L., Fernandez, A., Rojas-Prats, E., et al. , Therapeutic potential of novel Cell Division Cycle Kinase 7 inhibitors on TDP-43-related pathogenesis such as Frontotemporal Lobar Degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). J Neurochem 2021, 156 , 379-390.
[147] Liachko, N. F., McMillan, P. J., Strovas, T. J., Loomis, E., et al. , The tau tubulin kinases TTBK1/2 promote accumulation of pathological TDP-43. PLoS Genet 2014, 10 , e1004803.
[148] Sato, S., Cerny, R. L., Buescher, J. L., Ikezu, T., Tau-tubulin kinase 1 (TTBK1), a neuron-specific tau kinase candidate, is involved in tau phosphorylation and aggregation. J Neurochem2006, 98 , 1573-1584.
[149] Tian, Y., Wang, Y., Jablonski, A. M., Hu, Y., et al. , Tau-tubulin kinase 1 phosphorylates TDP-43 at disease-relevant sites and exacerbates TDP-43 pathology. Neurobiol Dis 2021, 161 , 105548.
[150] Nozal, V., Martínez-González, L., Gomez-Almeria, M., Gonzalo-Consuegra, C., et al. , TDP-43 Modulation by Tau-Tubulin Kinase 1 Inhibitors: A New Avenue for Future Amyotrophic Lateral Sclerosis Therapy. J Med Chem 2022, 65 , 1585-1607.
[151] Taylor, L. M., McMillan, P. J., Liachko, N. F., Strovas, T. J., et al. , Pathological phosphorylation of tau and TDP-43 by TTBK1 and TTBK2 drives neurodegeneration. Mol Neurodegener 2018,13 , 7.
[152] Kwon, Y. T., Ciechanover, A., The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy. Trends Biochem Sci2017, 42 , 873-886.
[153] van Eersel, J., Ke, Y. D., Gladbach, A., Bi, M., et al. , Cytoplasmic accumulation and aggregation of TDP-43 upon proteasome inhibition in cultured neurons. PLoS One 2011, 6 , e22850.
[154] Urushitani, M., Sato, T., Bamba, H., Hisa, Y., Tooyama, I., Synergistic effect between proteasome and autophagosome in the clearance of polyubiquitinated TDP-43. J Neurosci Res 2010, 88 , 784-797.
[155] Scotter, E. L., Vance, C., Nishimura, A. L., Lee, Y.-B., et al. , Differential roles of the ubiquitin proteasome system and autophagy in the clearance of soluble and aggregated TDP-43 species.J Cell Sci 2014, 127 , 1263-1278.
[156] Dammer, E. B., Fallini, C., Gozal, Y. M., Duong, D. M., et al. , Coaggregation of RNA-Binding Proteins in a Model of TDP-43 Proteinopathy with Selective RGG Motif Methylation and a Role for RRM1 Ubiquitination. PLoS One 2012, 7 , e38658.
[157] Kim, W., Bennett, E. J., Huttlin, E. L., Guo, A., et al. , Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 2011, 44 , 325-340.
[158] Wagner, S. A., Beli, P., Weinert, B. T., Nielsen, M. L., et al. , A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics2011, 10 , M111 013284.
[159] Khosravi, B., LaClair, K. D., Riemenschneider, H., Zhou, Q., et al. , Cell-to-cell transmission of C9orf72 poly-(Gly-Ala) triggers key features of ALS/FTD. EMBO J 2020, 39 , e102811.
[160] Hebron, M. L., Lonskaya, I., Sharpe, K., Weerasinghe, P. P. K., et al. , Parkin ubiquitinates Tar-DNA binding protein-43 (TDP-43) and promotes its cytosolic accumulation via interaction with histone deacetylase 6 (HDAC6). J. Biol. Chem. 2013, 288 , 4103-4115.
[161] Uchida, T., Tamaki, Y., Ayaki, T., Shodai, A., et al. , CUL2-mediated clearance of misfolded TDP-43 is paradoxically affected by VHL in oligodendrocytes in ALS. Sci Rep 2016, 6 , 19118.
[162] Rayner, S. L., Yang, S., Farrawell, N. E., Jagaraj, C. J., et al. , TDP-43 is a ubiquitylation substrate of the SCF(cyclin F) complex. Neurobiol Dis 2022, 167 , 105673.
[163] Lee, Y. C., Huang, W. C., Lin, J. H., Kao, T. J., et al. , Znf179 E3 ligase-mediated TDP-43 polyubiquitination is involved in TDP-43- ubiquitinated inclusions (UBI) (+)-related neurodegenerative pathology. J Biomed Sci 2018, 25 , 76.
[164] Watabe, K., Kato, Y., Sakuma, M., Murata, M., et al. , Praja1 RING-finger E3 ubiquitin ligase suppresses neuronal cytoplasmic TDP-43 aggregate formation. Neuropathology 2020, 40 , 570-586.
[165] Maurel, C., Chami, A. A., Thépault, R.-A., Marouillat, S., et al. , A role for SUMOylation in the formation and cellular localization of TDP-43 aggregates in amyotrophic lateral sclerosis.Mol. Neurobiol. 2020, 57 , 1361-1373.
[166] Maraschi, A., Gumina, V., Dragotto, J., Colombrita, C., et al. , SUMOylation Regulates TDP-43 Splicing Activity and Nucleocytoplasmic Distribution. Mol Neurobiol 2021, 58 , 5682-5702.
[167] Cohen, T. J., Hwang, A. W., Restrepo, C. R., Yuan, C.-X., et al. , An acetylation switch controls TDP-43 function and aggregation propensity. Nat. Commun. 2015, 6 , 5845.
[168] Wang, P., Wander, C. M., Yuan, C.-X., Bereman, M. S., Cohen, T. J., Acetylation-induced TDP-43 pathology is suppressed by an HSF1-dependent chaperone program. Nat. Commun. 2017, 8 , 82.
[169] Yu, H., Lu, S., Gasior, K., Singh, D., et al. , HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells. Science 2021, 371 .
[170] Lu, S., Hu, J., Arogundade, O. A., Goginashvili, A., et al. , Heat-shock chaperone HSPB1 regulates cytoplasmic TDP-43 phase separation and liquid-to-gel transition. Nat Cell Biol 2022,24 , 1378-1393.
[171] Keating, S. S., Bademosi, A. T., San Gil, R., Walker, A. K., Aggregation-prone TDP-43 sequesters and drives pathological transitions of free nuclear TDP-43. Cell Mol Life Sci 2023, 80 , 95.
[172] Igaz, L. M., Kwong, L. K., Xu, Y., Truax, A. C., et al. , Enrichment of C-terminal fragments in TAR DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinal cord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Am J Pathol2008, 173 , 182-194.
[173] Tsuji, H., Arai, T., Kametani, F., Nonaka, T., et al. , Molecular analysis and biochemical classification of TDP-43 proteinopathy. Brain 2012, 135 , 3380-3391.
[174] Tsuji, H., Nonaka, T., Yamashita, M., Masuda-Suzukake, M., et al. , Epitope mapping of antibodies against TDP-43 and detection of protease-resistant fragments of pathological TDP-43 in amyotrophic lateral sclerosis and frontotemporal lobar degeneration.Biochem Biophys Res Commun 2012, 417 , 116-121.
[175] Nonaka, T., Kametani, F., Arai, T., Akiyama, H., Hasegawa, M., Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Hum Mol Genet 2009,18 , 3353-3364.
[176] Zhang, Y. J., Xu, Y. F., Dickey, C. A., Buratti, E., et al. , Progranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43. J Neurosci 2007, 27 , 10530-10534.
[177] Cassel, J. A., McDonnell, M. E., Velvadapu, V., Andrianov, V., Reitz, A. B., Characterization of a series of 4-aminoquinolines that stimulate caspase-7 mediated cleavage of TDP-43 and inhibit its function. Biochimie 2012, 94 , 1974-1981.
[178] De Marco, G., Lomartire, A., Mandili, G., Lupino, E., et al. , Reduced cellular Ca(2+) availability enhances TDP-43 cleavage by apoptotic caspases. Biochim Biophys Acta 2014, 1843 , 725-734.
[179] Li, Q., Yokoshi, M., Okada, H., Kawahara, Y., The cleavage pattern of TDP-43 determines its rate of clearance and cytotoxicity.Nat Commun 2015, 6 , 6183.
[180] Dormann, D., Capell, A., Carlson, A. M., Shankaran, S. S., et al. , Proteolytic processing of TAR DNA binding protein-43 by caspases produces C-terminal fragments with disease defining properties independent of progranulin. J Neurochem 2009,110 , 1082-1094.
[181] Suzuki, H., Lee, K., Matsuoka, M., TDP-43-induced death is associated with altered regulation of BIM and Bcl-xL and attenuated by caspase-mediated TDP-43 cleavage. J Biol Chem 2011, 286 , 13171-13183.
[182] Yamashita, T., Hideyama, T., Hachiga, K., Teramoto, S., et al. , A role for calpain-dependent cleavage of TDP-43 in amyotrophic lateral sclerosis pathology. Nat Commun 2012, 3 , 1307.
[183] Nishimoto, Y., Ito, D., Yagi, T., Nihei, Y., et al. , Characterization of alternative isoforms and inclusion body of the TAR DNA-binding protein-43. J Biol Chem 2010, 285 , 608-619.
[184] Xiao, S., Sanelli, T., Chiang, H., Sun, Y., et al. , Low molecular weight species of TDP-43 generated by abnormal splicing form inclusions in amyotrophic lateral sclerosis and result in motor neuron death. Acta Neuropathol 2015, 130 , 49-61.
[185] Pesiridis, G. S., Tripathy, K., Tanik, S., Trojanowski, J. Q., Lee, V. M.-Y., A ”two-hit” hypothesis for inclusion formation by carboxyl-terminal fragments of TDP-43 protein linked to RNA depletion and impaired microtubule-dependent transport. J Biol Chem 2011,286 , 18845-18855.
[186] Herskowitz, J. H., Gozal, Y. M., Duong, D. M., Dammer, E. B., et al. , Asparaginyl endopeptidase cleaves TDP-43 in brain.Proteomics 2012, 12 , 2455-2463.
[187] Sasaguri, H., Chew, J., Xu, Y.-F., Gendron, T. F., et al. , The extreme N-terminus of TDP-43 mediates the cytoplasmic aggregation of TDP-43 and associated toxicity in vivo. Brain Res2016, 1647 , 57-64.
[188] Zhang, Y.-J., Caulfield, T., Xu, Y.-F., Gendron, T. F., et al. , The dual functions of the extreme N-terminus of TDP-43 in regulating its biological activity and inclusion formation. Hum Mol Genet 2013, 22 , 3112-3122.
[189] Berning, B. A., Walker, A. K., The Pathobiology of TDP-43 C-Terminal Fragments in ALS and FTLD. Front Neurosci 2019,13 , 335.
[190] Chhangani, D., Martín-Peña, A., Rincon-Limas, D. E., Molecular, functional, and pathological aspects of TDP-43 fragmentation.iScience 2021, 24 , 102459.
[191] Jumper, J., Evans, R., Pritzel, A., Green, T., et al. , Highly accurate protein structure prediction with AlphaFold.Nature 2021, 596 , 583-589.
[192] Takahashi, M., Kitaura, H., Kakita, A., Kakihana, T., et al. , USP10 Inhibits Aberrant Cytoplasmic Aggregation of TDP-43 by Promoting Stress Granule Clearance. Mol Cell Biol 2022,42 , e0039321.
[193] Johnson, J. O., Pioro, E. P., Boehringer, A., Chia, R., et al. , Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat Neurosci 2014, 17 , 664-666.
[194] Volkening, K., Leystra-Lantz, C., Yang, W., Jaffee, H., Strong, M. J., Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res 2009, 1305 , 168-182.
[195] Majumder, P., Chu, J.-F., Chatterjee, B., Swamy, K. B. S., Shen, C.-K. J., Co-regulation of mRNA translation by TDP-43 and Fragile X Syndrome protein FMRP. Acta Neuropathol 2016, 132 , 721-738.
[196] Gregory, R. I., Yan, K. P., Amuthan, G., Chendrimada, T., et al. , The Microprocessor complex mediates the genesis of microRNAs. Nature 2004, 432 , 235-240.
[197] Romano, G., Klima, R., Feiguin, F., TDP-43 prevents retrotransposon activation in the Drosophila motor system through regulation of Dicer-2 activity. BMC Biol 2020, 18 , 82.
[198] Gong, D., Wang, L., Zhou, H., Gao, J., et al. , Long noncoding RNA Lnc530 localizes on R-loops and regulates R-loop formation and genomic stability in mouse embryonic stem cells.Stem Cell Reports 2023, 18 , 952-968.
[199] Nishimura, A. L., Zupunski, V., Troakes, C., Kathe, C., et al. , Nuclear import impairment causes cytoplasmic trans-activation response DNA-binding protein accumulation and is associated with frontotemporal lobar degeneration. Brain 2010, 133 , 1763-1771.
[200] Gleixner, A. M., Morris Verdone, B., Otte, C. G., Anderson, E. N., et al. , NUP62 localizes to ALS/FTLD pathological assemblies and contributes to TDP-43 insolubility. Nat Commun 2022,13 , 3380.